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ABSTRACT
Introduction: Due to the uptake in the use of e-cigarettes (ECs), evidence on their health effects is
needed to inform health care and policy. Some regulators and health professionals have raised
concerns that the respirable aerosols generated by ECs contain several constituents of potential
toxicological and biological relevance to respiratory health.
Areas covered: We critically assess published research on the respiratory system investigating the
effects of ECs in preclinical models, clinical studies of people who switched to ECs from tobacco
cigarettes, and population surveys. We assess the studies for the quality of their methodology and
accuracy of their interpretation. To adequately assess the impact of EC use on human health, addressing
common mistakes and developing robust and realistic methodological recommendations is an urgent
priority. The findings of this review indicate that ECs under normal conditions of use demonstrate far
fewer respiratory risks than combustible tobacco cigarettes. EC users and smokers considering ECs have
the right to be informed about the relative risks of EC use, and to be made aware that findings of
studies published by the media are not always reliable.
Expert opinion: Growing evidence supports the relative safety of EC emission aerosols for the
respiratory tract compared to tobacco smoke.
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1. Introduction

The use of electronic cigarettes (ECs) has significantly
increased over the past decade. These consumer products
have been rapidly gaining ground on conventional cigarettes
due to their efficiency in reducing tobacco consumption, their
competitive price, the consumer perception of EC as a less
harmful alternative to smoking, and because EC provide
‘smoking experience without smoking’ [1–3]. Earlier designs
have evolved over the past decade, and now the devices are
available in multiple formats and models. Basically, ECs are
battery powered electronic devices that operate by heating an
element (most commonly, a metal coil) that vaporizes
a solution (e-liquid) mainly consisting of glycerol, propylene
glycol (PG), distilled water, and flavorings, and which may or
may not contain nicotine. The user inhales the aerosol gener-
ated by vaporizing the e-liquid in a process commonly
referred to as ‘vaping.’ ECs do not contain tobacco, do not
create smoke, and do not rely on combustion to operate.

The composition of EC aerosol is by far less complex than
that of cigarette smoke [4–10], which – by contrast – is known
to contain thousands of harmful and potentially harmful con-
stituents [11]. Some of main toxins identified in cigarette
smoke are also present in EC aerosol emissions, but at much
lower levels than in cigarettes smoke, and often at exposure
levels no greater than present in the general environment.

EC use is regarded as having lower levels of risks than smok-
ing as reported by the Royal College of Physicians [12], Public
Health England [13] and others [14,15]. The RCP estimates that
ECs are at least 95% less harmful than conventional cigarettes,
although there is concern that long-term exposure to EC aerosol
emissions could carry some health risks. Because the particle size
in EC aerosols is well within the respiratory range [16,17], aerosol
particles will penetrate into the lungs [18]making the airways the
primary target of any potentially harmful effects.

Unfortunately, very little is known about the health effects of
long-term vaping and this is of particular concern for those never
smokers who have just started using ECs. Therefore, studies of the
toxicological and biological effects of EC aerosol emissions, using
in vitro human airway cell systems, animal models, and clinical
studies, are needed to investigate the potential health risks of
using these devices. Whether or not chronic exposure to EC will
result in lung disease can only be evaluated by large scale, long-term
studies of daily EC users who have never smoked in their life, a study
that would be challenging to carry out at present, as most EC users
have had prior or current cigarette smoke exposure. It goes without
saying that nicotine consumption must be actively discouraged
among youths, and –besides smoking – this includes vaping aswell.

In this review article, we critically appraise published stu-
dies that have investigated the potential toxic effects of ECs
using preclinical models, such as cell culture, animal models,
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and clinical studies (with the exclusion of case reports).
Preclinical studies may not fully predict the response of the
human body to the exposure, therefore animal studies are still
required for regulatory toxicological testing. Significant tech-
nological advances with in vitro models are slowly being
acknowledged as acceptable alternatives. With these metho-
dological issues in mind, we present an overview of the emer-
ging literature on respiratory health findings. The narrative
review begins with a description of EC aerosols followed by
discussions of the literature grouped by research type: cell
testing, animal studies, and research on respiratory health.

2. Constituents of concern in EC aerosols

Upon activation, ECs generate respirable aerosols [16–18] contain-
ing several constituents of potential toxicological and biological
relevance to respiratory health, but at much lower levels than in
cigarette smoke [6–9]. One of themost comprehensive assessment
of EC chemical emissions has shown that of the 150 constituents
examined in the EC aerosol (including all tobacco smoke harmful
and potentially harmful constituents, and additional toxic species
reportedly present in EC emissions) 104 were not detected and 21
were present due to laboratory background [9]. Of the 25 remain-
ing detected aerosol constituents, 9 were present at levels too low
to be quantified. Only 16 were generated in whole or in part by the
EC from: i) major e-liquid constituents (nicotine, PG, and VG); ii)
recognized impurities in Pharmacopoeia-quality nicotine; and iii) 8
thermal decomposition products of PG or VG. By contrast, approxi-
mately 100 constituents were detected in mainstream cigarette
smoke. The emissions of toxicants were from 82 to >99% lower
on a per-puff basis from the EC compared with those from tobacco
cigarettes. Although the aerosol from the EC is compositionally less
complex than cigarette smoke and contains significantly lower
levels of toxicants, a thorough characterization of EC chemical
emissions will require non-targeted analytical assessments of
a wide range of commercial products.

Among the commonly detected aerosol constituents, gly-
cerol, PG and their thermal degradation products (i.e. carbonyl
compounds), chemical flavorings, nicotine, and metals have
attracted most attention. The US Food and Drug
Administration (FDA) and the US Environmental Protection
Agency (EPA) categorize vegetable glycerine (VG) and PG as
Generally Recognized as Safe [19]. Although PG can be also
found in cigarette smoke, high levels are normally present in
EC aerosol emissions. Hence, it is necessary to have a better
understanding of PG’s safety by inhalation. All animal and
human studies that analyzed the effect of the inhalation of
PG have indicated that PG does not appear to pose
a significant hazard via the inhalation route [20]. In fact, in
several of these animal studies the concentrations of PG used
were higher than the concentration used in EC and did not
give rise to any toxic effects. However, human studies using
PG concentrations similar to that in ECs are required to con-
firm the safety of inhalation of PG from vaping products.

Despite their good safety profile, exposure to glycerol and
PG aerosols has been shown to elicit some irritant effects [21–
23]. The possibility that chronic airway irritation may have long
term consequences cannot be dismissed, and more research

in this area is required. Additionally, PG, has been implicated
as a potential cause of oral allergic contact dermatitis [24], and
some users may report signs and symptoms compatible with
contact dermatitis around the mouth or in the oral
mucosa [25].

Thermal degradation of glycerol and PG during EC vapor-
ization may generate toxic carbonyls including formaldehyde,
acetaldehyde, and acrolein. Nevertheless, studies evaluating
low-power cigalike and closed-system modular EC devices
found formaldehyde, acetaldehyde, and acrolein at much
lower levels than in cigarette smoke [8,9,26]. Aerosol gener-
ated from more-advanced high-power devices may produce
levels of aldehydes approaching or even exceeding those of
cigarette smoke [27]. However, it is now known that high
aldehyde levels can be generated only when the EC is over-
heated, a condition generally seen in certain experimental
protocols, and as a result these findings bear little relevance
to normal use [28]. EC users find the taste delivered from
overheated EC, known as ‘dry puff,’ to be so unpleasant that
they cannot inhale the aerosol [29], thus avoiding potential
exposure to high levels of aldehydes. Under normal vaping
conditions, the aldehyde emission levels are far lower than in
cigarette smoke and lower than the levels found in the envir-
onment [30,31]. Daily exposure from vaping (assuming a daily
consumption of 5 g EC liquid) was 5 to 31-fold lower for
formaldehyde, 191 to 528-fold lower for acetaldehyde and
25 to 193-fold lower for acrolein compared to daily smoking
(assuming a daily consumption of 20 tobacco cigarettes). This
represents a 79.0–96.8% reduction in formaldehyde,
99.5–99.8% reduction in acetaldehyde and 96.0–99.5% reduc-
tion in acrolein exposure from EC use (5 g/day liquid con-
sumption) compared to smoking 20 tobacco cigarettes.
Aldehydes such as formaldehyde are ubiquitous in the envir-
onment. According to the World Health Organization, indoor
air of homes can have up to 250 μg/m3 formaldehyde, but the
average levels are under 50 μg/m3. Therefore, considering
a daily ventilation volume of 20 m3, the daily formaldehyde
exposure from breathing indoor air is approximately 1000 μg.
This level is far higher than the total daily exposure from
consuming 5 g of e-liquids. Moreover, newer devices are
being fitted with better wicking designs (e.g. bottom coil vs
top coil) and some have been fitted with automatic tempera-
ture control features to prevent overheating and excessive
formation of carbonyls. Nonetheless, the possibility that tem-
perature control features in some current devices may not
perform accurately cannot be discounted [32].

Food flavorings are normally present in e-liquids. These
chemicals have largely unknown effects when heated and
inhaled. Chronic exposure to high levels of diacetyl, a butter
flavoring processed in microwave popcorn factories, has been
associated with cases of bronchiolitis obliterans (‘popcorn
lung’) [33,34]. Although some e-liquids contain high concen-
trations of diacetyl [35,36], there have been no reports that
this has caused bronchiolitis obliterans in EC users. Cigarette
smoke also contains diacetyl, but at much higher levels (up to
750 times higher) than are found in EC aerosol [37]. Yet,
cigarette smoke has not been linked conclusively with bronch-
iolitis obliterans as stated by the US Occupational Safety and
Health Administration [38]. Nonetheless, it is reasonable to
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assume that flavoring chemicals (or their thermal degradation
products) in EC aerosol could have potential risks. Besides
possible toxic effects upon the lung from chronic exposures,
such as bronchiolitis obliterans, other respiratory effects to be
studied should include respiratory irritation and potential
allergic responses [39,40].

Most if not all of the lung damage observed in smokers is
not caused by nicotine, but from the process of burning
tobacco cigarette and the inhalation of thousands of toxic
chemicals generated during combustion. The development
of smoking-related diseases is currently attributed to oxida-
tive stress, airway inflammation, and the direct toxic effects
of thousands of chemicals and carcinogens present in
tobacco smoke [41]. Nicotine is not classified as
a carcinogen by the International Agency for Research on
Cancer [42] and is relatively safe for human consumption at
low concentrations [43]. The 2014 US Surgeon General’s
report examined the harm caused by nicotine and con-
cluded that although nicotine may adversely affect fetal
and adolescent brain development, it does not contribute
to smoking-related diseases [44]. In terms of nicotine deliv-
ery, earlier ECs designs are generally less efficient than con-
ventional cigarettes at delivering nicotine to the body [45–
47], but the most recent and innovative EC devices have
been reported to deliver nicotine at levels equivalent to
those obtained from cigarettes [48].

Most likely class of compounds that may be found in some
EC aerosols but not usually found in cigarette smoke
(depending on materials used for the heating element in
the vaping device – will be metals that may leach from
metals and alloys sometimes used in ECs. Cigarette smoke
also contains metals present in the tobacco leaves. When
evaluating the hazardous potential of metals in EC aerosol,
it must be noted that daily exposure levels from EC use are
many order of magnitude lower compared to acceptable
exposure from inhalational medications and by orders of
magnitude lower than the regulatory limits for daily occupa-
tional exposure. Health risk assessment analyses show that
levels of metals exposure from EC use were of minimal
apparent health concern [49].

The key points about EC aerosols are that 1) EC aerosols
contain constituents of concern, including formaldehyde, acet-
aldehyde, and acrolein, although, in almost every case, at
substantially lower levels than cigarette smoke; 2) in the test-
ing where higher levels were measured, the devices had been
overheated, a condition very unlikely to occur in normal use;
3) the pyrolysis of flavouring components needs to be studied,
as well as additional research on the base e-liquid compo-
nents; and 4) prior research has already demonstrated that
nicotine, which may or may not be a component in e-liquid, is
not a carcinogen. With these facts in mind, we review the
studies on EC research in cells cultures, animal models, and
human subjects.

3. Effects of EC aerosols on airway cell cultures

The potential for EC toxicity has been investigated by expos-
ing cell cultures to e-liquids or to aerosol generated by ECs. In

general, these studies could help to gain insight into the
biologic and toxicological effects of EC aerosols. These effects
have been studied using a wide range of cell types, including
neutrophils [50], macrophages [51], embryonic stem cells [52–
54], murine fibroblasts [55], carcinoma cell lines [56,57],
human endothelial cells [58], and lung fibroblasts [52,59,60].
The airway epithelium is primarily and extensively exposed to
the aerosol emissions of ECs, so our focus will be on studies
using human airway epithelial cells [61–64].

As there are many cell types available to researchers, it is
important to be aware of their different sensitivity and
responses across the test matrix. Differences in cellular meta-
bolism, apoptotic rates and genetic characteristics can contri-
bute to the observed variability in results between cell lines.
For example, one study examined the response of several cell
types to EC exposures to identify an appropriate test system
[65]. Both A549 cells and the CL-1548 cell line showed reduced
sensitivity (in term of cell viability) to e-liquid aerosol com-
pared to primary NHBE cells, with increased sensitivity of CL-
1548 compared with A549 cells. In another study [63],
researchers investigated lung cell line, BEAS2B; the responses
observed were similar to those in other cell lines. Strangely, in
this study there was variability in the quantity of e-liquid
consumed between identical EC exposure experiments.

The use of 3D tissue systems, whether ‘home grown’ or
commercially available cultures, is becoming more routinely
used for inhalation toxicology studies, due to improved tissue
reliability and stability and the cost of production. A number
of studies [64–66] have used 3D differentiated immortalized
primary normal HBEC for EC assessment. Differentiated normal
HBEC were exposed at the air–liquid interface (ALI) to EC
aerosols (with or without nicotine), PG, VG, and reference
3R4F cigarette smoke, in a CULTEX® RFS compact module.
Cigarette smoke led to eight times lower cell viability and
five times higher oxidative stress than EC [64].
A shortcoming of this study is that it lacked a standard puffing
regime and a standard protocol for aerosol generation.

In another study, Aufderheide et al. [66] repeatedly
exposed differentiated immortalized primary HBEC (CL-1548)
to cigarette smoke and EC aerosol to evaluate phenotypic
changes associated with respiratory disease (e.g. COPD).
Cultures exposed to mainstream cigarette smoke and e-cigar-
ette vapor showed a clear reduction in mucus-secreting cells
and their secretion activity as well as in cilia beating, with the
effect less pronounced for the cells treated with the e-liquid
aerosol. These observations suggest that EC aerosols may have
a reduced risk for respiratory disease compared to cigarette
smoke.

Shen et al. [67] conducted RNA sequencing analysis on
differentiated normal HBEC exposed to 1R5F tobacco refer-
ence cigarettes and EC aerosols (with or without nicotine) at
the ALI. Cigarette smoke elicited differential gene expression
and cell cytotoxicity, but EC aerosol provoked less response.
Neilson et al [68] reported on the use of the commercial 3D
tissue culture EpiAirway™ (MatTek) to assess the irritancy of EC
aerosols generated with the Vitrocell® VC1 system, and cigar-
ette smoke exposure reduced cell viability to 12% while cells
remained viable with EC exposure. The limitation of this study
is the short exposure to EC aerosol that may minimize overall
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toxicity. Other researchers used the 3D commercial tissue
culture MucilAir™ (Epithelix) to evaluate EC toxicity. Matched
nicotine doses of EC aerosol and cigarette smoke were tested
with short repeated exposures [69] or a single acute exposure
[70] to assess changes in gene-expression profiles using RNA
sequencing. In both exposure studies, the more substantial
changes in gene expression were observed with cigarette
smoke than with EC aerosol. Even when the EC nicotine
dose was doubled, the gene expression profiles remained
significantly lower than those with cigarette smoke exposures.
These studies were characterized by a short exposure to EC
aerosol which minimized overall harmfulness.

The lack of high level of gene expression after EC aerosol
exposure in the aforementioned studies contrasts with recent
work in which nasal scrape biopsies, nasal lavage, urine, and
serum from nonsmokers, cigarette smokers, and EC users were
assessed for changes in immune gene expression profiles [71].
The authors found that vaping ECs resulted in decreased
expression of immune-related genes similar to that from
smoking cigarettes. However, little consideration was given
to the fact that previous exposure to tobacco smoking in the
vapers group (vapers are ex-smokers) would have induce
irreversible epigenetic/gene expression changes [72]. Given
that all EC users in the study were former smokers, it is
impossible to decouple the effects of EC aerosol emission
from those of previous tobacco smoke exposure. Also, the
observed association between e-cigarette use and changes
in gene expression does not imply causation given its cross-
sectional design. Obviously, a longitudinal study of regular
vapers who have never smoked in their life would have been
more appropriate to establish potential causation of the
e-cigarette exposure effect on gene expression and related
clinical implications.

The same methodological shortcoming occurs in another
cross-sectional design study which investigated markers of
innate lung responses in sputum samples from smokers, EC
users and non-smokers [73]. The authors concluded that EC
use and smoking alters the profile of innate defence proteins,
but failed to consider the obvious confounder of previous
andcurrent exposure to tobacco smoke among EC users who
are ex-smokersor dual users). Proteomic analysis of sputum
supernatants in former smokers has shown high levels of
azurocidin 1, neutrophil elastase and CXCL8 [74]. Moreover,
mucin concentrations are known to be elevated both in
current and former COPD smokers with MUC5B and
MUC5AC levels being approximately 3-fold (for current
COPD smokers) and 10-fold (for former COPD smokers)
higher than in controls who had never smoked [75]. It is
important to consider the within subject instability of spu-
tum endotypes due to the large variability observed with
difference of the order of 1000 in the levels of analysed
markers). The log-scales in the y-axis are typically used to
make up for this variability.

Ghosh et al. [76] performed a proteomic investigation of
bronchial brush biopsies and bronchoalveolar lavage obtained
with a bronchoscopy of healthy non-smokers, cigarette smo-
kers, and EC users, and found that ~300 proteins were differ-
entially expressed in smokers and vapers airways. This paper is

also subject to the same methodological flaws noted earlier, as
vapers in the study were mostly dual users and the exclusive
EC users were ex-smokers.

The least sophisticated studies expose two-dimensional (2D)
submerged cellular systems to e-liquids, not aerosols. They
employ continuous or immortalized cell lines or primary cells
isolated from either human or animal tissues. These studies enable
researchers to screen a large number of e-liquids using basic
endpoints such as cell viability. Cytotoxic effects are measured
using commonly used assays. One measurement is neutral red
uptake where viable cells can take up neutral red via active trans-
port whereas non-viable cells cannot so that the amount of
released dye can be measured to determine the total number of
viable cells. Thus estimating cytotoxicity. Another measurement is
lactate dehydrogenase release (LDH) where a cytosolic enzyme is
released into cell culture media to show plasma membrane
damage and MTT (Abbreviation for the dye compound
3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromidefor;
a marker of cell proliferation).

In one study [52], effects of 35 e-liquids were screened using
human embryonic stem cells (hESC), mouse neural stem cells
(mNSC), and human pulmonary fibroblasts (hPF). The MTT assay
was used to determine NOAELs (no-observed-adverse-effect-
level) and half maximal inhibitory concentration values, IC50s. It
was found that hESC and mNSC were more sensitive to e-liquids
than hPF. In other findings, the researchers attributed cytotoxi-
city to some flavors, but not to nicotine or PG/VG [52]. In an
extension of this study, highly flavored e-liquids were examined
and the researchers identified cinnamaldehyde, an ingredient in
cinnamon-flavored e-liquids, as of particular toxicological con-
cern [59]. In a later paper by the same group, cytotoxicity was
also observed by aerosolized forms of these liquids, but in this
case it was ascribed to VG/PG thermal degradation products (i.e.
carbonyl compounds) rather than to flavourings [53].

Lerner et al. [60] also reported oxidative stress and cell
morphological changes in human lung fibroblasts (hLF) in
response to e-liquids, particularly cinnamon flavored e-liquids.
that stimulated IL-8 secretion and caused loss of cell viability.
They suggested that e-liquids have oxidative properties, and
that sweet or fruit flavors made the e-liquids even stronger
oxidizers. In the same study, exposure of human airway
epithelial cells (H292) to EC aerosol at the ALI led to an
increase in inflammatory cytokines. The authors explored the
contribution of flavorings from e-liquids to lung barrier func-
tion and inflammation in human bronchial epithelial cells. In
these studies, acetoin, diacetyl, pentanedione, maltol, ortho-
vanillin, coumarin, and cinnamaldehyde, all flavors found in
e-liquids, did not affect cell viability [77]. The conflicting
results are due to lack of a standardized approach to in vitro
toxicology assessments of vaping products (e.g. e-liquid vs EC
aerosols, fibroblasts vs epithelial cells, etc).

Alveolar macrophages (AMs) are a unique lung cell popula-
tion that eliminate airborne irritants and infectious agents,
while also orchestrating resolution of lung inflammation, and
impairments in AM function could therefore enhance suscept-
ibility to airway infections and respiratory diseases [78]. Scott
et al. [79] have shown that human AMs exposed to EC aerosol
condensate increased cytotoxicity, ROS production, inflamma-
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tory cytokines and inhibited their phagocytic activity, as would
be expected given that EC aerosol contains oxidant and other
pro-inflammatory constituents. Since EC are used almost
exclusively by current or former smokers, the key question is
how this adverse effect compares with that of exposure to
cigarette smoke. Unfortunately, this study does not address
that question.

High-content screening platforms provide useful tools for the
initial hazard characterisation of e-liquids to help determine what
toxic end points might need further investigation. Use of real-
time cell analyzer (RTCA) technology (such as the xCELLigence
platform) enables the screening of cytotoxic effects of e-liquid
flavors on immortalized HBEC. Two studies have used these
methods. First, Sherwood and Boitano [80] demonstrated that
the different flavors tested varied in their cytotoxicity profiles,
with vanillin and 2,5-dimethylpyrazine causing abnormalities in
transepithelial resistance and ion conductance. This effect may
have negative consequences for airway surface liquid homeos-
tasis in individuals who use ECs regularly. Second, Iskandar et al.
[81] discussed the utility of high-content screening of e-liquids
using multiple basic endpoints, including cell viability, oxidative
stress and cellular function on a Cellomics platform.

Omics tools have also been applied to investigate the
global impact of e-liquids has in cellular systems. One study
utilized untargeted metabolomics on primary normal human
bronchial epithelial cells (HBEC) treated with e-liquids and
cigarette smoke condensates demonstrated shifts in the
HBEC metabolome following treatment. E-liquid exposure pro-
voked a smaller response than cigarette smoke [82].

In addition to studies on toxicity, e-liquids have also been
investigated for immune defense responses. Wu et al. [83]
demonstrated that cultures of human airway epithelial cells
infected with human rhinovirus increased viral load and pro-
duction of anti-viral proteins with e-liquid treatment. Although
cell viability was not altered, the data suggest that e-liquids
could impair immune host defense.

These studies have shown a response to e-liquid exposure
regardless of the cell systems and that some cell systems are
more responsive than others. These studies have been criti-
cized as not being representative of exposures under normal
conditions of use, for example testing high doses and using
continuous exposure protocols, in some cases as long as
48 hours. Also, some of these studies did not compare the
effects of EC with conventional tobacco products. Tobacco
products in most assays elicit significantly higher responses
than ECs, as observed by Misra et al. [84]. A549 human lung
epithelial carcinoma cells were exposed to e-liquids and aero-
sol extracts of e-liquids with or without nicotine and menthol
flavoring, or to 3R4F total particulate matter (TPM). No cyto-
toxic, genotoxic, or inflammatory effects were observed for
any of the EC treatments under investigation, whereas com-
parable exposures to cigarette smoke extracts resulted in
markedly cytotoxic and genotoxic responses [84]. One obvious
limitation of this study is the use of A549 cells that are known
to be more resistant to cytotoxic stimuli. Moreover, the use of
submerged cell monolayers does not reflect the real exposure
of airway cells to EC aerosol.

In real life, exposures from ECs come from aerosols, not
e-liquids. Therefore, exposing the cells and tissues to aerosol is
a more appropriate way to investigate the biological
responses to ECs. Extracts of aerosols can be generated by
either collecting EC aerosol particulate matter onto
a Cambridge filter pad [85] or generating aqueous extracts
(AqEs) of aerosols by bubbling them through cell culture
media [86] or by directly exposing cell cultures to EC aerosol
emissions [54]. These exposures enable the delivery of more
appropriate and realistic doses of EC.

Taylor et al. [86] investigated oxidative stress responses in H292
cells exposed to AqEs from ECs and 3R4F reference cigarettes. As
expected, the authors found that 3R4F induced significant oxida-
tive stress, whereas no responses were observed with the AqEs
from ECs. In this study, the quality control of AqE generation and
nicotine quantification was integral to the understanding of the
cellular responses and should be the best practice method for
generating AqEs, but underestimation of the overall risk could
have resulted from the use of a tumour lung cell line (H292) in
submerged culture and from the fact that only soluble compo-
nents of the EC aerosol are present in AqEs,

Yu et al. [56] used several cell types, including human head and
neck squamous cell carcinoma cell lines HN30 and UMSCC10B, to
assess the potential of EC to cause DNA damage and cell death
compared to cigarette smoke. The authors generated AqEs by
drawing EC aerosol (with or without nicotine) or cigarette smoke
through media. EC-exposed cells were reported to show signifi-
cantly reduced cell viability, clonogenic survival and DNA strand
breaks, regardless of EC nicotine content. However, in this study
the authors neglected to report how the extracts were made, how
many puffs were taken, how much aerosol volume was collected,
and how the extract was quantified and/or normalized to
a constituent (e.g. nicotine). Without this information, it is difficult
to reach meaningful conclusion.

Currently there are no standard protocols for the generation of
AqEs for in vitro studies, and variousmethods are used. Taylor et al.
[86] drew 10 puffs from ECs into 20 ml cell culture media under
CORESTA CRM81 regime [87]. Other studies include bubbling
200 mg of vaporized e-liquid into 20 ml of cell culture media [55]
or 50ml EC aerosol bubbled through 10ml cell culturemedia [88].
Irrespective of how the extract is made, it should be quality
checked and assessed for nicotine content as aminimum toenable
comparisons across studies and biological effects.

Over the years there have been advances to in vitro exposure
systems. These systems have predominately been used to gener-
ate, dilute, and deliver aerosols, such as cigarette smoke, environ-
mental particulates, and nanoparticles, to cellular cultures. Cell
culture technologies to investigate aerosol properties have also
evolved to enable air-liquid interface (ALI) 2D cell and three-
dimensional (3D) tissue culture exposures. A number of reviews
have outlined the value of commercially available systems, such as
the Borgwaldt RM20S and the Vitrocell® VC1 and VC10 systems
[89,90], and these tools have been adapted to be used for in vitro
assessment of EC aerosol emissions. The problem is that these
systems are expensive and as a consequence few entry-level
scientists, academics, and new research groups have access to
them. Instead, a plethora of poorly standardized, individually
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made systems have been used to generate and deliver aerosols
instead. The CRM81 regimen [87] has been suggested for EC
aerosol generation, but is often overlooked or difficult to imple-
ment on a basic aerosol exposure system.

An example of an individually made system is Cervellati
et al. [91]. The researchers used an exposure system that
draws aerosols over cellular cultures using a vacuum
pump, and the amount of aerosol and duration of expo-
sure were not reported. Based on this unreliable proce-
dure the authors conclude that unflavored EC aerosols
produced less cytotoxicity than flavored EC aerosols and
cigarette smoke. Similarly, Lerner et al [92], used a timer
system to control a basic laboratory pump, and they too
did not report the dosimetry and robustness of aerosol
delivery. They observed an increase in inflammatory and
mitochondrial stressors, but due to the basic generation
system comparisons cannot be made with consumer
usage or data from other reported studies.

Commercially available exposure systems have been
used in studies to assess the cellular toxicity of e-cigar-
ettes. When H292 were exposed for 1 hr to EC aerosol
using the Borgwaldt RM20S, less cytotoxicity was observed
compared to cigarette smoke [61]. The exposures were
consistent to human exposures, and with the EC, the
maximum concentration delivered was equivalent to
a daily dose delivered within one exposure. A limitation
of this study is that it focused on only one biological
endpoint (cell viability). Other cytotoxicity endpoints
could be effected differently.

Thorne et al. [93] reported that cigarette smoke
induced DNA damage in BEAS2B at the ALI using
a Vitrocell® VC10 system, in a dose dependent manner,
whereas short-term exposure with two different ECs did
not result in e any DNA damage, even at equivalent or
greater doses than cigarette smoke aerosol. Using quartz
crystal microbalance technology, nicotine delivery and
deposited mass were both assessed at the exposure inter-
face and demonstrated that EC exposures were 12–28
times greater than cigarette smoke. In another study,
H292 cells were used to test aerosol from various types
of EC devices, or a tank system with different e-liquid
flavors, variable nicotine concentrations, and with modi-
fied battery output voltage, compared to cigarette smoke
[62]. Exposure to EC aerosol resulted in decreased meta-
bolic activity and cell viability and increased inflammatory
cytokine levels, but all these factors were more adversely
affected by exposure to cigarette smoke.

These studies indicate that product type, battery output
voltage, and flavors significantly affected EC toxicity, with
strawberry flavor being the most cytotoxic. However, the
final flavour in an e-liquid is achieved by the combination
of a variety of individual flavor ingredients. This can vary
from just a few ingredients in a simple flavour to over
a hundred ingredients and constituents in complex fla-
vours. Without information on e-liquid compositions, no
conclusions on the relative potency of individual flavour
ingredients can be drawn. For the vast bulk of the in vitro
papers published in this field, insufficient dose information

and lack of information on e-liquid composition does not
allow interpretation of the findings to consumer
exposures.

Overall, a large number of in vitro studies have been pub-
lished relating to the cytotoxic effects of vaping products and
e-liquids, but we have identified many methodological limita-
tions. The relevance of data obtained from direct e-liquid
exposures, instead of aerosol exposures is questionable.
Intuitively, aerosol exposure is more relevant to the real-life
situation. However, it must be considered that there are no
standard procedures for the generation of aerosol extracts
(AqEs) or aerosols, and that custom-made exposure systems
may not be able to generate consistent and reproducible
aerosols. Yet another methodological shortcoming is that the
effect of device liquid interactions is generally overlooked, and
the device type and make, the e-liquids used, and the device
settings are often not fully reported. Given the wide range of
devices in the market place, the relevance of outcomes from
any one single liquid-device combination cannot be extrapo-
lated to vaping in general.

For robust findings that apply to real life vaping, in vitro
exposures need to be contextualized with normal conditions
(user exposures) and require the assessment of key dosimetry
markers, such as nicotine or glycerol ratio, to ‘normalize’
exposures. Appropriate comparators must also be incorpo-
rated to be able to understand the effects attributed to ECs.
Finally, the reliability and reproducibility of test systems need
to be considered to ensure that the dynamic range captures
EC and cigarette responses appropriately. Despite their limita-
tions, studies on cellular systems and exposure systems offer
a vast opportunity for researchers to compare responses to
different e-liquids and aerosols and to understand the
mechanistic pathways that are associated with biological
effects and thus inform the hazard identification and charac-
terization aspect of risk assessment.

4. Effects of EC aerosols on animal models

Despite the opportunities noted above, in vitro models have
limitations, as they cannot fully predict the response of the
human body to exposures. Although animal models have
other shortcomings, they at least represent the complexity
found in human bodies and are currently accepted as
a reasonable alternative – their use is often required for reg-
ulatory toxicological testing. Animal models have been used
traditionally to assess both the local and systemic effects of
aerosols across a series of exposure durations ranging from
hours to weeks. The practicalities, costs, species extrapolation
to humans and ethical considerations of using animals makes
extensive testing of ECs and their flavorings difficult.

For assessing inhalation toxicology, there are a number of
regulatory accepted methods that include acute (OECD TG
403 and 436) [94,95], 28-day sub-acute (6 h per day, 5 days
per week for 28 days) (OECD TG 412) [96], and 90-day sub-
chronic (6 h per day, 5 days per week for 90 days) (OECD TG
413) [97] inhalation studies employing the controlled use of
rodents for nose-only or whole-body exposures use various
protocols. In addition to these methods, a variety of custom
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methods have been commonly used in animal exposure mod-
els. Animal studies have recently investigated the toxicology
of EC constituents or whole aerosols and have reported var-
ious effects, including minimal irritative responses, oxidative
stress, inflammation, and impairment in the lung’s immune
defense against infection. These studies must be examined for
their dosimetry and the appropriate exposures for the species,
and, most importantly, how these extrapolate to realistic
human doses and exposures.

For example, Phillips et al. [98] studied the toxicity of
nicotine and nicotine and pyruvic acid aerosols in a 28-day
rat inhalation study (OECD 412). Rats exposed to nicotine had
decreased body weight and concentration-dependent
increases in liver weight. The respiratory tract effects from
nicotine exposures were localized in the larynx and limited
to ‘adaptive changes’. This study reported no toxicity with
observed minimal changes to respiratory tract organs, sug-
gesting minor biological effects on the lung related to nicotine
aerosols. However, in this study the authors did not test
e-liquids aerosols, which are more chemically complex than
nicotine and nicotine and pyruvic acid aerosols on their own.

Waldum et al. [99] studied the longer-term in vivo effects of
inhaled nicotine. In a 2-year study of chronic repeated expo-
sure, rats exposed to inhaled nicotine at concentrations twice
that found in the plasma of heavy smokers showed no resul-
tant harmful effects. There were no increases in mortality,
atherosclerosis, or increased frequency of tumors in treated
rats compared with sham exposure controls, with only
decreases in the body weight of nicotine-exposed rats
reported. There were no attempts to measure markers of
lung injury in this study.

Several studies have examined the systemic effects of EC
excipients. The effect of inhaled PG was reported by Suber
et al. [100] in a 90-day rat inhalation study. No significant
differences in respiratory rates, minute volumes, or tidal
volumes were observed between any of the groups. Body
weights were generally not affected, with only females receiv-
ing the highest dose showing reduced body weights from day
50. Slight differences were observed between the treated and
control groups in hematological and blood chemistries, but
these did not show a dose-response relationship. However,
there was an observed increase in nasal goblet cell numbers
and mucin production with medium and higher doses of PG
aerosol and nasal hemorrhage and ocular discharge with the
highest dose. These findings are consistent with more recent
data from mice exposed to PG aerosol for 20 min/day for
3 weeks [101] but inconsistent with in vitro results discussed
earlier [74], further emphasizing caution in the interpretation
of in vitro results. The study of Suber et al [100] suggests that
sub-chronic exposures to PG resulted in dehydration and
mucosal/tissue irritation, with no obvious signs of toxicity. In
contrast, Glynos et al. [102] found that exposing C57BL/6 mice
to EC aerosol increased bronchoalveolar lavage fluid (BALF)
cellularity, MUC5AC levels, lung oxidative stress markers, air-
way hyperresponsiveness and pulmonary mechanics at least
comparably if not more than tobacco cigarette smoke.
However, an excessive 8 puff/min protocol – which equates
to an unrealistic pattern of use of one puff every 7.5 seconds

and the continuous running of their vaping machine through-
out the whole session suggest that the experimental protocol
did not reflect realistic exposure under normal conditions of
use. Moreover, some study measurements in particular IL
levels and respiratory mechanics, were adversely affected
only after 3 days of exposure but not after 4 weeks of expo-
sure, indicating temporary airway irritation that resolves over
time.

Garcia-Arcos et al. [103] delivered aerosolized VG or PG,
with or without nicotine, in A/J mice for 4 months. Exposure
to inhaled nicotine-containing VG or PG stimulated the devel-
opment of COPD-like effects, such as cytokine expression, air-
way hyper-reactivity, and emphysema-like tissue destruction.
However, A/J mice are particularly susceptible to pulmonary
emphysema (COPD-like effects) and lung tumors [104–106].
Increased mucin production and lung tissue destruction were
seen with nicotine containing PG/VG but not with PG/VG
alone, suggesting that nicotine itself causes lung toxicity.
This is inconsistent with the rat inhalation study of Waldum
et al. described earlier [99].

Another rat study by Salturk et al. [107] assessed the effects of
EC aerosols on rats following 28-day exposures and compared
outcomes to those in an untreated control group with eight rats
per group. Two cases of hyperplasia and four of squamous
metaplasia of the laryngeal epithelium were reported in the EC-
exposed rats, but these changes were not statistically significant.
Notably, there were no differences in epithelial distribution and
inflammation in the laryngeal mucosa between the two groups.
The study lacked a relevant comparator (i.e. tobacco smoke,
which is known to cause consistent hyperplasia and squamous
metaplasia in rats), used an unreasonable procedure for the
generation of EC aerosol emissions, and overexposed animals
to aerosols. In a longer-term exposure study, Werley et al. [108]
reported only minor increase in BALF lactate dehydrogenase,
total protein, alveolar macrophages, and neutrophils in treated
rats following 42 days’ recovery after 90 days of EC aerosol
inhalation (with and without nicotine and flavors). However,
Lerner et al. [60] reported an increase in inflammatory cytokine
levels in BALF and reduced glutathione concentrations in the
lungs of C57BL mice after three days of whole-body exposure to
a similar low-power cigalike EC. Similarly, Sussan et al. [109],
following 2 weeks of exposure to another popular cigalike
model, reported increased lung lipid peroxidation and inflamma-
tion and increased susceptibility of mice to infection with influ-
enza A and Streptococcus pneumoniae. However, the nicotine
doses the animals were exposed to were at levels where acute
toxicity in mice can be anticipated. Additionally, the control mice
were not subjected to the same stress-inducing regime, namely,
1.5-hour, twice daily incarceration in a small box. The combined
adverse effects of these factors were visible in the reduction in
body weight in the test group versus the control sample. Stress is
known to adversely affect the immune system inmice and is thus
likely to be at least partially, if not fully, responsible for the
increased susceptibility to infection.

Direct intratracheal instillation of e-liquids has also been
employed in an asthma-like mouse model (e.g. ovalbumin
sensitization) investigating respiratory allergic responses in
pre-sensitized mice. Following 10-week intratracheal instilla-
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tion of e-liquids, increases in pro-inflammatory cytokine levels
in BALF and airway hyper-responsiveness to methacholine
challenge were observed [110]. However, in this study as
well, the nicotine dose used was higher than levels known
to cause acute toxicity in mice. The effects described are
consistent with the generic well-known increased sensitivity
of ‘asthmatic’ lungs to inhaled respiratory irritants and do not
indicate an e-liquid specific effect. This points to the impor-
tance of the inclusion of a reference group of animals exposed
to tobacco smoke or instilled with tobacco smoke extracts
resulting in equivalent nicotine doses, as a comparator. Such
a reference group was missing in all of the animal studies
discussed above.

Balancing the dosing of the comparison group is also an
issue, Husari et al. [111] exposed mice to laboratory air, EC
aerosols or cigarette smoke for 6 h per day for 3 days, and
lung injury was assessed. EC aerosols, despite being delivered
at higher doses than cigarette smoke (over eight times higher
particulate and four times higher nicotine concentration),
resulted in lower levels of lung inflammation. In comparison,
cigarette smoke exposure resulted in significant increases in
IL-1β, IL-6, TNF-α expression and oxidative stress in the lung
and BALF, indicating that, despite higher exposure conditions,
EC aerosols exhibited less toxic effects on the lungs of experi-
mental animals when compared to cigarette smoke.

The aforementioned in vivo studies have reported effects in
response to EC whole-aerosol and aerosol constituent expo-
sures: adaptive responses to whole-aerosol exposure, dehy-
drating and irritative effects, localized inflammation and
hyperplasia in the laryngeal and nasal epithelia, oxidative
stress, and impairment in immune defense. However, these
responses need to be put into context. The dosing and expo-
sure of rodents to the various materials need to be considered,
and have in some cases been higher than weight-adjusted
daily doses in humans. It is questionable how reliable the
specialist mouse models are; some strains of mice are predis-
posed to lung disease etiologies, such as emphysema and
matrix remodeling, which must be considered when reporting
data from these models. Finally, some of these studies have
other limitations as they have not compared findings with
conventional cigarette smoke exposure responses; when the
latter is accounted for, the comparative degree of response
from the EC aerosol or constituent may well be much reduced.

5. Effects of EC use on respiratory health

In vitro human cell systems and animal models are not robust
indicators of the potential health risks of using ECs. The out-
comes of clinical studies in most fields of medicine demon-
strate how limited the value of these preclinical models are.
When addressing the concern about health effects of ECs,
human studies become extremely relevant, particularly when
the test EC under normal conditions of use. Only prospective
studies of large numbers of well-characterized EC users fol-
lowed-up for several years can provide clear answers about
the long-term health effects of ECs. Given the challenge of
conducting multi-year studies, realistic alternatives can be the
detection of early changes in subclinical injury in ‘healthy’
smokers switching to ECs with highly sensitive functional

tests and biomarkers of lung inflammation and injury, and as
well as modifications of more robust health effect indicators in
EC users with pre-existing diseases. Additionally, epidemiolo-
gic survey data may provide useful information about the
impact of EC use on respiratory health.

For acute reactions, some smokers switching from cigar-
ettes to EC have self-reported transient throat irritation, dry
cough, and other symptoms of respiratory irritation [22,23].
The acute changes detected with sensitive respiratory func-
tional tests reported by some authors [112,113] indicates that
the human respiratory tract enacts reflex defensive responses
when exposed to non-specific stimuli such as hyperosmolar EC
aerosols, with asthmatics exhibiting more intense (and effi-
cient) reflex responses. Whether such acute irritation could
translate into clinically meaningful lung disease remains
unknown, but there is no evidence to suggest that such
irritation may lead to clinically significant adverse lung effects.
Another effect, the small increase in peripheral flow resistance
immediately after EC use, is of questionable relevance to
health outcomes [112,113], particularly given that in the
same studies no significant changes could be detected by
standard spirometry immediately after EC use [112,113].
Acute exposure of EC aerosols to 10 healthy individuals
caused rapid changes in the biologic responses of small airway
epithelium, alveolar macrophages, and lung capillary endothe-
lium [114]. The relevance of such acute effects to clinical lung
disease is however questionable, and can only be evaluated
by future large scale, long-term studies of individuals who are
not ex- or current cigarette smokers who have used only ECs.

Other researchers have confirmed the absence of airflow
obstruction after single short-term EC use [115–117].
Furthermore, a 5 days confinement study of 105 healthy smo-
kers reported no significant changes in pulmonary function
(FVC, FEV1) in either the arm completely or partially switched
from conventional cigarettes to EC or the arm completely
discontinued using tobacco and nicotine products [118].
Likewise, in a high quality randomized control trial of 387
healthy smokers, Cravo and coll [119]. reported no significant
changes in pulmonary function tests after 12 weeks between
participants who switched to EC and those who were rando-
mized to continue smoking. Although no serious acute
respiratory symptoms were elicited after exposure to EC aero-
sols in any of the studies discussed here, the possibility that
adverse events may occur in predisposed individuals respond-
ing to contaminants or by-products contained in EC aerosol
cannot be excluded.

Improvements in pulmonary function tests may be
observed after smoking cessation, but they may take months
if not years to become clinically relevant and can be elicited
only in smokers with preexisting airway obstruction. The
impact of switching to ECs on long-term respiratory outcomes
is less clear and it has been investigated only in a few studies.
No change in pulmonary function tests was observed in
a 1-year randomized controlled trial of smokers with normal
spirometry at baseline switching to ECs, but improvements in
respiratory symptoms (cough and shortness of breath) were
reported [120]. Of note, progressive normalization of periph-
eral airways function (i.e. FEF 25–75%, a sensitive measure of
obstruction in the more peripheral airways) among those who
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completely gave up cigarette smoking was observed in this
study [120].

For clinical trials, nitric oxide (NO) concentration in exhaled
breath provides a practical measure of airway inflammation
and high levels are generally found in the inflamed airways of
asthmatics [121,122]. Low levels of NO [123,124] and high
levels of carbon monoxide (CO) [125] are generally found in
the exhaled breath of cigarette smokers and are known to
normalize soon after quitting. The evidence about exhaled NO
levels immediately after EC use is conflicting, with most of the
studies showing either negligible or no change
[112,113,115,117,126,127]. Switching from conventional cigar-
ettes to combustion-free nicotine containing products (such as
ECs) quickly and universally leads to normalization in exhaled
CO levels [22,23].

Normalization of exhaled NO and CO levels have been
observed among smokers who completely gave up cigarette
smoking. In a 1-year randomized controlled trial [128], reversal
to within normal non-smoking levels was already noted at
3 months with complete normalization at 6 and 12 months
in quitters who stopped using ECs as well as those who were
still using ECs. On the other hand, no significant changes were
observed in individuals who failed to quit or reduce cigarette
consumption. Complete abstention from smoking combusti-
ble cigarette is known to reduce toxic levels of exhaled CO to
within normal limits; similar reductions in exhaled CO have
been observed in acute [129,130] and long-term ECs studies
[131,132]. Given that ECs are battery-operated devices that do
not rely on combustion to operate, this was not surprising.
Also, the reported improvements in exhaled NO and CO levels
were associated with attenuations in composite symptom
scores (cough, phlegm, shortness of breath, wheeze, tight
chest, stuffy nose, sinus pain, and frontal headache), particu-
larly in individuals who completely gave up smoking. These
outcomes have been self-reported by a wide variety of vapers
in the real world [2,25]. The reversal of inflammatory changes
in the upper and lower airways after quitting smoking may be
the mechanism for these improvements in symptom scores.
When assessing respiratory health, it is however of outmost
importance to disentangle health effects driven by chronic
exposure to EC aerosol emissions from those related to pre-
vious smoking history. In a small cohort of daily EC users who
have never smoked in their life, no deterioration in spirometric
indices, development of respiratory symptoms, changes in
markers of lung inflammation nor signs of early lung damage
on HRCT were noted in any of the 9 subjects who completed
the 3.5-year follow up [133]. The small sample size, the lack of
a control smoking group, and the relatively short duration of
the follow up were important limitations of this study.

The studies discussed above involved ‘healthy’ subjects,
and only limited work has addressed health impact of EC
use in users with pre-existing pulmonary diseases. The asth-
matic smoker is a distinct disease phenotype with increased
susceptibility to exacerbations and poor asthma-specific
health status [134]. Quitting smoking can reverse the nega-
tive impact of tobacco smoke on asthma symptoms and
lung function [135], and switching to EC use may produce
significant respiratory benefits as well. A retrospective
cohort study of regular EC users with mild to moderate

asthma did not show any deterioration in respiratory phy-
siology and subjective asthma outcomes [136,137]. On the
contrary, smokers with asthma who quit or substantially
decreased tobacco consumption by switching to ECs
showed progressive significant improvement in the
Juniper’s Asthma Control Questionnaire (ACQ), FEV1, FVC,
and forced expired flow between 25% and 75% of the FVC
(FEF25-75), as well as airway hyper-responsiveness (AHR) to
inhaled methacholine [136]. A 2-year follow-up study con-
firmed that EC use ameliorated objective and subjective
asthma outcomes and suggests that these beneficial effects
may persist in the long term [137]. Remarkably, similar find-
ings were found in the dual users of ECs and cigarettes. EC
use was well tolerated, and exposure to e-liquid aerosol in
this vulnerable population did not trigger any asthma
attacks. These positive findings are consistent with results
from a large internet survey of EC users with asthma [2].
Improvement in asthma symptoms after switching was
reported in 65.4% of the respondents. Improved asthma
symptoms were more often noted in exclusive EC users,
while similar improvements were also described in dual
users. Worsening of symptoms after switching was reported
only in 1.1% of the asthmatics.

Another disease associated with tobacco smoking is COPD,
a progressive disease characterized by a persistent inflamma-
tory and remodeling response of the airways [138,139].
Smoking cessation is the only evidence-based strategy
known to favorably modify the course of COPD and reduce
mortality [140,141]. Reducing cigarette consumption by
switching to EC use may yield considerable respiratory bene-
fits in COPD. A retrospective-prospective study of patients
with COPD found no deterioration in respiratory physiology
(post-bronchodilator FEV1, FVC, and %FEV1/FVC) in COPD
patients who quit or substantially reduced their tobacco con-
sumption by switching to EC use [142]. In smokers with COPD
and irreversible airway obstruction, the lack of significant
improvements in spirometric indices after smoking cessation
is not unusual [143,144]. Nonetheless, participants in a three-
year study experienced significant declines in yearly respira-
tory exacerbations, much improved overall health status (mea-
sured by the COPD Assessment Test [CAT]), and boosted
physical activity (measured by the Six-Minute Walk Test)
[142]. These improvement in health outcomes have also
been reported in an internet survey of regular EC users with
COPD [2]. Improvement in respiratory symptoms after switch-
ing was reported by 75.7% of the respondents, whereas wor-
sening was reported by only 0.8%. Outcomes self-reported by
general vapers also indicate improvement in respiratory symp-
toms [2,25]. A key finding is that respiratory exacerbations
were halved in COPD patients who quit or reduced substan-
tially their tobacco consumption after switching to ECs [142].
Smoking is known to increase susceptibility to respiratory
infection to bacterial and viral pathogens and quitting smok-
ing appears to lower the risk of respiratory infection [145–147].
Regular use of EC may reduce pathogens activity [148], prob-
ably due to the presence of propylene glycol in its aerosol
form, which has antibacterial as well as antiviral activity
[149,150]. Antibacterial activity has been recently shown in
commercially available e-liquids [151].
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Moving from clinical data to surveys, these studies have
investigated the impact of ECs on respiratory health by analyz-
ing associations of their use with respiratory symptoms and
respiratory illnesses. Although the evidence from clinical stu-
dies suggest that EC are unlikely to raise significant health
concerns for the respiratory tract, most published surveys
have suggested the opposite. Four studies examined respira-
tory symptoms in adolescents using or who have used EC
[152–155] and all show an association between respiratory
symptoms and EC use. All these surveys are cross-sectional,
relying on inaccurate self-reporting of respiratory symptoms
and respiratory illnesses, and failing to take into account
relevant key confounders. These studies should be expanded
in more appropriate longitudinal cohorts. In particular, the
analysis conducted by McConnell and coll [152]. fails to con-
firm the association between asthma symptoms and EC use
when controlling for tobacco smoking and second-hand
smoke exposure. The association of EC use and self-reported
chronic respiratory conditions (asthma as well as COPD) have
been also reported in cross-sectional surveys of adults in the
US [156,157], but these cross-sectional studies cannot demon-
strate causation, and are not adjusted for baseline confoun-
ders such as smoking history. In a recent analysis from two
observational cohorts, Bowler and coll [158]. concluded that
EC use was associated with poorer respiratory health out-
comes in adults at risk for or with COPD, but the study does
not measure the frequency of EC use. Another potential con-
founder with the study is selection bias with the EC users
having a more prolonged exposure to cigarettes (i.e. pack/
years) which is associated with poorer COPD outcomes.
Therefor the study’s reported association of EC use and
COPD may be in error from the misclassification of the level
of EC use, or the differences in baseline cigarette use may
have attenuated the negative association in the findings.

Human subject research on EC use and lung function has
been conducted at the clinical and population levels. Clinical
studies have observed some non-serious acute effects, but
whether they result in lung disease is not known. Several
studies and EC user surveys have reported beneficial effects
after switching to EC use. To the contrary, cross-sectional
surveys have indicated a negative association between EC
use and lung disease, but these studies are limited because
they do not adjust for confounders such as prior smoking
history or frequency of EC use. There is a need for more long-
term studies and population level epidemiological analysis of
medical records.

6. Conclusions

ECs generate respirable aerosols [16–18] containing glycerol,
PG and their thermal degradation products (i.e. carbonyl com-
pounds), chemical flavorings, and metals, but at much lower
levels than in cigarette smoke [6–9]. EC use (5 g/day) repre-
sents a 79.0–96.8% reduction in formaldehyde, 99.5–99.8%
reduction in acetaldehyde and 96.0–99.5% reduction in acro-
lein exposure compared to smoking 20 tobacco cigarettes.
Studies on the effect of the inhalation of PG in humans have
indicated that it does not appear to pose a significant hazard

[20], while noting that exposure to glycerol and PG aerosols
has been shown to elicit some irritant effects [21–23].
Innovations in EC design and new technologies have been
recently introduced to further minimize any residual harm
and to improve user satisfaction. Newer devices with tempera-
ture controls prevent overheating and the dry-puff phenom-
enon that produce excessive formation of carbonyls.

The potential for EC toxicity has been investigated by
exposing cell cultures to e-liquids or to aerosol generated by
ECs, and our review focused on studies using human airway
epithelial cells [61–64]. In real life, exposures from ECs come
from aerosols, not e-liquids, therefore exposing the cells and
tissues to aerosol is a more appropriate way to investigate the
biological responses to ECs. This requires rigorous lab quality
standard procedures for the generation of aerosol extracts
(AqEs) or aerosols, and these are rarely applied. Another meth-
odological issue with in vitro studies is that the effect of
device liquid interactions is generally overlooked, and the
device type and make, the e-liquids used, and the device
settings are often not fully reported. Finally, with the large
number of devices available, findings from any one single
liquid-device combination cannot be extrapolated to vaping
in general.

Animal studies have recently investigated the toxicology of
EC constituents or whole aerosols and have reported various
effects: adaptive responses to whole-aerosol exposure, dehy-
drating and irritative effects, localized inflammation and
hyperplasia in the laryngeal and nasal epithelia, oxidative
stress, and impairment in immune defense. These findings
must be questioned because in some studies the dosing was
substantially higher than for weight-adjusted daily doses in
humans. Poisoning animals in their cages is not informative of
what happens to consumer under normal condition of use.
Studies with specialist mouse models are suspect because
some strains of mice are predisposed to lung disease etiolo-
gies. Finally, some studies did not compare EC findings with
conventional cigarette smoke exposure responses.

In vitro human cell systems and animal models are not robust
indicators of the potential health risks of using ECs as preclinical
studies have limited value. Human studies are the most relevant
for addressing the health effects of EC, particularly when they
have tested EC under normal conditions of use. For acute reac-
tions, some smokers switching from cigarettes to EC have self-
reported transient throat irritation, dry cough, and other symp-
toms of respiratory irritation [22,23], indicating that the human
respiratory tract enacts reflexive defensive responses when
exposed to non-specific stimuli [112,113]. There is no evidence
to suggest that such irritation may lead to clinically significant
adverse lung effects. Likewise, the small increase in peripheral
flow resistance immediately after EC use is probably not indica-
tive of negative health outcomes [112,113]. The relevance of
acute effect findings is particularly questionable, given that no
significant changes could be detected by standard spirometry
immediately after EC use [112,113].

For short-term effects, a 5 days confinement study of 105
healthy smokers reported no significant changes in pulmonary
function (FVC, FEV1) and a high quality randomized control
trial of 387 healthy smokers [118] reported no significant
changes in pulmonary function tests after 12 weeks.
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Improvements in pulmonary function tests for smokers with
preexisting airway obstruction may be observed after smoking
cessation, but they may take months if not years to become
clinically relevant.

The impact of switching to ECs on long-term respiratory
outcomes is less clear. A 1-year randomized controlled trial of
smokers with normal spirometry at baseline switching to ECs
found no changes pulmonary function tests and reported
improvements in respiratory symptoms (cough and shortness
of breath) [119]. The study also observed progressive normal-
ization of peripheral airways function (i.e. FEF 25–75%) among
those who completely gave up cigarette smoking. Smokers
switching from conventional cigarettes to combustion-free
nicotine containing products (such as ECs) quickly and univer-
sally leads to normalization in exhaled CO levels [22,23]. When
assessing respiratory health, it is of outmost importance to
disentangle health effects driven by chronic exposure to EC
aerosol emissions from those related to previous smoking
history.

Only limited work has addressed health impact of EC use in
users with pre-existing pulmonary diseases. A retrospective
cohort study of regular EC users with mild to moderate
asthma did not show any deterioration in respiratory physiol-
ogy and subjective asthma outcomes [135,136]. Smokers with
asthma who quit or substantially decreased tobacco consump-
tion by switching to ECs showed progressive significant
improvements [135], and a 2-year follow-up study confirmed
that EC use ameliorated objective and subjective asthma out-
comes [136]. EC use was well tolerated, and exposure to
e-liquid aerosol in this vulnerable population did not trigger
any asthma attacks. For smokers with COPD, a retrospective-
prospective study determined that there was no deterioration
in respiratory physiology in patients who quit or substantially
reduced their tobacco consumption by switching to EC
use [141].

Several surveys have contradicted these clinical findings,
but their cross-sectional design cannot demonstrate causality.
Surveys rely on self-report of respiratory symptoms and
respiratory illnesses which can be inaccurate, and surveys fail
to consider relevant key confounders, particularly smoking
history, and other factors such as vaping frequency and dura-
tion. Longitudinal cohort studies could provide more robust
data; for example, McConnell and coll [151]. failed to confirm
the association between asthma symptoms and EC use when
controlling for tobacco smoking and second-hand smoke
exposure.

In summary, the human subject studies provide the most
relevant data on the effects of EC aerosol on human lung
function, and several studies demonstrate potential benefits
for smokers switching to EC. No studies reported serious
adverse events, although the potential for such reactions can-
not be completely excluded. Minor acute reactions have been
reported, but it is not known if they are indicators of potential
future lung disease, and no significant changes in pulmonary
function were observed in short term trials. Smokers who
substituted EC use for smoking experienced improvements
in symptoms (cough, phlegm, etc.) and exhibited lower levels
of exhaled CO, particularly for those with complete EC

substitution. For smokers with diseases such as asthma and
COPD, EC use appears to have a beneficial effect on symp-
toms. Yet to completely test the effects of EC on lung function,
specific data is needed for each of the hundreds of e-liquid
flavor combinations and the many different types of devices.
This data can be provided by cell studies and animal models,
but the current research designs must be substantially
improved to yield accurate findings for determining the
respiratory health risks and benefits of EC use by smokers.
Last but not least, only large long-range prospective studies
of vapers who have never smoked can provide definitive data
to demonstrate any potential impacts regular use of vaping
products may have on long term health.

7. Expert opinion

There is growing evidence to support the relative safety of EC
emission aerosols for the respiratory tract compared to tobacco
smoke [4,14,159]. Public Health England estimated, on the basis of
a review of 185 studies, that vaping an e-cigarette is likely to be at
least 95% less harmful than smoking a regular cigarette [13]. In
2016, the Royal College of Physicians reaffirmed this figure, esti-
mating the risk of long-term inhalation of e-cigarette aerosol to be
unlikely to exceed 5% of the risk associated with long-term cigar-
ette smoking [12]. This review article shows that although some
potential effects on respiratory cell types can be shown in vitro,
and low levels of chronic irritation of the respiratory tract can be
anticipated at certain levels of vaping, these effects are much less
than those of smoking. The clinical evidence confirms that ECs are
unlikely to raise significant health concerns for the respiratory tract
under normal conditions of use. Former smokers using and smo-
kers intending to use ECs as a substitute for smoking should
receive correct information about residual risks and potential
benefits of these products. Promoting further access to ECs may
offer an opportunity to reduce or prevent some of the otherwise
inevitable burden of respiratory morbidity and mortality caused
by tobacco smoking [160].

To this end, Public Health Institutions and the Ministry of
Health in the UK support ECs use as an integration to the
already existing Tobacco Control policy. The National Centre
for Smoking Cessation and Training (NCSCT) and the National
Health Service (NHS) are now actively supporting EC-based
intervention along to their standard tobacco control programs
and smoking cessation interventions to local stop smoking
services [161,162]. The results of such UK policy have been
encouraging, with an accelerated decline of smoking preva-
lence in the adult population from 19.8% (7.7 millions) in 2011
to 14.9% (6.1 millions) in 2017 [163]. Nevertheless, in most
countries there is resistance in accepting the UK model of
introducing ECs in smoking cessation clinics.

This review article also draws attention to the potential for
misinformation from poorly designed and largely misinter-
preted experimental studies. As for the majority of existing
observational and epidemiological studies [164], preclinical
(i.e. in vitro systems and animal models) and clinical models
can be also uninformative or even misleading due to problem
with methodology and interpretation of these studies. It is
urgent to address common mistakes and to develop robust
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and realistic methodological recommendations in order to
adequately assess the impact of EC use on human health
under normal condition of use.

The adoption of standardised methods will also enable
a better understanding and a reliable comparison and
extrapolation of results obtained across various studies
and research groups. There are a number of initiatives in
existence, driven by industry groups and non-governmental
agencies. For example, CORESTA, (Cooperation Centre for
Scientific Research Relative to Tobacco) has recently recom-
mended a method and puffing regime for the generation
and collection of EC aerosols [165]. The Institute of In Vitro
Sciences (IIVS) has recently hosted a series of workshops,
‘Assessment of In Vitro Chronic Obstructive Pulmonary
Disease (COPD) Models for Tobacco Regulatory Science’
and ‘In Vitro Exposure Systems and Dosimetry Assessment
Tools for Inhaled Tobacco Products’, bringing together
a community of industry, academic and regulatory scien-
tists to support the development, harmonization and stan-
dardization of in vitro applications for tobacco product and
EC testing [166,167]. The workshops have explored meth-
ods and standards supporting these topic areas and are
driving in vitro standardization with the support of techni-
cal working groups, sharing of data and publication of key
findings.

More prospective clinical trials are needed to provide
meaningful insights on the effects of EC aerosol on lung
health and to generate findings that are most relevant to
researchers, policy makers and users. Clinical research has
described no serious adverse events, although the poten-
tial for such reactions cannot be completely excluded.
Minor acute reactions have been reported, but it is not
known if they are indicators of potential future lung dis-
ease, and no significant changes in pulmonary function
were observed in short term trials. Smokers who substi-
tuted EC use experienced improvements in smoking symp-
toms (cough, phlegm, etc.) and exhibited lower levels of
exhaled CO, particularly for those with complete EC sub-
stitution. For smokers with diseases such as asthma and
COPD, EC use may have a beneficial effect on symptoms.
Yet to completely test the effects of EC on lung function,
specific data is needed for each of the hundreds of
e-liquid flavor combinations and the many different
types of devices. This data can be provided by cell studies
and animal models, but the current research designs must
be substantially improved to yield accurate findings for
understanding the respiratory health risks and benefits of
EC use by smokers.

In an Expert Review in Respiratory Medicine article pub-
lished about 7 years ago [168], we discussed several
important research developments and future avenues for
e-cigarette science. In the authors’ view, those expert
opinions have been substantiated by the growing body
of evidence. We therefore reiterate our prediction that EC
use is the most effective method of substituting tobacco
cigarette for those smokers who are unable or unwilling
to quit and we are now confident that current vaping
products are much less harmful than conventional cigar-
ettes as well as earlier EC designs.

This narrative review has identified many gaps in EC
science and identified specific research needs important for
advancing current knowledge about health effects from
e-cigarette use. In particular it is paramount to improve
research methods, data quality and interpretation of study
findings. In relation to experimental in vitro and animal mod-
els, exposure studies must be representative of human inhala-
tion exposure to e-cigarette aerosols under normal condition
of use and include relevant controls. In relation to human
behavioral/market research, it is important to develop and
standardize new questionnaires for improved assessments of
dependence on e-cigarettes, patterns and frequency of use, as
well as device characteristics. In relation to clinical and epide-
miological studies, it is mandatory to include as comparison
groups individuals who continue to smoke, those who try to
quit with other evidence-based tobacco cessation treatments,
and those who are not users of tobacco products, including
e-cigarettes.

Looking into the future, it is likely that the interest among
medical community andpatients’ associations about risk reduction
with ECs among COPD patients will grow because poor quality of
life in patients with COPD remains an unmet need and medical
management is quite unsatisfactory. Anything that can improve
quality of life of COPD patients should not be dismissed light-
heartedly. Given that many COPD patients continue smoking
despite their symptoms, it will be important to substantiate the
role of the EC as a viable, much less harmful alternative.

In the next 5 years there will be more evidence supporting
the possible trade-off between vaping products as an ‘off-
ramp’ for adult smokers and an ‘on-ramp’ to nicotine use for
youth. Millions of deaths from cigarette smoking are an
immediate, stark, and preventable tragedy that should be
fully factored in to a rational risk-benefit analysis.

Independent research will become increasingly important.
Tolerability, safety, efficiency, and harm reduction potential of
these new technologies will have to be endorsed through
independent research. Such an approach is strongly needed
to provide rigorous feedback to the industry and informed
answers to the regulators.

Potential concern on the absolute risk of existing ECs will be
resolved by technological innovation in EC design with the crea-
tion of superior and much safer new generation products. A clear
understanding of the residual risk of these new products will
resolve current concerns about long term health effects.
Nonetheless, we should not lose sight of the potential benefits of
ECs compared to cigarettes as a lot of people still smoke conven-
tional cigarettes and this will be a public health issue for a number
of years to come.

More disruption will occur. The critical distinction in
public health and consumer policy is that of a fast-
moving tech innovation that is obsoleting combustible
tobacco products. This is likely to bring more disruption
among the enemies of innovation and lovers of status quo
in tobacco control. This disruption has been already set in
motion; more countries will follow the positive develop-
ments in Japan, Korea, England, New Zealand, Canada and
Iceland that by promoting a widespread and complete
adoption of new technologies it is possible to substan-
tially accelerate declines in smoking prevalence.
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