

Prepared for: Superfund Standby Program NYSDEC Albany, NY

Prepared by: AECOM Chestnut Ridge, NY 60135736 January 2012

Periodic Review Report Dzus Fasteners Site, Site #1-52-033 Work Assignment No. D004445-14.3

Prepared by: AECOM Chestnut Ridge, NY 60135736.30.04 January 2012

Periodic Review Report Dzus Fasteners Site, Site #1-52-033 Work Assignment No. D004445-14.3

Engineering Certification

I, Scott A. Underhill, certify that I am currently a NYS registered professional engineer and that this Periodic Review Report for the Dzus Fasteners Site (Site Number # 1-52-033) was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10).

Respectfully submitted,

AECOM Technical Services Northeast, Inc.

Underfeit 075332

Date

January 24, 2011

Contents

Eng	gineerir	ng Certification	2	
1.0	Introduction			
	1.1	Site History and Remedial Program	1-1	
	1.2	Remedy Evaluation and Recommendations Summary	1-2	
2.0	Site C	verview	2-1	
	2.1	Objectives of the Periodic Review	2-1	
	2.2	Remedial History	2-1	
3.0	Evalu	ate Remedy Performance, Effectiveness, and Protectiveness	3-1	
	3.1	Operation and Maintenance Plan Compliance Report	3-1	
		3.1.1 O&M Plan Compliance		
		3.1.2 Evaluation of O&M Activities		
	3.2	Monitoring Plan Compliance Report		
		3.2.1 Monitoring Plan Compliance Report		
		3.2.2 Confirm that Performance Standards are Being Met		
	3.3	IC/EC Certification Plan Report		
		3.3.1 IC/EC Requirements and Compliance		
		3.3.2 IC/EC Certification Forms	3-18	
4.0	Evaluate Costs			
	4.1	Summary of Costs	4-1	
5.0	Conclusions and Recommendations		5-1	
	5.1	Conclusions	5-1	
		5.1.1 Operations and Maintenance	5-1	
		5.1.2 Monitoring	5-1	
	5.2	Recommendations	5-3	
60	Dofor	oneae	6.1	

List of Tables

Table 1	Well Construction Data
Table 2	Groundwater Elevations
Table 3	Summary of TAL Metals in Groundwater
Table 3A	May 2011 Sampling Event, Total versus Dissolved Metals Concentrations in Groundwater
Table 4	Summary of TAL Metals in Willetts Creek and Lake Capri Surface Water Samples
Table 5	Summary of TAL Metals in Willetts Creek Sediments
Table 6	Cadmium Analytical Results in Fish Tissue

List of Figures

Figure 1	Site Location Map		
Figure 1A	Comparison of Pre and Post Excavation Results for Willetts Creek		
Figure 2	Site Plan		
Figure 2A	Fish Tissue Sampling Locations		
Figure 3	Groundwater Contour Map, May 25, 2011		
Figure 4	Summary of TAL Metals in Groundwater		
Figure 5 Summary of TAL Metals in Surface Water			
Figure 6 Summary of TAL Metals in Sediment			
Figure 7 – Cadmium Concentrations in Shallow Monitoring Wells			
Figure 8 – Cadmium Concentrations in Deep Monitoring Wells			

- Fiugre Figure 9A Cadmium in Groundwater Isoconcentration Map, Shallow Wells, June 2006
- Figure 9B Cadmium in Groundwater Isoconcentration Map, Shallow Wells, November 2008
- Figure 9C Cadmium in Groundwater Isoconcentration Map, Shallow Wells, May 2011
- Figure 10 Cadmium Concentrations in Surface Water Samples
- Figure 11 Cadmium Concentrations in Sediment Samples

- Figure 12A Cadmium Concentrations in Sediment, June 2006
- Figure 12B Cadmium Concentrations in Sediment, November 2008
- Figure 12C Cadmium Concentrations in Sediment, May 2011
- Figure 13 Lead Concentrations in Sediment
- Figure 14A Lead Concentrations in Sediment, June 2006
- Figure 14BA Lead Concentrations in Sediment, November 2008
- Figure 14C Lead Concentrations in Sediment, May 2011

List of Appendices

- Appendix A IC/EC Certification
- Appendix B Post-Dredging Results
- Appendix C Site Inspection Photos
- Appendix D Well Sampling Logs

Executive Summary

AECOM Technical Services Northeast, Inc (AECOM) has prepared this Periodic Review Report (PRR) for the Dzus Fasteners Site (the Site) in West Islip, Suffolk County, NY (Figure 1). The period of review for this report is October 2010 to November 2011.

The Dzus Fastener facility was used to manufacturer fasteners and springs from 1932 to the present. Discharge of oils, heavy metals and salts via on-site leaching pools led to the contamination of soil, groundwater, and nearby surface waters and sediment in Willetts Creek and Lake Capri. An initial site inspection took place in August 1983. Contamination was discovered later in August 1983 and a preliminary site assessment was completed in September 1984. A phase I investigation was completed and a phase II investigation was submitted by Dzus in August of 1990. The primary contaminant of concern at the Site, and in Willetts Creek and Lake Capri, is cadmium. Dzus completed an Interim Remedial Measure (IRM) in October 1990. During the IRM a leach field on the eastern side of the site was removed. A remedial investigation / feasibility study (RI/FS) was initiated on the site in 1992. The site was then broken up into the two Operable Units (OU1: the Dzus facility; and OU2: the offsite localities including Willetts Creek and Lake Capri). A Record of Decision (ROD) for OU1 was issued for the site in March 1995, and a ROD for OU2 was issued for the site in October 1997. In response to the ROD for OU1, the remedy for contaminated groundwater in the vicinity of the Dzus facility consisted of source removal and ongoing natural attenuation. An asphalt cover at the eastern parking lot at the Dzus manufacturing facility was constructed to eliminate the potential for direct human contact with the underlying contaminated soils at the site, and to eliminate or reduce the mobility of soil contaminants that would cause further groundwater degradation. In response to the ROD for OU2, Lake Capri and a portion of Willetts Creek were dredged in 1999 and riprap was used to cover portions identified as having deeper zones of contamination in order to prevent future erosion.

In accordance with the remedial design, the fish population of Lake Capri was eradicated using Rotenone, a NYSDEC approved fish eradicant, in July 1999. In 2000 after completion of the remedial activities, the lake was restocked with silversides; bluegill, *Lepomis macrochirus*; and largemouth bass, *Microptera salmoides*.

The periodic review (PR) process is used for determining if a remedy continues to be properly managed, as set forth in the ROD and continues to be protective of human health and the environment. The results of PR have lead to the determination that the site is in general compliance with the applicable requirements as presented in the ROD.

1.0 Introduction

1.1 Site History and Remedial Program

The Dzus Fastener Manufacturing Facility (Site) is located at 425 Union Boulevard in West Islip, Suffolk County, New York (Figure 1). The Dzus Fastener facility, a manufacturer of fastener and springs since 1932, was responsible for the release of oils, heavy metals, and salts via onsite leaching pools used for the disposal of hazardous waste and former discharge into Upper Willetts Creek, located immediately east of the facility. These operations led to soil and groundwater contamination at the Dzus facility and downstream groundwater, sediment, and surface water contamination of nearby Willetts Creek and Lake Capri, an eight-acre man-made lake.

An Interim Remedial Measure (IRM) conducted in 1991 resulted in removal of a leach pool at the eastern side of the Site. The project was divided into two operable units. Operable Unit 1 (OU1) consisted of the manufacturing facility itself. A Record of Decision (ROD) for OU1 was issued for the Site by New York State Department of Environmental Conservation (NYSDEC) in March 1995. The selected remedy consisted of the following:

- In-situ stabilization/solidification for soils containing cadmium at concentrations greater than 10 parts per million (ppm). Three areas on the western portion of the facility were excavated and mixed with the soils to be treated on the eastern portion of the Site;
- Design and installation of a final topsoil/asphalt cover at the eastern portion of the Site, which would protect the treatment cells from erosion;
- Implementation of institutional controls, such as deed restrictions at the Site.

The second operable unit, Operable Unit 2 (OU2) consisted of offsite contamination, including sediment and water contamination of Willetts Creek and Lake Capri. A ROD for OU2 was issued for the Site by NYSDEC in October 1997. The selected remedy consisted of the following:

- Dredging, dewatering and off-site disposal of contaminated sediments from Lake Capri;
- Excavation and off-site disposal of approximately 100 cubic yards of sediment from Willetts Creek, corresponding to levels of cadmium exceeding 9 ppm;
- A long-term monitoring program to evaluate the effectiveness of the on-site remedy and to verify that existing groundwater plume does not impact public health or environment.

An Operation, Maintenance and Monitoring (OM&M) program for the Site was based on NYSDEC Draft DER-10 – Technical Guidance for Site Investigation and Remediation (December 2002). As part of the OM&M, a long-term monitoring plan (LTMP) was developed for OU1 and OU2 with regard to monitoring of groundwater, surface water, sediment, and the asphalt cover (engineering control) in the manufacturing facility's eastern parking lot. The Final Sampling and Analysis Plan (SAP), dated June 2007, outlines the most recent sample collection procedures.

The primary contaminant of concern at the Site is cadmium, but several other metals including antimony, arsenic, chromium, iron, lead, manganese, sodium, and thallium have been found in exceedance of published standards in soil and groundwater at the Dzus facility and in the water and sediments of nearby Willetts Creek and Lake Capri.

1.2 Remedy Evaluation and Recommendations Summary

In summary, this Periodic Review Report (PRR) is intended to evaluate the ongoing management of the selected remedial program for OU1 and OU2, as designed. Based on information reviewed as part of this PRR, implementation of investigation and maintenance activities is required in order to ensure that the remedy is performing properly and effectively, and is protective of public health and the environment.

In order to return to compliance with the requirements presented in the ROD and OM&M program, a summary of recommended investigation and maintenance activities is provided below. Details with regard to these recommendations are also provided in Section 5.0 of this Report.

- Continue sampling on a five-quarter basis in order to better evaluate temporal trends for cadmium and other metals found in exceedance of the NYSDEC groundwater, surface water, and sediment criteria.
- Monitoring results of sediment sampling of Willetts Creek show a general increase in cadmium concentration over the last 3 years. The trend is especially prominent at the sediment sampling location immediately downgradient of the storm sewer outfall behind the nearby shopping plaza (SED-6 location). Based on available contaminant data, AECOM recommends collection of first-flush sample from the stormwater outfall. It is also AECOM's recommendation to re-inspect the length of Willetts Creek to determine if the current sampling locations are appropriate and sufficient for characterizing the long-term effectiveness of remedial actions.
- Sediment monitoring results of Lake Capri are inconclusive in regards to the temporal trend in contaminant concentrations and effectiveness of remedial actions undertaken at the lake.
 Continued monitoring of the current site is necessary for evaluating the cadmium concentrations.
- Re-evaluate the current fish sampling protocol. Currently, Lake Capri does not provide fish of
 sufficient number or of sufficient size to meet the SAP requirements for fish tissue sampling.
 Other options for obtaining accurate cadmium levels in edible sized fish should be considered
 (e.g., towed gill nets or a more robust trapping program). Also evaluate whether the
 restocking program was successful in reestablishing a large healthy fishy population in Lake
 Capri.
- Re-evaluate the need to include cyanide on the analyte list for future sampling events based on the contaminants of concern indentified in the ROD for OU1 and OU2.
- Locate damaged or destroyed monitoring wells MW-1 and MW-17 and either repair or properly abandon the wells. If either well is abandoned, a replacement well should be considered.

- Establish the inspection protocol of the asphalt cover at the Dzus Fasteners facility. The
 evaluation can be completed and reported along with the sampling program on a five-quarter
 basis.
- Perform an evaluation of the riprap erosion controls currently in place in Willetts Creek and in Lake Capri. The evaluation can be completed along with the sampling procedures on a fivequarter basis.
- Evaluate the implemented remedies' effectiveness towards moving the Site to closure.
- Perform annual, desktop periodic reviews of the Site.

Total annual costs for completion of all the required monitoring is approximately \$25,000, based on costs incurred in calendar year 2011 (this excludes the cost of fish monitoring).

2.0 Site Overview

AECOM has prepared this PRR for the Dzus Fastener Manufacturing Site, located in the Town of West Islip, Suffolk County, New York. This work was performed for the New York State Department of Environmental Conservation (NYSDEC) under Work Assignment D004445-14.3 of AECOM's Superfund Standby Contract with NYSDEC. The NYSDEC has assigned the Site the ID No. 1-52-033 on the NYSDEC's registry of inactive hazardous waste sites. Dzus Fastener is a Class 4 site that has been remediated but requires continued OM&M.

2.1 Objectives of the Periodic Review

The periodic review process is used for determining if a remedy continues to be properly managed as set forth in the guidance documents for the Site, and is protective of human health and the environment. The objectives of the periodic review for sites in the State Superfund Program are as follows:

- Determine if the remedy remains in place, is performing properly and effectively, and is protective of public health and the environment;
- Evaluate compliance with the decision document(s) and, if available, the Site Management Plan (SMP);
- Evaluate all treatment units, and recommend repairs or changes, if necessary;
- Evaluate the condition of the remedy;
- Verify, if appropriate, that the intent of Institutional Controls (IC) continues to be met, and that Engineering Controls (EC) remain in place, are effective and protective of public health and the environment;
- Evaluate the implemented remedies' effectiveness towards moving the Site to closure; and,
- Evaluate costs.

2.2 Remedial History

The Dzus Fasteners facility was used to manufacture fasteners and springs from 1932 to the present. Discharge of oils, heavy metals and salts via onsite leaching pools led to the contamination of soil, groundwater, and nearby surface waters and sediment. The principal containment of concern is cadmium, reported as high as 1100 parts per billion (ppb) during groundwater sampling in 1998, and in the Lake Capri and upper Willetts Creek sediments at maximum concentrations of 407 parts per million (ppm). Other constituents, such as chromium and cyanide in groundwater, and zinc, iron and lead in surface water, were also present, but at frequencies and concentrations of lesser environmental concern. Of the 36 groundwater wells identified in the 1998 Pre-Design Investigation (PDI), 14 are currently used for groundwater monitoring (one of the wells used for monitoring was damaged between the 2007 and 2008 sampling events), eight have been covered over or abandoned,

two were not found, and 12 are not currently a part of the regular monitoring at the Dzus facility. Due to contamination in Lake Capri and Willetts Creek, limits were placed on consumption of fish species from the lake to no greater than one meal per month.

The initial site inspection took place in August 1983. The contamination was discovered later in August 1983 and the preliminary site assessment was completed in September 1984. A Phase I investigation was completed and a Phase II investigation was submitted by Dzus in August of 1990. Dzus then completed an Interim Remedial Measure (IRM) in October 1990. During the IRM a leach field on the eastern side of the site was removed. A remedial investigation / feasibility study (RI/FS) was initiated on the site in 1992. The site was then broken up into the two Operable Units: OU1, the Dzus facility; and OU2, the offsite localities including Willetts Creek and Lake Capri. A ROD for OU1 was issued for the site in March 1995. The remedial goals as specified in the OU1 ROD are as follows (NYSDEC, 1995):

Eliminate the potential for direct human contact with the contaminated soils at the site;

- Eliminate or reduce the mobility of contaminants in on-site soils that would cause further groundwater contamination; and,
- Eliminate the hazardous wastes on-site or treat them to render them as non-hazardous.

The remedy for contaminated groundwater in the vicinity of the Dzus facility consisted of source removal and ongoing natural attenuation. The remedy for contaminated soils at the Site (OU1), included solidification of on-site soils containing greater than 10 ppm cadmium which was completed in 1996. An asphalt cover at the eastern parking lot at the Dzus manufacturing facility was constructed to eliminate the potential for direct human contact with the underlying contaminated soils at the site, and to eliminate or reduce the mobility of soil contaminants that would cause further groundwater degradation.

A ROD for OU2 was issued for the site in October 1997. The remedial goals are as follows:

- Manage contaminated groundwater to prevent human exposure and to minimize impacts to the environment;
- Reduce cadmium concentrations in sediments to levels that are protective of human health and the environment; and,
- Eliminate the potential for direct human or animal contact with contaminated sediments.

In response to the ROD for OU2, Lake Capri and a portion of Willetts Creek were dredged in 1999 and riprap was used to cover portions identified as having deeper zones of contamination in order to prevent future erosion. Per the remedial design, fish population was eradicated from Lake Capri. Following the remedial measures for OU1 and OU2, the long term monitoring plan (LTMP) was developed in 2000. The Final Sampling and Analysis Plan (SAP) dated June 2007 is the most recent document outlining sampling procedures. Groundwater, surface water, and sediment sampling was

completed in 2006, 2007, 2008 and 2010. Fish Tissue sampling was completed in 2006, 2007 and 2010. Below is a detailed description of remedial activities implemented at OU2:

Willetts Creek

Blue Water Environmental, Inc. (BWE) of Farmingdale, Long Island, New York, was the contractor who performed the dredging. BWE mechanically excavated impacted portions of Willetts Creek using a low ground pressure excavator and transporting excavated sediments directly to roll-offs. Water within the creek was controlled using isolation pumps.

Post excavation sampling and analysis were conducted after dredging of an area was complete to determine if the Willetts Creek target cleanup level of 9 ppm cadmium had been reached. The sampling results are provided in Appendix B and Figure 1A. They largely confirmed successful removal of targeted sediments for the excavated portions of Willetts Creek with the exception of the northern region (Earth Tech, 2000a). With approval from NYSDEC further remediation to that region involved placement of a non-woven geo-textile, 2-inch minus stone and 4 to 6-inch riprap to serve as an erosion barrier.

Lake Capri

Lake Capri, including the 0.25 acre lagoon in the northwest corner of the lake, was dredged using hydraulic dredging methods where possible, and mechanical excavation where the minimum draft of the dredge could not be met, and where maneuverability of the dredge was hampered by obstacles or debris. The east shoreline, north shoreline and the lagoon were mechanically excavated as well as regions around a small island in the northern part of the lake. The Design Analysis Report (DAR) estimated that approximately 19,000 cubic yards (cy) of sediment would be removed from Lake Capri and the lagoon. Actual sediments removed were approximately 17,095 cy, estimated from comparison of pre- and post-excavation hydrographic surveys. A model SP 920 Mudcat dredge was deployed in Lake Capri using an 8-inch diameter cutter head attachment and 100 hp booster pump for conveying the dredge slurry to the processing facility setup in the nearby high school parking lot.

Post excavation sampling and analysis were conducted for Lake Capri following the dredging to ensure removal of contaminated sediment. Additional excavation was performed in the areas which still contained variable amounts of cadmium-contaminated sediments to reach a set-up goal of 1 mg/kg of cadmium. The sampling results are provided in Appendix B

Sediments removed by mechanical or hydraulic dredge were sampled on a per load basis for total and/or TCLP cadmium for waste classification, and processed and disposed offsite in a manner complying with a NYSDEC Research, Design and Development (RD&D) permit allowing BWE to mix/process Lake Capri sediments. All the waste material from the Site was classified as non-hazardous. The resultant material was deemed a "beneficial use" under the permit specifications. The liquid portion of the dredged material was processed in a temporary water treatment system. Treated effluent was discharged back in to the lake under NYSDEC authorized State Pollutant Discharge Elimination System (SPDES) permit limits. Both the liquid and solid treatment procedures

and treatment system parameters are described in the Construction Certification Report (October 2000).

Per the remediation design, in July 1999 the fish population of Lake Capri was eradicated using a concentration of 20 milligrams per liter (mg/L) of Rotenone, a NYSDEC approved fish eradicant. 5,800 pounds of fish carcasses were removed via netting and collected in a vacuum truck for transport and disposal. In 2000 after completion of the remedial activities, the lake was restocked with silversides; bluegill, *Lepomis macrochirus*; and largemouth bass, *Microptera salmoides*.

3.0 Evaluate Remedy Performance, Effectiveness, and Protectiveness

A SAP (Earth Tech, 2007) and Project Management Plan (Earth Tech, February 2007) have been developed under the current work assignment. The SAP outlines the following activities on a five-quarter basis:

- Monitoring well inspection: Inspect the 14 monitoring wells designated for groundwater sampling and complete the NYSDEC Monitoring Well Field Inspection Log for each.
 Obsolete and damaged wells need to be properly abandoned.
- Groundwater monitoring: 14 wells are designated for periodic groundwater sampling and analysis of target analyte list (TAL) metals (Figure 2).
- Surface water monitoring: Surface water sampling at six locations, two from Willetts Creek and four from Lake Capri (Figure 2) and analyzed for TAL metals.
- Sediment monitoring: sediment sampling at six designated locations co-located with the surface water samples (Figure 2) and analyzed for TAL metals.
- Fish tissue sampling: Collect fish tissue samples at the north and south ends of Lake Capri (Figure 2a).

3.1 Operation and Maintenance Plan Compliance Report

The current operation and monitoring (O&M) program at the Site consists of groundwater monitoring well inspection and repair.

3.1.1 O&M Plan Compliance

The following summarizes operation and maintenance activities undertaken at the Site from 2006 through 2011:

	Required Frequency (X)			Compliance Dates
Activity	Annually	Five- Quarter	As needed	
Groundwater Monitoring Well Inspection and Maintenance		X		2006, 2007, 2008, 2010 and 2011

3.1.2 Evaluation of O&M Activities

Logs of monitoring well inspections have been submitted to NYSDEC as part of periodic groundwater sampling reports (Earth Tech, 2006, 2007, 2009 and AECOM, 2010 and 2011). Monitoring well MW-1

was destroyed and therefore was not sampled in 2008, 2010 or 2011. A site visit of AECOM personnel on August 18, 2009 (Appendix C) to the Dzus Fasteners facility revealed that vegetation was growing within cracks in the asphalt cover. Regular inspection of the asphalt cover and rip rap is needed to ensure proper protection of human health and wildlife.

3.2 Monitoring Plan Compliance Report

The Final Project Management Plan (Earth Tech, February 2007a) and Final SAP (Earth Tech, 2007b) are referenced as the Site guidance documents. This PRR assesses whether the site has been managed as set forth in these documents. To date, five sampling events (groundwater, surface water and sediment) have been conducted at the Site and three rounds of fish tissue samples have been collected. Analysis performed during each sampling event included TAL metal analysis for groundwater, sediment, surface water, and cadmium analysis for fish tissue sampling. Three recent reports outline the data analysis and results for the Site and nearby Willetts Creek and Lake Capri. Data reports were finalized in 2006, 2007, 2009, 2010 and 2011.

Following summarizes the current monitoring program:

- Water levels in monitoring wells are currently measured on a five guarter basis;
- Groundwater samples are collected from monitoring wells on a five-quarter basis and analyzed for TAL metals. The current groundwater sampling effort includes 14 monitoring wells: MW-1, MW-2, MW-3, MW-9, MW-9B, MW-13A, MW-13B, MW-15A, MW-15B, MW-18, MW-22A, MW-22B, MW-23A, and MW-23B. Field measurements of temperature, pH, conductivity, oxygen reduction potential, dissolved oxygen and turbidity are recorded during each sampling event;
- Sediment and surface water sampling is currently conducted on a five quarter basis and analyzed for TAL metals;
- Fish samples are currently collected on a five quarter basis and analyzed for cadmium. Fish sampling was suspended by NYSDEC during the 2008 sampling event but continued in 2010; and
- Preparation of sampling reports that summarize analytical results of each sampling round.

In June 2006, August 2007, November 2008, March 2010 and May 2011, AECOM conducted sampling events at the Dzus Fastener facility, Willetts Creek, and Lake Capri. Sampling for 2006 was directed in accordance with the SAP prepared by Earth Tech, dated April 2006. On June 8, 2006, Earth Tech (now AECOM) conducted groundwater sampling at the following wells: MW-1, MW-2, MW-3, MW-9, MW-9B, MW-13A, MW-13B, MW-15A, MW-15B, MW-18, MW-22A, MW-22B, MW-23A, and MW-23B. A summary of well construction data is presented in Table 1. Groundwater samples were analyzed for TAL metals. Prior to sampling, a synoptic round of water level measurements was collected from the 14 selected monitoring wells. The locations of the wells are presented on Figure 2. On June 21, 2006, sediment and surface water samples were collected at six co-located locations and analyzed for TAL metals. These sampling locations are also presented on Figure 2. Fish samples were collected from the north and south parts of Lake Capri in July

2006. Fish were collected using electro shocking, gill nets and traps, and analyzed for cadmium on a wet weight basis.

The second round of sampling occurred August 22 and 23, 2007. Water levels and groundwater sampling were conducted on the same 14 wells that were sampled in June 2006. The samples were analyzed for TAL metals. Surface water and sediment sampling took place at the same six co-located locations as in 2006 and were also analyzed for metals. Fish sampling took place May 10, 2007 and samples were analyzed for cadmium. Fish were collected using electro shocking, traps, and baited lines. Sampling was conducted in accordance with the June 2007 SAP.

The third round of sampling occurred November 11 thru 15, 2008. Water levels and groundwater sampling were conducted on the same wells as the two previous years with the exception of MW-1, which was not located and is believed to have been damaged or destroyed by snowplowing. The samples were analyzed for TAL metals; surface water and sediment sampling took place at six colocated locations just as in previous years. Based on discussion with NYSDEC, fish monitoring was not conducted due to low number and inadequate size of fish collected during sampling in 2006 and 2007.

The fourth round of groundwater sampling occurred March 9 and 10, 2010. The fourth round of surface water and sediment sampling was conducted on March 4, 2010. Of the 14 monitoring wells identified for long-term sampling, only 12 were sampled in March 2010; MW-1 was destroyed during the winter of 2007/2008, and MW-15B, located in the parking lot of Ace Hardware, was covered by several pallets of mulch and could not be accessed during the sampling event. Groundwater samples were analyzed for TAL metals. Surface water and co-located sediment samples were collected at the same locations as during previous years and were also analyzed for TAL metals. Fish tissue samples were collected on October 13 and 14, 2010. Fish were collected using electroshocking and traps. All sampling was conducted in accordance with the June 2007 SAP.

The fifth round of groundwater sampling occurred on May 25, 2011. The fifth round of surface water and sediment sampling occurred on May 22, 2011. Of the 14 monitoring wells identified for long-term sampling, 13 were sampled in May 2011: MW-1 was destroyed as noted above and was not sampled. In an effort to better understand the metals data collected from monitoring well samples, Round 5 groundwater samples were filtered in the field using 0.45 micron filters and both total and dissolved samples were analyzed for TAL metals. Surface water and co-located sediment samples were collected at the same locations as during previous years and were also analyzed for TAL metals. All sampling was conducted in accordance with the June 2007 SAP.

3.2.1 Monitoring Plan Compliance Report

The following summarizes monitoring activities at the Site conducted to-date in accordance with the SAP. AECOM conducted sampling events at the Dzus Fastener facility, Willetts Creek, and Lake Capri in June 2006, August 2007, November 2008, March 2010 and May 2011:

Activity	Required Frequency (X)	Compliance Dates
Activity	Five Quarter	
Groundwater Monitoring	X	2006-2011
Water Level Monitoring	X	2006-2011
Surface Water Sampling	X	2006-2011
Sediment Sampling	Х	2006-2011
Fish Tissue Sampling	X	2006, 2007, 2010

Groundwater Level Measurement

Groundwater level measurements from 2006 through 2011 in the 14 monitoring wells (13 in 2008 and 2010) are presented in Table 2. Comparison of the groundwater elevations in the monitoring wells shows that the general groundwater flow direction is towards the southwest. A groundwater contour map is presented in Figure 3 and was constructed using data from the May 2011 sampling event.

3.2.2 Confirm that Performance Standards are Being Met

The sections below discuss the results of the groundwater, surface water, sediment, and fish tissue sampling conducted in accordance with the guidance documents and provide a summary of the results.

Groundwater

Fourteen monitoring wells are included in the long term monitoring plan: MW-1, MW-2, MW-3, MW-9, MW-9B, MW-13A, MW-13B, MW-15A, MW-15B, MW-18, MW-22A, MW-22B, MW-23A, and MW-23B and are shown on Figure 2. Laboratory analytical results for the TAL metal analyses have been provided in the groundwater monitoring reports in for the four sampling events that occurred in 2006, 2007, 2008, 2010 and 2011. The summary of groundwater results for these sampling events is presented in Table 3. A summary of groundwater results is presented in Figure 4.

Concentrations of ten metals have been detected above their Class GA criteria at least once during the four rounds of groundwater sampling at the Site. These metals are antimony, arsenic, cadmium, chromium, iron, lead, manganese, selenium, sodium, and thallium. Concentrations of chromium and selenium exceeded the criterion for the first time during the March 2010 sampling event.

Antimony – Class GA criterion of 3 micrograms per liter (µg/L)

- June 2006 Detected in four of 14 monitoring wells. One exceedance: 3.2 µg/L at MW-23B.
- August 2007 Detected in four of 14 monitoring wells; four exceedances: maximum 7.3 μg/L in MW-2.

- November 2008 Detected in one of 13 monitoring wells; one exceedance: 5.1 µg/L in MW-18.
- March 2010 Detected in seven of 12 monitoring wells; seven exceedances: maximum of 13 μg/L in MW-22A.
- May 2011 Not detected in any of the 13 filtered or unfiltered monitoring well samples.

Arsenic – Class GA criterion of 25 µg/L

- June 2006 Detected in nine of 14 monitoring wells. One exceedance: 32.6 μg/L in MW-9.
- August 2007 Detected in five of 14 monitoring wells; no exceedances.
- November 2008 Detected in two of 13 monitoring wells; no exceedances.
- March 2010 Detected in seven of 12 monitoring wells; no exceedances.
- May 2011 Detected in seven of 13 unfiltered samples and 5 of 13 filtered samples. No exceedances.

Cadmium – Class GA criterion of 5 μg/L

- June 2006 Detected in all 14 monitoring wells. One exceedance: 3.2 µg/L at MW-23B.
- August 2007 Detected in four of 14 monitoring wells. Four exceedances: maximum 7.3 μg/L in MW-2.
- November 2008 Detected in one of 13 monitoring wells. One exceedance: 5.1 μg/L in MW-18.
- March 2010 Detected in seven of 12 monitoring wells. Seven exceedances: maximum of 13 µg/L in MW-22A.
- May 2011 Detected in nine of 13 unfiltered samples; seven exceedances: maximum of 924 μg/L in MW-23A. Detected in six of 23 filtered samples; six exceedances, maximum concentration of 13.1 μg/L in MW-3.

Chromium - Class GA criterion of 50 µg/L

- June 2006 Detected in all 14 monitoring wells. Two exceedances: maximum 125 μg/L in MW-9.
- August 2007 Detected in all 14 monitoring wells. One exceedance: 62.2 µg/L in MW-9.
- November 2008 Detected in five of 13 monitoring wells; no exceedances.
- March 2010 Detected in all 12 monitoring wells. Two exceedances: maximum of 62.7 μg/L in MW-9.
- May 2011 Detected in 12 of 13 unfiltered samples; one exceedance in MW-9 at 85.5 µg/L. Detected in five of 13 filtered samples, no exceedances.

Iron – Class GA criterion of 300 μg/L

- June 2006 Detected in all 14 monitoring wells. 14 exceedances: maximum 70,400 μg/L in MW-22A.
- August 2007 Detected in all 14 monitoring wells. 13 exceedances: maximum 29,700 μg/L in MW-23A.

- November 2008 Detected in 12 of 13 monitoring wells. Eight exceedances: maximum 23,300 μg/L in MW-2.
- March 2010 Detected in all 12 monitoring wells. Ten exceedances: maximum of 61,100 μg/L in MW-22A.
- May 2011 detected in all 13 unfiltered samples; ten exceedances, maximum of 88,900 μg/L in MW-2. Detected in seven of 12 usable filtered samples; six exceedances, maximum of 17,600 μg/L in MW-2. Note that the reported concentration of 36,100 μg/L in MW-23B is not considered usable (see discussion in Section 4.5 of the Final Groundwater Sampling Report (May 2011 Sampling Event), (AECOM, 2011b).

Lead - Class GA criterion of 25 µg/L

- June 2006 Detected in ten of 14 monitoring wells. One exceedance: 35.7 µg/L in MW-23B.
- August 2007 Detected in 13 of 14 monitoring wells; no exceedances.
- November 2008 Detected in eight of 13 monitoring wells; no exceedances.
- March 2010 Detected in ten of 12 monitoring wells. One exceedance: 43.9 in MW-23B.
- May 2011 Detected in five of 23 unfiltered samples, no exceedances. Detected below the criterion in one filtered sample.

Manganese – Class GA criterion of 300 μg/L

- June 2006 Detected in all 14 monitoring wells. Ten exceedances: maximum 9,560 μg/L in MW-13A.
- August 2007 Detected in all 14 monitoring wells. 11 exceedances: maximum 8,040 μg/L in MW-13A.
- November 2008 Detected in all 13 monitoring wells. Seven exceedances: maximum 16,400 μg/L in MW-13A.
- March 2010 Detected in all 12 monitoring wells. Nine exceedances: maximum of 33,900 µg/L in MW-13A.
- May 2011 Detected in all 13 unfiltered samples; eight exceedances, maximum of 61,600 μg/L in MW-13A. Detected in nine of 13 filtered samples; four exceedances, maximum of 1,720 μg/L in MW-13A.

Selenium – Class GA criterion of 10 µg/L

- June 2006 Detected in four of 14 monitoring wells; no exceedances.
- August 2007 Detected in five of 14 monitoring wells; no exceedances.
- November 2008 Not detected in any of the 13 monitoring wells.
- March 2010 Detected in seven of 12 monitoring wells. Seven exceedances: maximum 24.3 μg/L in MW-22A.
- May 2011 Not detected in any of the 13 unfiltered or filtered samples.

Sodium – Class GA criterion of 20,000 μg/L

June 2006 – Detected in all 14 monitoring wells. Eight exceedances: maximum 95,200 μg/L in MW-22A.

- August 2007 Detected in all 14 monitoring wells. Ten exceedances: maximum 77,500 μg/L in MW-13A.
- November 2008 Detected in all 13 monitoring wells. Five exceedances: maximum 43,900 μg/L in MW-15B.
- March 2010 Detected in all 12 monitoring wells. Six exceedances: maximum 247,000 μg/L in MW-15B.
- May 2011 Detected in all 13 unfiltered samples; seven exceedances, maximum of 100,000 μg/L in MW-22A. Detected in all 13 filtered samples; seven exceedances, maximum of 134,000 μg/L in MW-22A.

Thallium – Class GA criterion of 0.5 μg/L

- June 2006 Detected in eight of 14 monitoring wells. Eight exceedances: maximum 44 μg/L in MW-13A.
- August 2007 Detected in four of 14 monitoring wells. Four exceedances: maximum 6.3 μg/L in MW-2.
- November 2008 Detected in one of 13 monitoring wells. One exceedance: 11.7 μg/L in MW-13.
- March 2010 Detected in five of 12 monitoring wells. Five exceedances: maximum 88.2 μg/L in MW-13A.
- May 2011 Not detected in any of the 13 unfiltered or filtered samples.

Filtered versus Unfiltered Metals Groundwater Samples

Concentrations of total metals in groundwater samples at the Site tended to be highly variable between sampling events, as did field measurements of turbidity at time of sample collection. Turbidity is typically correlated with the presence of suspended matter (e.g., entrained soil particles in the sample). Therefore, both total metals (unfiltered) and dissolved metals (field filtered) groundwater samples were collected during the Round 5 sampling event to evaluate the effect of turbidity on the metals concentrations.

The NYSDEC criterion for filtering groundwater samples is provided in DER-10 Section 2.1(g). At the Dzus Fasteners Site, the turbidity was below 50 nephelometric units (NTU) at the time of sampling in 12 of the 13 samples; the turbidity in MW-3 was 331 NTU (Table 4). The turbidity was 10 NTU or less in seven of the samples, and between 12 and 40 NTU in the other six. Due to the anomalous results in sample MW-23B (see discussion in Section 4.5), the filtered sample data are suspect and therefore not included in the discussion.

Table 4 presents a comparison of the total metals and the dissolved metals data for the 13 filtered/ unfiltered sample pairs collected at the Dzus Fasteners Site. However, as discussed in greater detail in the Groundwater Sampling Report, May 2011 Sampling Event (AECOM, 2011b), the metals data from MW-23B are not included in this discussion as the data appeared anomalous but a source of the error could not be determined and the data were flagged as "use with caution"; so only 12 filtered/unfiltered pairs are included in this discussion. The "percent dissolved" shown on the table is

the ratio of the filtered sample concentration to the total (unfiltered) sample concentration. In order to calculate a value where a metal was not detected in the filtered sample, a value of "0" is used on the table (rather than "ND").

Concentrations of metals that typically exist primarily in the dissolved phase (i.e., sodium, potassium, and calcium) were generally similar in the filtered and unfiltered samples, regardless of the sample turbidity. The remaining metals showed consistently large decreases in the filtered samples. Aluminum was detected in nine samples at concentrations from 99 to 8,520 µg/L, but was not detected in any of the filtered samples. Concentrations of beryllium, copper, chromium (except MW-22A), lead, mercury, silver, and vanadium also showed a similar pattern (not detected or detected at much lower concentrations in the filtered samples).

The highest concentration of iron detected at the Site (88,900 µg/L in MW-2) was in a sample with low turbidity (8.5 NTU). The sample from MW-15B had low turbidity (8 NTU) and in that sample the dissolved (filtered sample) concentrations of all 11 detected metals were similar to (80 to 105 percent of the concentration in the filtered sample). However, significantly lower concentrations of several metals (aluminum, iron, manganese) were observed in the filtered samples (relative to the unfiltered sample) at which the turbidity was reported as "0" in the unfiltered sample.

In the unfiltered sample with the highest turbidity (331 NTU in MW-3), the iron concentration $(7,430 \,\mu\text{g/L})$ was in the middle of the range of detections in unfiltered samples. Iron generally followed this pattern, with the exception of MW-15B (dissolved concentration only 20 percent less than the total concentration). The ratio of dissolved to filtered concentrations was variable for a number of metals, such as arsenic (0 to 89 percent), barium (2.3 to 105 percent), cadmium (0 to 50 percent, although all but one of the eight were less than 20 percent), cobalt (0 to 85 percent), manganese (0 to 114 percent), nickel (0 to 105 percent), and zinc (11.5 to 99 percent).

With the exception of aluminum, the concentrations of metals detected in the unfiltered sample from MW-3 were generally in the middle or upper middle of the concentrations observed in unfiltered samples; and reductions in the concentrations of metals in the filtered sample were not noticeably greater than that seen in samples with much lower turbidity. Interestingly, MW-3 was one of five samples (excluding MW-23B) in which the unfiltered sample cadmium concentration was greater than $10 \,\mu\text{g/L}$ (74 $\,\mu\text{g/L}$ in MW-3, and ranging from 19 $\,\mu\text{g/L}$ in MW-9 to 924 $\,\mu\text{g/L}$ in MW-23A); despite the wide range of concentrations in the unfiltered samples, the cadmium concentrations in the filtered samples were all similar (9.5 $\,\mu\text{g/L}$ to 13.1 $\,\mu\text{g/L}$).

A second round of filtered samples will be collected during the next five-quarter sampling event scheduled for August 2012. These two data filtered data sets will be used to evaluate whether filtered sample data provide information useful in characterizing long terms trends in metals concentrations.

Surface Water Analytical

Six surface water samples were collected from Lake Capri and Willetts Creek at the locations shown on Figure 2. A summary of the detections is presented in Table 5. The results were compared to the

NYSDEC Class A surface water criteria. A summary of the exceedances is presented on Figure 5. Detections and criteria exceedances for the five sampling events are summarized below.

Surface water sample SW-1 was collected on the north end of Lake Capri near the mouth of Willetts Creek. Four metals, including antimony, iron, manganese and sodium, were detected at concentrations above the Class A criteria during at least one of the five sampling events.

- Antimony was only detected in the Round 3 sample at a concentration of 6 μg/L, which exceeded the Class A criterion of 3 μg/L.
- Iron was detected in all five samples at concentrations ranging from 387 μ g/L to 738 μ g/L, all of which exceeded the Class A criterion of 300 μ g/L.
- Manganese was detected in all five samples at concentrations ranging from 862 μg/L to 1,610 μg/L, all of which exceeded the criterion of 300 μg/L.
- Sodium detected in all five samples but only exceeded the criterion of 20,000 μg/L during event 4 (22,500 μg/L).
- May 2011 sampling event: exceedances of iron and manganese.

Surface water sample SW-2 was collected on the north end of Lake Capri near the mouth of Willetts Creek (south of SW-1). Five metals, including antimony, iron, manganese, sodium and thallium, were detected at concentrations above the Class A criteria during at least one of the five sampling events.

- Antimony was only detected during Round 4 at a concentration of 5.7 μg/L which exceeded the Class A criterion of 3 μg/L.
- Iron was detected in all five samples at concentrations ranging from 478 μg/L to 819 μg/L, all of which exceeded the Class A criterion of 300 μg/L.
- Manganese was detected in all five samples at concentrations ranging from 819 μg/L to 1,560 μg/L, all of which exceeded the criterion of 300 μg/L.
- Sodium was detected in all five samples but only exceeded the 20,000 μg/L criterion during the Round 4 sampling event (22,000 μg/L).
- Thallium was only detected during Round 4 at a concentration of 7.2 μg/L which exceeded the criterion of 0.5 μg/L.
- May 2011 sampling event: exceedances of iron and manganese.

Surface water sample SW-3 was collected on the south end of Lake Capri just west of the spillway. Five metals, including antimony, iron, manganese, sodium and thallium were detected at concentrations above the Class A criteria during at least one of the five sampling events.

- Antimony was only detected during Round 4 at a concentration 7.2 μ g/L which exceeded the criterion of 3 μ g/L.
- Iron was detected in all five samples at concentrations ranging from 280 μg/L to 788 μg/L, four of which (all except Round 2) exceeded the Class A criterion of 300 μg/L.
- Manganese was detected in all five samples at concentrations ranging from 73.9 μg/L to 1,790 μg/L, four of which (all except Round 2) exceed the criterion of 300 μg/L.

- Sodium was detected during all five sampling events but only exceeded the 20,000 μg/L criterion during the fourth sampling event at 23,300 μg/L.
- Thallium was only detected during Round 4 at a concentration of 5.9 μg/L which exceeded the criterion of 0.5 μg/L.
- May 2011 sampling event: exceedances of iron and manganese.

Surface water sample SW-4 was collected on the south end of Lake Capri just east of the spillway. Three metals, including iron, manganese and sodium were detected at concentrations above the Class A criteria during at least one of the five sampling events.

- Iron was detected above the Class A criterion of 300 μg/L during all five sampling events at concentrations ranging from 322 μg/L to 741 μg/L.
- Manganese was detected in all five samples at concentrations ranging from 135 μg/L to 1,630 μg/L, four of which (all except Round 2) exceeded the 300 μg/L criterion.
- Sodium was detected in all five samples but only exceeded the 20,000 μg/L criterion during the Round 4 sampling event (22,900 μg/L).
- May 2011 sampling event: exceedances of iron and manganese.

Surface water sample SW-5 was collected from Willetts Creek just north of the footbridge behind the middle school. Five metals, including antimony, cadmium, iron, manganese and sodium were detected at concentrations above the Class A criteria during at least one of the five sampling events.

- Antimony was detected during Rounds 1 and 2 at concentrations of 1.5 μg/L and 4.4 μg/L but only the Round 2 concentration exceeded the Class A criterion of 3 μg/L. Antimony was not detected in sampling events 3, 4 or 5.
- Cadmium was detected in all five samples at concentrations ranging from 3 μg/L to 8.8 μg/L, four of which (all except Round 3) exceeded the Class A criterion of 5 μg/L.
- Iron was detected above the Class A criterion of 300 μg/L during all five sampling events at concentrations ranging from 599 μg/L to 4,080 μg/L.
- Manganese was detected above the Class A criterion of 300 μg/L during all five sampling events at concentrations ranging from 450 μg/L to 1,420 μg/L.
- Sodium was detected during all five sampling events at concentrations ranging from 18,100 μg/L to 26,900 μg/L, four of which (all except Round 3) exceeded the Class A criterion of 20,000 μg/L.
- May 2011 sampling event: exceedances of cadmium, iron, manganese and sodium.

Surface water sample SW-6 was collected from Willetts Creek just south of the Blockbuster Video store in the small shopping center. Six metals, including antimony, cadmium, iron, manganese, selenium and sodium, were detected at concentrations above the Class A criteria during at least one of the five sampling events.

 Antimony was only detected during Round 2 at a concentration of 8 μg/L which exceeded the Class A criterion of 3 μg/L.

- Cadmium was detected during the first three sampling rounds but only exceeded the Class A criterion of 5 μg/L criterion during the Round 3 sampling event at a concentration of 75.4 μg/L.
- Iron (Class A criterion of 300 μg/L) was detected above the criterion during all five sampling events at concentrations ranging from 639 μg/L to 5,400 μg/L.
- Manganese (Class A criterion of 300 μg/L) was detected above the criterion during all five sampling events at concentrations ranging from 406 μg/L to 2,610 μg/L.
- Selenium was only detected during Round 4 at a concentration of 10.5 μg/L, which exceeded the Class A criterion of 10 μg/L.
- Sodium (Class A criterion of 20,000) was detected above the criterion during all five sampling events at concentrations ranging from 20,500 μg/L, 33,800 μg/L.
- May 2011 sampling event: exceedances of iron, manganese and sodium.

Sediment Analytical

Immediately following dredging activities in 1999, sediment samples were collected and analyzed for cadmium. The results of the post-dredging sediment samples are presented in Appendix B. If sampling indicated cadmium levels continued to be in exceedance after dredging, the area was redredged and then re-sampled for cadmium. Cadmium concentrations in an upper reach of Willetts Creek exceeded 9 ppm. A variable and deep depositional region existed here due to an outfall in the creek at this location. The decision by the NYSDEC was to encapsulate this region of the creek with geotextile, stone, and riprap. A deeper zone of contamination was also identified in Lake Capri, and riprap was used to isolate it from the environment.

Six co-located sediment samples were collected at the same locations as the surface water samples as shown on Figure 2. The data presented in Table 6 were compared to the NYSDEC Technical Guidance for Sediment Criteria lowest effects values. A summary of the exceedances is presented on Figure 6.

Sample SED-1 was collected on the north end of Lake Capri near the mouth of Willetts Creek. Ten metals, including antimony, arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel, and zinc, were detected at concentrations above the guidance values.

- Antimony was detected during four of five sampling events, and the Round 3 (2.2 mg/kg) and Round 4 (6.4 mg/kg) concentrations exceeded the guidance value of 2 mg/kg.
- Arsenic was detected during all five sampling events at concentrations ranging from
 1.5 mg/kg to 16.1 mg/kg, four of which (all except Round 2) exceeded the guidance value of
 6.0 mg/kg.
- Cadmium exceeded the guidance value of 0.6 mg/kg during all five sampling events at concentrations ranging from 11.6 mg/kg to 81.2 mg/kg.
- Chromium was detected during all five sampling events at concentrations ranging from 2.8 mg/kg to 50 mg/kg, three of which exceeded the guidance value of 26 mg/kg.

- Copper was detected above the guidance value of 16 mg/kg during all five sampling events at concentrations ranging from 38.6 mg/kg to 127 mg/kg.
- Iron was detected during all five sampling events at concentrations ranging from 3,880 mg/kg to 44,600 mg/kg, two of which exceeded the guidance value of 20,000 mg/kg.
- Lead was detected during all five sampling events at concentrations ranging from 19.3 mg/kg to 226 mg/kg, four of which (all except Round 2) exceeded the guidance value of 31 mg/kg.
- Manganese was detected during all five sampling events at concentrations ranging from 181 mg/kg to 22,600 mg/kg, four of which (all except Round 3) exceeded the guidance value of 460 mg/kg.
- Mercury was detected during all five sampling events at concentrations ranging from 0.0071 mg/kg to 0.38 mg/kg, four of which (all except Round 2) exceeded the guidance value of 0.15 mg/kg).
- Nickel was detected during all five sampling events at concentrations ranging from 3 mg/kg to 24.1 mg/kg, three of which exceeded the guidance value of 16 mg/kg.
- Zinc was detected during all five sampling events at concentrations ranging from 71.6 mg/kg to 572 mg/kg, four of which (all except Round 2) exceeded the guidance value of 120 mg/kg.
- May 2011 sampling event: exceedances of arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel and zinc.

Sample SED-2 was collected on the north end of Lake Capri near the mouth of Willetts Creek, just south of SED-1. Ten metals, including arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel, and zinc, were detected at concentrations above the guidance values at least once during the five sampling events.

- Arsenic was detected during all five sampling events at concentrations ranging from 1.8 mg/kg to 20.2 mg/kg, three of which exceeded the guidance value of 6 mg/kg.
- Cadmium was detected above the guidance value of 0.6 mg/kg during all five sampling events at concentrations ranging from 12.5 mg/kg to 133 mg/kg.
- Chromium was detected during all five sampling events at concentrations ranging from
 6.5 mg/kg to 49.4 mg/kg, three of which exceeded the guidance value of 26 mg/kg.
- Copper was detected during all five sampling events at concentrations ranging from 15.6 mg/kg to 210 mg/kg, four of which exceeded the guidance value of 16 mg/kg.
- Iron was detected during all five sampling events at concentrations ranging from 3,850 mg/kg to 27,500 mg/kg, two of which exceeded the guidance value of 20,000 mg/kg.
- Lead was detected during all five sampling events at concentrations ranging from 25.8 mg/kg to 375 mg/kg, four of which (all except Round 3) exceeded the guidance value of 31 mg/kg.
- Manganese was detected during all five sampling events at concentrations ranging from 153 mg/kg to 3,510 mg/kg, four of which (all except Round 1) exceeded the guidance value of 460 mg/kg.

- Mercury was detected during all five sampling events at concentrations ranging from 0.18 mg/kg to 0.5 mg/kg, three of which exceeded the guidance value of 0.15 mg/kg.
- Nickel was detected during all five sampling events at concentrations ranging from 3.2 mg/kg to 22 mg/kg, three of which exceeded the guidance value of 16 mg/kg.
- Zinc was detected during all five sampling events at concentrations ranging from 67.9 mg/kg to 406 mg/kg, four of which exceeded the guidance value of 120 mg/kg.
- May 2011 sampling event: exceedances of arsenic, cadmium, chromium, copper, lead, manganese, mercury, nickel and zinc.

Sample SED-3 was collected on the south end of Lake Capri just west of the spillway. Four metals have been detected above the guidance values including cadmium, copper, lead, and manganese.

- Cadmium was detected above the guidance value of 0.6 mg/kg during all five sampling events at concentrations ranging from of 1.5 mg/kg to 27.7 mg/kg.
- Copper was detected during all five sampling events at concentrations ranging from 2.7 mg/kg to 32.5 mg/kg, four of which (all except Round 1) exceeded the guidance value of 16 mg/kg.
- Lead was detected during all five sampling events at concentrations ranging from 9.2 mg/kg to 85.9 mg/kg, four of which (all except Round 1) exceeded the guidance value of 31 mg/kg.
- Manganese was detected during all five sampling events at concentrations ranging from 89.9 mg/kg to 1,090 mg/kg, three of which exceeded the guidance value of 460 mg/kg.
- May 2011 sampling event: exceedances of cadmium, copper, lead and manganese.

Sample SED-4 was collected on the south end of Lake Capri just east of the spillway. Seven metals were detected at concentrations that exceed the guidance values including cadmium, copper, lead, manganese, mercury, silver, and zinc.

- Cadmium was detected above the guidance value of 0.6 mg/kg during all five sampling events at concentrations ranging from 14.8 mg/kg to 47.3 mg/kg.
- Copper was detected above the guidance value of 16 mg/kg during all five sampling events at concentrations ranging from 17.1 mg/kg to 49.5 mg/kg.
- Lead was detected above the guidance value of 31 mg/kg during all five sampling events at concentrations ranging from 60.6 to 193 mg/kg.
- Manganese was detected during all five sampling events at concentrations ranging from 272 mg/kg to 11,700 mg/kg, four of which (all except Round 4) exceeded the guidance value of 460 mg/kg.
- Mercury was detected during all five sampling events but only exceeded the guidance value of 0.15 mg/kg during Round 3 and 5 at concentrations of 0.21 mg/kg and 0.18 mg/kg.
- Silver was only detected during Round 3 at a concentration of 1.1 mg/kg which exceeds the guidance value of 1 mg/kg.
- Zinc was detected during all five sampling events at concentrations ranging from 71.3 mg/kg to 232 mg/kg, three of which exceeded the guidance value of 120 mg/kg.

 May 2011 sampling event: exceedances of cadmium, copper, lead, manganese, mercury and zinc.

Sample SED-5 was collected from Willetts Creek approximately 30 feet north of the footbridge behind the high school. Ten metals have been detected above the guidance values at this location, including arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel, and zinc.

- Arsenic was detected during all five sampling events at concentrations ranging from 0.52 mg/kg to 9.3 mg/kg, three of which exceeded the guidance value of 6 mg/kg.
- Cadmium was detected during all five sampling events at concentrations ranging from 0.43 mg/kg to 73.5 mg/kg, four of which (all except Round 1) exceeded the guidance value of 0.6 mg/kg.
- Chromium was detected during all five sampling events at concentrations ranging from 2.7 mg/kg to 44 mg/kg, but only exceeded the guidance value of 26 mg/kg during Round 3 and 5 at concentrations of 33.3 mg/kg and 44 mg/kg.
- Copper was detected during all five sampling events at concentrations ranging from 4.7 mg/kg to 166 mg/kg, three of which exceeded the guidance value of 16 mg/kg.
- Iron was detected during all five sampling events at concentrations ranging from 3,400 mg/kg to 39,900 mg/kg, three of which exceeded the guidance value of 20,000 mg/kg.
- Lead was detected during all five sampling events at concentrations ranging from 4.9 mg/kg to 229 mg/kg, three of which exceeded the guidance value of 31 mg/kg.
- Manganese was detected during all five sampling events at concentrations ranging from 174 mg/kg to 3,750 mg/kg, three of which exceeded the guidance value of 460 mg/kg.
- Mercury was detected during all five sampling events at concentrations ranging from 0.0055 mg/kg to 0.48 mg/kg, three of which exceeded the guidance value of 0.15 mg/kg.
- Nickel was detected during all five sampling events at concentrations ranging from 1.0 mg/kg to 22.5 mg/kg but only exceeded the guidance value of 16 mg/kg during Rounds 3 and 5 at concentrations of 19.2 mg/kg and 22.5 mg/kg.
- Zinc was detected during all five sampling events at concentrations ranging from 13.2 mg/kg to 440 mg/kg, three of which exceeded the guidance value of 120 mg/kg.
- May 2011 sampling event: exceedances of arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel and zinc.

Sample SED-6 was collected from Willetts Creek just south of the Blockbuster Video store in the small shopping center. Eleven metals were detected above the guidance values at this location, including antimony, arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel and zinc.

 Antimony was detected during all five sampling events at concentrations ranging from 0.076 to 2.6 mg/kg but only exceeded the guidance value of 2 mg/kg during Round 3 at a concentration of 2.6 mg/kg.

- Arsenic was detected during all five sampling events at concentrations ranging from 0.79 mg/kg to 6.4 mg/kg but only exceeded the guidance value of 6 mg/kg during Round 3 at a concentration of 6.4 mg/kg.
- Cadmium was detected during four of the five sampling events at concentrations ranging from 0.23 to 101 mg/kg but only exceeded the guidance value of 0.6 mg/kg during Round 3 at a concentration of 101 mg/kg. Cadmium was not detected in the Round 5 sample.
- Chromium was detected during all five sampling events at concentrations ranging from 2.4 mg/kg to 41.8 mg/kg but only exceeded the guidance value of 26 during Round 3 at a concentration of 41.8 mg/kg.
- Copper was detected during all five sampling events at concentrations ranging from 6.3 mg/kg to 77.3 mg/kg, three of which exceeded the guidance value of 16 mg/kg.
- Iron was detected during all five sampling events at concentrations ranging from 2,810 mg/kg to 36,900 mg/kg but only exceeded the guidance value of 20,000 mg/kg during Rounds 3 and 5 at concentrations of 25,600 mg/kg and 36,900 mg/kg.
- Lead was detected during all five sampling events at concentrations ranging from 7.9 mg/kg to 109 mg/kg, two of which exceeded the guidance value of 31 mg/kg.
- Manganese was detected during all five sampling events at concentrations ranging from 21.3 mg/kg to 978 mg/kg but only exceeded the guidance value of 460 mg/kg during Round 3 at a concentration of 978 mg/kg.
- Mercury was detected in three of the five sampling events and the detected value equaled the guidance value of 0.15 mg/kg during Round 3.
- Nickel was detected during all five sampling events at concentrations ranging from 1.8 mg/kg to 17.2 mg/kg, but only exceeded the guidance value of 16 mg/kg during Round 3 at a concentration of 17.2 mg/kg.
- Zinc was detected during all five sampling events at concentrations ranging from 17.2 mg/kg to 409 mg/kg, but only exceeded the guidance value of 120 mg/kg during Round 3 at a concentration of 409 mg/kg.
- May 2011 sampling event: exceedances of copper, iron and lead.

Fish Tissue Analytical

Fish Tissue sampling events in Lake Capri were conducted in July 2006, May 2007 and October 2010. No fish sampling was conducted in 2008 or 2009 upon discussion with NYSDEC due to low number and inadequate size of fish collected during 2006 and 2007 monitoring events. According to the Final SAP, the original objectives for fish tissue sampling were to collect fish samples from two stations. Station 1 is located at the north end of Lake Capri, south of the footbridge over the east branch of Willetts Creek, in the general vicinity of sediment samples SED-1 and SED-2. Station 2 is located at the south end of Lake Capri near the lake outfall, and in the general vicinity of sediment samples SED-3 and SED-4.

American eel, bluegill, carp and largemouth bass were the target species for the fish tissue sampling efforts. A target of ten samples for each of species was to be collected from each station:

If a targeted species was not available, the sample goal was ten samples across four species. If less than four species were available, the total samples should be still equal to 40 samples per station for the available species. A total of 80 samples (40 per station) were to be analyzed for cadmium only. A minimum samples mass of 100 g was desired (either from an individual fish or from a composite of a single species).

Cadmium analysis on the fish samples for 2006, 2007 and 2010 was performed by Pace Laboratories in Wisconsin. The samples were prepared in accordance with NYSDEC guidelines and cadmium was analyzed using the SW846 M3050 preparation method, and the SW846 6020 analysis method.

The results of the fish sampling efforts are shown in Table 7. During the fish sampling in 2006, four fish species were collected: largemouth bass, bluegill, American eel, and pumpkinseed. During the fish sampling in 2007, two fish species were collected: bluegill and American eel. During the fish sampling in 2010, four species were collected: bluegill, American eel, largemouth bass and pumpkinseed. No carp were collected in 2006, 2007 or 2010. Fish collection numbers were below the target of 40 per station.

For 2006, fish sample size was also below the target of 100 g per sample for all but three of the collected samples. A total of 12 fish samples were analyzed in 2006, four from the south and eight from the north. These samples were collected from 62 individuals. Only three of the samples (South 1, South 2, North 1, and North 3) were comprised of edible sized fish. The other nine samples were composite samples from more than one individual. Cadmium concentrations in the edible sized fish were as follows: South 1 with 28 μ g/kg; South 2 with 28 μ g/kg; and North 1 with 80 μ g/kg. The nine composite samples reported cadmium concentrations ranging from 39 μ g/kg to 270 μ g/kg.

A total of six fish samples were analyzed in 2007, all samples came from the North of Lake Capri. These samples were collected from 46 individuals. Only two samples (North 1 and North 3) were comprised of edible sized fish and only the North 3 sample weighed greater than 100 g. Three of the remaining samples were composite samples from more than one individual. Cadmium concentrations for both the edible sized fish were 170 μ g/kg. Cadmium concentrations for the other four fish tissue samples ranged from 190 to 230 μ g/kg.

Of the six fish samples collected in 2010, only samples DF-F2-LB-1 and DF-F1-PS-1 were comprised of edible sized fish. These samples also had cadmium concentrations of 0.0076 and 0.038 mg/kg, respectively. The higher concentrations recorded in the other samples, which often consisted of yearlings, ranged from 0.096 mg/kg to 0.37 mg/kg. However, this range may be a result of the low weights of the samples, many of which are below the 100 g sample requirement, and that 13 of 15 samples contain whole body analysis not just fillets. For example, the number of individual fish comprising samples DF-F1-PS-3, DF-F2-BG-3, and DF- F2-PS-2, were 40, 46, and 46, respectively. However, a review of the data shows that there is no discernable trend regarding differences in cadmium concentrations between the north and south locations, for both edible sized fish and the

smaller yearlings. A similar range of data was also observed in previous fish sampling efforts in 2006 and 2007 (Table 7). No variation amongst species was observed; however it should be noted that the one edible size bass that was captured represents a fish at the top of the lake's food chain.

Due to the small numbers and small sizes of fish collected, it is not possible to statistically analyze the results. It should be noted that cadmium results for the three fish sampling events could be the result of weights below 100 g and because the samples contain whole bodies and not just fillets. The New York State Department of Health (NYSDOH) fish advisory for cadmium in Lake Capri fish tissue is 1 mg/kg in carp. Though no carp were collected, all fish sample cadmium results were well below the advisory limit. It is also important to note that the current NYSDOH fish advisory recommends eating no more than one meal per month of American eel and carp. In addition to cadmium, the fish advisory lists the manufactured pesticide chlordane as a chemical of concern for Lake Capri. Chlordane is not believed to be associated with the Dzus Fastener facility.

3.3 IC/EC Certification Plan Report

Engineering controls at the Site currently consist of environmental monitoring to determine effectiveness of the remedy. There are no institutional controls.

Comparison of DER-10, Unified Information System and Actual Site Conditions

DER-10	Unified Information System	Actual Site Conditions
Source Removal	IRM completed in October 1990, removed approximately 1,960 cubic yards of contaminated soils	Contaminated soil removed from area of former oil/water separator and former dry wells
Source Control when removal is not feasible	OU1, approximately 8,100 cubic yards of contaminated soils were treated through insitu stabilization/solidification, completed in December 1996	OU1 in-situ stabilization/solidification of eastern corner of the Site (includes former oil/water separator)
Containment / Isolation	Not mentioned	Soil and asphalt cap over the treatment cell in the eastern corner of the Site (includes the former oil/water separator, former dry wells, laterals from former dry well #4, and drain line to Willetts Creek)
Source removal	OU2 dredging and offsite disposal of sediment from Lake Capri and portions of Willetts Creek	OU2 dredging and offsite disposal of sediment from Lake Capri and portions of Willetts Creek
Containment / Isolation	Not mentioned	Riprap was placed in portions of Lake Capri and Willetts Creek to cover areas where cadmium concentrations exceeded the cleanup goals of 9 mg/kg (1999 remediation of Lake Capri and Willetts Creek).

Long Term Monitoring	Long term monitoring of groundwater	Long term monitoring of groundwater
Long Term Monitoring	Long term monitoring of sediment and surface water in Lake Capri and Willetts Creek	Long term monitoring of sediment and surface water in Lake Capri and Willetts Creek
Long Term Monitoring	Long term monitoring of fish tissue in lake Capri	Long term monitoring of fish tissue in Lake Capri

3.3.1 IC/EC Requirements and Compliance

Determination of compliance with the IC/EC at the Site is made based on the following criteria:

- The EC(s) applied at the site are in place and unchanged from the previous certification,
- Nothing has occurred that would impair the ability of such controls to protect the public health
 and the environment, or constitute a violation or failure to comply with any element of the
 SMP for such controls,
- Access to the Site will continue to be provided to the NYSDEC to evaluate the remedy, including access to evaluate the continued maintenance of such controls (future access cannot be guaranteed, but access for maintenance and inspections has not been an issue to date, and is not anticipated to become one).

Currently, certification that the site ECs are in compliance with the requirements stated above, cannot be completed because of the following deficiencies:

- The environmental well network includes one well (MW-1) that has been rendered ineffective
 due to destruction, and is in need of replacement and/or proper abandonment. This well is
 one of the 14 wells listed for regular site monitoring.
- The asphalt cap on the eastern side of the Dzus Fastener currently is damaged and needs to be repaired.

Detailed descriptions of the deficiencies identified at the Site and the severity presented is included in Section 5.0, including a proposed schedule to utilize in bringing the Site into compliance with the EC Certification requirements.

3.3.2 IC/EC Certification Forms

See Appendix A.

4.0 Evaluate Costs

4.1 Summary of Costs

A total annual cost for the required monitoring is approximately \$25,000, based on costs incurred in calendar year.

This includes all costs associated with the completion of one round of groundwater monitoring and fish tissue sampling conducted in May 2011, including subcontractor, AECOM field and reporting labor, and lab fees. Estimated OM&M costs presented in the ROD were projected to be \$21,950 per year for the first ten years of operation, actual cost incurred during the most recent sampling event is slightly higher than the original ROD estimate.

5.0 Conclusions and Recommendations

5.1 Conclusions

5.1.1 Operations and Maintenance

Groundwater monitoring well MW-1 has not been sampled since August 2007. This well is believed to have been destroyed by a snowplow. This well has not been properly abandoned and the loss of this well results in a data gap for determining current site contamination. This problem is categorized as moderate as the damaged well could allow for direct infiltration of precipitation.

The asphalt cover located at the Dzus Fasteners Facility currently has vegetation growing through cracks in the pavement. This deficiency is categorized as low and in its current a state (see Appendix C) may result in increased contaminant mobility. The LTMP laid out guidelines for monitoring the asphalt cover but there are no written records of cap maintenance. The SAP does not cover cap monitoring or maintenance.

The current maintenance status of the riprap in Willetts Creek and Lake Capri is unknown. The LTMP laid out guidelines for monitoring the riprap but there are no written records of its condition and maintenance. The SAP does not cover riprap monitoring and maintenance. This problem is categorized as moderate and results in a lack of knowledge in regards to site contamination.

5.1.2 Monitoring

Groundwater

Cadmium has been present in every sample collected during all five sampling events with exceedances noted in 11 samples during Round 1, ten samples during Round 2, eight samples during Round 3, nine out of 12 Round 4 samples, and nine of 13 Round 5 samples (6 of 13 filtered samples). The cadmium results are graphically presented on Figure 7 (shallow monitoring wells) and Figure 8 (deep monitoring wells). Isoconcentration maps were also prepared for cadmium in groundwater and are shown on Figure 9A (June 2006), Figure 9B (November 2008) and Figure 9C (May 2011). The majority of the exceedances are concentrated along the eastern side of the Site in wells MW-3, MW-9, MW-13A, MW-15A, MW-22A, MW-23A, and MW-23B. The concentrations in these seven monitoring wells have exceeded the criterion in each of the five sampling events (note that in the Round 5 samples for MW-22A, the cadmium concentration in the unfiltered sample exceeded the criterion but was not detected in the filtered sample). As shown on the isoconcentration maps (Figures 9A, 9B and 9C), the cadmium groundwater plume has not changed significantly since 2006 (Figure 9A), although the concentrations at MW-13A and MW-23A have shown a wide range of values.

Concentrations of iron, manganese, and sodium have exceeded the criterion in numerous wells but these compounds are typically found in groundwater on Long Island are most likely representative of background conditions and not Site-related. There have been sporadic exceedances of antimony, lead, and thallium but the concentrations and locations of the exceedances have not been replicated during the five sampling events and are most likely a result of entrained sediment in the samples and are not representative of the dissolved groundwater concentrations.

Surface Water

Seven metals have been detected at concentrations above their Class A Surface Water criteria including antimony, cadmium, iron, manganese, selenium, sodium and thallium.

Antimony has been sporadically detected at least once in five of six surface water samples, with most detections exceeding the 3 μ g/L criterion. However, the exceedances have not been duplicated in any sample. Antimony concentrations do not appear to be a Site related.

Cadmium concentrations in surface water samples are illustrated in the Figure 10. Cadmium was detected in three of five sampling events in Willetts Creek sample SW-6. However, the only exceedance was during Round 3, which was anomalously high at 75.4 µg/L. Cadmium was detected in all five rounds in Willetts Creek sample SW-5 and slightly exceeded the criterion in four samples. The highest concentration detected was 8.8 µg/L during Round 5. Cadmium concentrations did not exceed the criterion in any of the four samples from Lake Capri samples during the five sampling events. Continued monitoring is necessary to determine if the exceedance in SW-6 during Round 3 is an isolated occurrence. As noted above in the discussion of sediment sample results, cadmium is present in co-located sediment samples; the cadmium noted in surface water samples may be a result of sediment leaching and not a result of Site contaminants migrating off-site.

With a few exceptions, iron and manganese were detected in all six surface water samples above the criterion during all four sampling events. This is most likely a result of natural conditions in Willetts Creek and not Site related.

During the five sampling rounds, selenium has been detected twice in two surface water samples with one exceedance. The selenium concentration in Willetts Creek surface water sample SW-6 slightly exceeded the criterion during Round 4.

Sodium concentrations have exceeded the criterion in the two Willetts Creek samples (SW-5 and SW-6) in the majority of the samples. Sodium concentrations in the four Lake Capri samples were below the criterion during Rounds 1, 2, 3 and 5 but all four exceeded the criterion during Round 4. The high sodium concentrations noted in Lake Capri during March 2010 may be the result of surface water runoff containing high concentrations of road salt.

Sediments

The samples indicate that the surficial sediments in Lake Capri and Willetts Creek remain contaminated with metals concentrations above the applicable NYSDEC Technical Guidance for

Sediment Criteria, lowest effects level. Cadmium has been detected above the lowest effects criterion in 25 of 30 samples collected during the five rounds of sampling. Copper has been detected above the criterion in 24 of 30 samples collected and lead has been detected in 22 of 30 samples collected. Several other metals including antimony, arsenic, chromium, iron, manganese, mercury, nickel, and zinc, have been detected sporadically at concentrations exceeding the criteria during the five sampling events.

There was a significant increase in the number of metals that exceeded the criterion in the two Willetts Creek sediment samples collected during Round 3. At upstream sample SED-6, there was one exceedance during Round 1, no exceedances during Round 2, 11 exceedances during Round 3, no exceedances for any metal in Round 4 and three exceedances in Round 5. Further sampling is necessary to establish whether the exceedances noted in Round 3 at SED-6 can be replicated. With the exception of the Round 5 iron concentration, the concentrations of metals detected in Rounds 4 and 5 have been much lower than those reported in Round 3, and are generally similar to the concentrations detected in Rounds 1 and 2.

At downstream sample SED-5, there were no exceedances during Round 1, one exceedance in Round 2, ten exceedances during Round 3, eight exceedances in Round 4 and ten exceedances in Round 5. The highest concentrations of eight of the ten metals exceeding criteria (all except mercury and manganese) were detected in the Round 5 sample at SED-5. If the sample concentrations in SED-5 are compared to the highest effects level criteria, there are still exceedances of cadmium, copper, iron, lead, manganese and zinc. Additional sampling is recommended to determine the extent of this contamination in Willetts Creek at this location.

Cadmium concentrations in sediment samples are illustrated on the bar chart on Figure 11. As shown on the bar chart, three of four samples from Lake Capri have consistently above the highest effects level during all five sampling events and the third sample (SW-3, located in the southwest corner of the Lake) has exceeded the highest effects level three of five times. The two samples from Willetts Creek , The concentrations are also plotted on the maps in Figures 12A (June 2006), 12B November 2008) and 12C (May 2011).

Fish Tissue

Fish samples collected were well below the target of 80 samples of at least 100 g (40 from the north and 40 from the south). The majority of fish caught were also below the 100 g sample size and as a consequence, most samples consisted of numerous small fish. Fish size and numbers were inadequate for the assessment of cadmium contamination of fish tissues.

5.2 Recommendations

In order to return to compliance with the requirements presented in the ROD and OM&M program, a summary of the recommended investigation and maintenance activities is provided below:

- Continue sampling on a five-quarter basis in order to better evaluate temporal trend for cadmium and other metals found in exceedance of the NYSDEC groundwater, surface water and sediment criteria.
- Continue monitoring the current site to evaluate cadmium concentrations. Sediment
 monitoring results of Lake Capri show elevated cadmium concentrations above cleanup level
 and suggest that remedial actions undertaken at the lake may not be completely effective.
- Re-evaluate the current fish sampling protocol. Currently, Lake Capri does not provide fish of
 sufficient number or of sufficient size to meet the current requirements for fish tissue
 sampling. Other options for obtaining accurate cadmium levels in edible sized fish should be
 considered (e.g., towed gill nets or a more robust trapping program). Also evaluate whether
 the restocking program was successful in re-establishing a large healthy fish population in
 Lake Capri.
- Re-evaluate the need to include cyanide on the analytical list for future sampling events based on COCs indicated in the RODs for OU1 and OU2.
- Locate the damaged/destroyed monitoring well MW-1 and properly abandon or repair the well. If the well is abandoned, a replacement should be considered.
- Upgradient monitoring well MW-17 could not be located by the field crew during the May 2011 sampling event. Additional effort is needed to locate this well. Once located, the well should be assessed for future sampling or properly abandoned if found to be damaged.
- Establish the inspection protocol of the asphalt cover at the Dzus Fasteners facility. The evaluation can be completed and reported along with the sampling program on a five-quarter basis.
- Perform an evaluation of the riprap erosion controls currently in place in Willetts Creek and in Lake Capri. The evaluation can be completed and reported along with the sampling program on a five-quarter basis.
- Elevated concentrations of several metals have been detected in Willetts Creek sample SED-5 during the last three sampling events. The extent of this contamination in Willetts Creek needs to be assessed. Additional samples should be collected around location SED-5 to determine the extent of contamination. In addition, the entire length of the creek from the Dzus Facility to Lake Capri should be surveyed to determine if other locations are more appropriate for future sampling and if additional sampling locations are needed to evaluate the effectiveness of the dredging performed in 1999.
- Perform five-year periodicyear periodic review of the Site in 2016.

6.0 References

AECOM Technical Services Northeast, Inc., 2009. Final Groundwater Sampling Report (November 2008 Sampling Event). Multi Site G, Operation, Maintenance and Monitoring. Dzus Fasteners Site, West Islip, Suffolk County, NY, Site 1-52-033. Prepared for Superfund Standby Program, NYSDEC, August 2009.

AECOM Technical Services Northeast, Inc., 2010. Final Groundwater Sampling Report (March 2010 Sampling Event). Multi Site G, Operation, Maintenance and Monitoring. Dzus Fasteners Site, West Islip, Suffolk County, NY, Site 1-52-033. Prepared for Superfund Standby Program, NYSDEC, September 2010.

AECOM Technical Services Northeast, Inc., 2011a. Periodic Review Report. Multi Site G, Operation, Maintenance and Monitoring. Dzus Fasteners Site, West Islip, Suffolk County, NY, Site 1-52-033. Prepared for Superfund Standby Program, NYSDEC, March 2011.

AECOM Technical Services Northeast, Inc., 2011b. Final Groundwater Sampling Report (May 2011 Sampling Event). Multi Site G, Operation, Maintenance and Monitoring. Dzus Fasteners Site, West Islip, Suffolk County, NY, Site 1-52-033. Prepared for Superfund Standby Program, NYSDEC, October 2011.

Earth Tech of New York, Inc., 2000a. Construction Certification Report, Dzus Fasteners Site (OU2). Construction and Remediation of Lake Capri and Willetts Creek. Prepared for Superfund Standby Program, NYSDEC. October 2000.

Earth Tech of New York, Inc., 2000b. Long Term Monitoring Plan, Dzus Fasteners Site (OU2). NYSDEC site No. 1-52-033, Lake Capri/Willetts Creek. Prepared for Superfund Standby Program, NYSDEC. November 2000.

Earth Tech Northeast, Inc., 2006. Final Semiannual Sampling Reports (June 2006 Sampling Event). Multi Site G, Operation, Maintenance and Monitoring. Dzus Fasteners Site, West Islip, Suffolk County, NY, Site 1-52-033. Prepared for Superfund Standby Program, NYSDEC, October 2006.

Earth Tech Northeast, Inc., 2007a. Final Sampling and Analysis Plan, Multi Site G, operation, Maintenance and Monitoring. Prepared for Superfund Standby Program, NYSDEC. June 2007.

Earth Tech Northeast, Inc., 2007b. Final Project Management Plan, Multi Site G, Operation, Maintenance and Monitoring. Prepared for Superfund Standby Program, NYSDEC. February 2007.

Earth Tech Northeast, Inc., 2007c. Final Groundwater Sampling Reports (August 2007 Sampling Event). Multi Site G, Operation, Maintenance and Monitoring. Dzus Fasteners Site, West Islip,

Suffolk County, NY, Site 1-52-033. Prepared for Superfund Standby Program, NYSDEC, November 2007.

NYSDEC, 1995. Record of Decision, Dzus Fastener Company, Operable Unit 01, Inactive hazardous Waste Site, Site Number 152033. March 1995.

NYSDEC, 1997. Record of Decision, Dzus Fastener Site, Operable Unit #2, West Islip, Suffolk County, Site Number 1-52-033.

NYSDEC, 1999. Technical Guidance for Screening Contaminated Sediments, Division of Fish and Wildlife and Marine Resources. January 1999.

NYSDEC, 2002. Draft DER-10 Technical Guidance for Site Investigation and Remediation. December 2002.

NYSDEC, 2006. Rules and Regulations, 6 NYCRR Subpart 376-6, Remedial Program Soil Cleanup Objectives. December 14, 2006.

NYSDEC, 2008. Rules and Regulations, 6 NYCRR Subpart 703, Surface Water and groundwater Quality Standards and groundwater Effluent Limitations, January 17, 2008.

NYS Department of Health, 2009. Chemicals in Sport Fish and Game: 2009-2010 Health Advisories. http://www.health.ny.us/environmental/outdoors/fish.htm.

AECOM Environment

Tables

TABLE 1
DZUS FASTENERS SITE (1-52-033)
WELL CONSTRUCTION DATA

Well Number	Latitude	Longitude	Ground Elevation	Top of Riser Elevation	Top of Casing Elevation	Total Depth of Well
MW-1 MW-2 MW-9 MW-9B MW-13A MW-13B MW-15A MW-15B MW-17 MW-18 MW-22A MW-22A MW-22A	40° 42.49 40° 42.45 40° 42.49 40° 42.49 40° 42.44 40° 42.43 40° 42.49 40° 42.49 40° 42.491 40° 42.491 40° 42.402 40° 42.402	73° 18.10 73° 18.10 73° 18.02 73° 18.02 73° 18.01 73° 17.100 73° 17.99 73° 17.97 73° 17.96 73° 17.941 73° 17.941 73° 17.991 73° 17.987	22.44 22.16 20.23 19.14 19.08 16.34 16.14 19.45 19.35 14.69 20.49 20.35 17.57	22.03 21.42 19.71 18.83 18.75 16.02 15.82 19.09 19.06 14.31 20.09 19.95 17.34 17.29	22.44 22.16 20.23 19.14 19.08 16.34 16.14 19.45 19.35 14.66 20.49 20.35 17.57	15.3 14.3 15.0 11.5 44.5 10.7 44.3 28.8 84.7 13.5 14.4 44.5 14.3 44.5

Notes:

All elevations and depths are in feet

Vertical datum: on-site benchmark from previous survey.

Latitude / Longitude taken from a previous report Survey performed by YEC, Inc., on April 18, 2007

TABLE 2
DZUS FASTENERS SITE (1-52-033)
GROUNDWATER ELEVATIONS

Well #	Reference Elevation	Date	Depth To Water	Water Table Elevation	Comments
MW-1	22.03	6/8/06 8/22/07 11/11/08 3/10/10 5/25/11	8.00 8.62 NC NC NC	14.03 13.41	could not be located, damaged during snow removal
MW-2	21.42	6/8/06 8/22/07 11/11/08 3/10/10 5/25/11	8.15 8.50 8.30 7.43 7.77	13.27 12.92 13.12 13.99 13.65	
MW-3	19.71	6/8/06 8/22/07 11/11/08 3/10/10 5/25/11	5.77 6.30 6.25 5.36 5.62	13.94 13.41 13.46 14.35 14.09	
MW-9	18.83	6/8/06 8/22/07 11/11/08 3/10/10 5/25/11	4.59 5.15 5.01 4.19 4.45	14.24 13.68 13.82 14.64 14.38	
MW-9B	18.75	6/8/06 8/22/07 11/11/08 3/10/10 5/25/11	4.50 5.05 4.93 4.11 4.36	14.25 13.70 13.82 14.64 14.39	
MW-13A	16.02	6/8/06 8/22/07 11/11/08 3/10/10 5/25/11	2.59 3.02 2.90 2.27 2.51	13.43 13.00 13.12 13.75 13.51	
MW-13B	15.82	6/8/06 8/22/07 11/11/08 3/10/10 5/25/11	2.39 2.85 2.69 2.08 2.32	13.43 12.97 13.13 13.74 13.50	
MW-15A	19.09	6/7/06 8/22/07 11/11/08 3/10/10 5/25/11	5.48 5.80 5.64 4.95 5.15	13.61 13.29 13.45 14.14 13.94	

TABLE 2
DZUS FASTENERS SITE (1-52-033)
GROUNDWATER ELEVATIONS

Well #	Reference	Date	Depth	Water Table	Comments
	Elevation		To Water	Elevation	
MW-15B	19.06	6/7/06	5.35	13.71	
		8/22/07	5.70	13.36	
		11/11/08	5.58	13.48	
		3/10/10	NC		unable to access, ACE Hardware
		5/25/11	5.10	13.96	
MW-17		5/25/11			Could not be located
MW-18	14.31	6/8/06	7.93	6.38	
		8/23/07	5.05	9.26	
		11/11/08	4.98	9.33	
		3/10/10	4.52	9.79	
		5/25/11	4.70	9.61	
MW-22A	20.09	6/7/06	6.00	14.09	
		8/22/07	6.44	13.65	
		11/11/08	6.38	13.71	
		3/10/10	5.78	14.31	
		5/25/11	5.92	14.17	
MW-22B	19.95	6/7/06	5.82	14.13	
		8/22/07	6.30	13.65	
		11/11/08	6.20	13.75	
		3/10/10	5.61	14.34	
		5/25/11	5.74	14.21	
MW-23A	17.34	6/7/06	4.59	12.75	
		8/22/07	4.80	12.54	
		11/11/08	4.62	12.72	
		3/10/10	4.16	13.18	
		5/25/11	4.38	12.96	
MW-23B	17.29	6/7/06	4.51	12.78	
		8/22/07	5.05	12.24	
		11/11/08	4.59	12.70	
		3/10/10	4.06	13.23	
		5/25/11	4.31	12.98	

Notes:

All measurements in feet from top of casing Veritcal data NGVD

TABLE 3
DZUS FASTENERS SITE (1-52-033)
JUNE 2006 THROUGH MAY 2011 SAMPLING EVENTS
SUMMARY OF TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-1	MW-1	MW-1	MW-1	MW-1
Sample ID	Class GA	MW-1	DMW-1	DMW-1	DMW-1	DMW-1
Laboratory ID	Ground	E0773-05A	F1193-01A	destroyed	destroyed	destroyed
Sample Date	Water	6/8/06	8/22/07	11/11/08	3/10/10	5/25/11
Filtered/Unfiltered	Criteria	Unfiltered	Unfiltered			
		conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Aluminum	NC	4,180	3,160	NA	NA	NA
Antimony	3	ND	ND	NA	NA	NA
Arsenic	25	4.3 B	3.8 B	NA	NA	NA
Barium	1,000	80.2 B	73.3 B	NA	NA	NA
Beryllium	3	0.42 B	0.25 B	NA	NA	NA
Cadmium	5	23.9	5.1	NA	NA	NA
Calcium	NC	8,790	7,150	NA	NA	NA
Chromium	50	8 B	5 B	NA	NA	NA
Cobalt	NC	5.1 B	6.9 BE	NA	NA	NA
Copper	200	18.3 B	16 B	NA	NA	NA
Iron	300	13,200	12,600	NA	NA	NA
Lead	25	3.9 B	9.8 B	NA	NA	NA
Magnesium	35,000	3,010	2,420	NA	NA	NA
Manganese	300	210	158	NA	NA	NA
Mercury	0.7	ND	ND	NA	NA	NA
Nickel	100	8.7 B	8.7 B	NA	NA	NA
Potassium	NC	1,760	1,680	NA	NA	NA
Selenium	10	ND	5.4 B	NA	NA	NA
Silver	50	ND	ND	NA	NA	NA
Sodium	20,000	22,500	23,100	NA	NA	NA
Thallium	0.5	1.9 B	5.5 B	NA	NA	NA
Vanadium	NC	7.8 B	8.2 B	NA	NA	NA
Zinc	2,000	244	196	NA	NA	NA

NC - No Criteria NA - Not analyzed ND - Not Detected

BOLD/Italics - exceeds criterion

B - Estimated value (greater than MDL but less than RL) N - Matrix spike recovery falls outside of the control limit

E - Estimated due to matrix interference

TABLE 3
DZUS FASTENERS SITE (1-52-033)
JUNE 2006 THROUGH MAY 2011 SAMPLING EVENTS
SUMMARY OF TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2
Sample ID	Class GA	MW-2	DMW-2	DMW-2	DMW-2	DMW-2	DMW-2
Laboratory ID	Ground	E0773-10A	F1193-04A	G2114-01	J0429-10A	K0942-01	K0942-02
Sample Date	Water	6/7/06	8/22/07	11/11/08	3/10/10	5/25/11	5/25/11
Filtered/Unfiltered	Criteria	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Filtered
		conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Aluminum	NC	7,090	1,580	242	3,880 E	1,500	ND
Antimony	3	ND	7.3 B	ND	9.4 B	ND	ND
Arsenic	25	3.9 B	6.3 B	ND	7.7 B	12.4 B	5 B
Barium	1,000	96.5 B	212	38.7 B	47.9 B	51.1 B	34.2 B
Beryllium	3	0.4 B	0.71 B	0.27 B	0.51 B	0.33 B	ND
Cadmium	5	4.2 B	8.6	2.7 B	10.4	ND	ND
Calcium	NC	15,500	28,200	14,500	11,100	38,700	34,500
Chromium	50	8.8 B	3.1 B	ND	6.8 B	2.2 B	ND
Cobalt	NC	18.3 B	27 BE	13.8 B	9.3 B	11.4 B	7.6 B
Copper	200	19.3 B	8.3 B	12.6 B	34.9	7.9 B	ND
Iron	300	14,900	25,200	23,300	12,000 N	88,900	17,600
Lead	25	14.7	4.2 B	5.2 B	6.9 B	7.5 B	ND
Magnesium	35,000	3,740	4,690	2,700	2,810	3,690	3,510
Manganese	300	518	989	2,150	768	882	655
Mercury	0.7	ND	ND	ND	0.084 B	ND	ND
Nickel	100	13.3 B	9 B	4.7 B	13.5 B	6.5 B	2.8 B
Potassium	NC	2,140	2,780	1,880	1,450	2,470	2,410
Selenium	10	1.4 B	ND	ND	ND	ND	ND
Silver	50	ND	ND	ND	ND	ND	ND
Sodium	20,000	21,500	66,200	18,600	18,200	25,200	24,100
Thallium	0.5	2.3 B	6.3 B	ND	ND	ND	ND
Vanadium	NC	11.9 B	4 B	ND	16.2 B	2.5 B	ND
Zinc	2,000	138	82.8	64.3	109	111	30.5 B

NC - No Criteria NA - Not analyzed ND - Not Detected

BOLD/Italics - exceeds criterion

B - Estimated value (greater than MDL but less than RL)

N - Matrix spike recovery falls outside of the control limit

E - Estimated due to matrix interference

TABLE 3
DZUS FASTENERS SITE (1-52-033)
JUNE 2006 THROUGH MAY 2011 SAMPLING EVENTS
SUMMARY OF TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3
Sample ID	Class GA	MW-3	DMW-3	DMW-3	DMW-3	DMW-3	DMW-3
Laboratory ID	Ground	E0773-07A	F1193-07A	G2114-04	J0429-11A	K0942-03	K0942-04
Sample Date	Water	6/8/06	8/22/07	11/11/08	3/10/10	5/25/11	5/25/11
Filtered/Unfiltered	Criteria	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Filtered
		conc. Q	conc. Q				
Aluminum	NC	5,650	620	314	2,890 E	8,520	ND
Antimony	3	ND	ND	ND	7.2 B	ND	ND
Arsenic	25	2.9 B	ND	ND	3.2 B	7.1 B	6.3 B
Barium	1,000	90.9 B	37.2 B	28.3 B	35.3 B	59.7 B	20.3 B
Beryllium	3	0.26 B	ND	ND	0.25 B	0.7 B	ND
Cadmium	5	77.4	74.4	70.8	98.4	73.5	13.1
Calcium	NC	17,800	17,200	11,800	10,600	11,000	9,750
Chromium	50	9.2 B	1.6 B	ND	6.4 B	11.4 B	ND
Cobalt	NC	4.4 B	1.6 BE	ND	2.2 B	4.7 B	ND
Copper	200	16.1 B	5.4 B	ND	6.8 B	9.7 B	ND
Iron	300	4,430	649	253	3,680 N	7,430	ND
Lead	25	ND	3.8 B	2.7 B	3.9 B	7.5 B	ND
Magnesium	35,000	4,160	3,820	2,650	2,670	2,890	1,970
Manganese	300	423	301	262	553	980	ND
Mercury	0.7	ND	ND	ND	0.067 B	0.057 B	ND
Nickel	100	6.8 B	2.1 B	1.6 B	7.4 B	5 B	ND
Potassium	NC	2,630	2,050	1,420	1,500	2,170	1,790
Selenium	10	ND	8.4 B	ND	10.6 B	ND	ND
Silver	50	ND	3.5 B	ND	ND	ND	ND
Sodium	20,000	27,700	31,000	25,000	20,700	20,400	19,400
Thallium	0.5	2.5 B	ND	ND	ND	ND	ND
Vanadium	NC	8.1 B	1.1 B	ND	4 B	9.6 B	ND
Zinc	2,000	87	29.4 B	26.2 B	29 B	34 B	18.9 B

NC - No Criteria NA - Not analyzed ND - Not Detected

BOLD/Italics - exceeds criterion

B - Estimated value (greater than MDL but less than RL) N - Matrix spike recovery falls outside of the control limit

E - Estimated due to matrix interference

TABLE 3
DZUS FASTENERS SITE (1-52-033)
JUNE 2006 THROUGH MAY 2011 SAMPLING EVENTS
SUMMARY OF TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-9	MW-9	MW-9	MW-9	MW-9	MW-9
Sample ID	Class GA	MW-9	DMW-9	DMW-9	DMW-9	DMW-9	DMW-9
Laboratory ID	Ground	E0773-09A	F1193-06A	G2114-02	J0429-12A	K0942-05	K0942-06
Sample Date	Water	6/8/06	8/22/07	11/11/08	3/10/10	5/25/11	5/25/11
Filtered/Unfiltered	Criteria	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Filtered
		conc. Q	conc. Q				
Aluminum	NC	16,800	3,520	611	2,300 E	2,850	ND
Antimony	3	ND	ND	ND	ND	ND	ND
Arsenic	25	32.6	16.2 B	ND	11.4 B	11.5 B	4.9 B
Barium	1,000	102 B	44.7 B	30.2 B	39.2 B	71 B	49.2 B
Beryllium	3	0.63 B	ND	0.21 B	0.29 B	0.42 B	ND
Cadmium	5	32.8	22.4	15.5	17.5	18.7	9.5
Calcium	NC	16,000	15,100	10,800	21,900	29,000	25,600
Chromium	50	125	62.2	35.3	62.7	85.5	2.9 B
Cobalt	NC	5.2 B	4.9 BE	1.5 B	2 B	2.5 B	ND
Copper	200	62.3	41.4	17.3 B	32.5	41.1	ND
Iron	300	21,600	12,400	3,670	11,300 N	11,600	1,760
Lead	25	11.6	10.6	5.9 B	8.1 B	9.9 B	ND
Magnesium	35,000	3,170	1,550	2,690	4,210	4,110	3,900
Manganese	300	151	117	62.6	124	149	15.3 B
Mercury	0.7	ND	ND	ND	0.088 B	ND	ND
Nickel	100	18.3 B	7.3 B	3.3 B	8 B	6.5 B	2.4 B
Potassium	NC	3,270	4,830	1,720	3,950	6,310	5,210
Selenium	10	2.7 B	ND	ND	ND	ND	ND
Silver	50	ND	ND	ND	ND	ND	ND
Sodium	20,000	25,500	52,100	16,100	29,100	72,800	68,700
Thallium	0.5	ND	ND	ND	ND	ND	ND
Vanadium	NC	33.1 B	13.4 B	5.5 B	10.4 B	12.8 B	ND
Zinc	2,000	170	73.1	55.9	82.8	90.9	36.6 B

NC - No Criteria NA - Not analyzed ND - Not Detected

BOLD/Italics - exceeds criterion

B - Estimated value (greater than MDL but less than RL) N - Matrix spike recovery falls outside of the control limit

E - Estimated due to matrix interference

TABLE 3
DZUS FASTENERS SITE (1-52-033)
JUNE 2006 THROUGH MAY 2011 SAMPLING EVENTS
SUMMARY OF TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-9B	MW-9B	MW-9B	MW-9B	MW-9B	MW-9B
Sample ID	Class GA	MW-9B	DMW-9B	DMW-9B	DMW-9B	DMW-9B	DMW-9B
Laboratory ID	Ground	E0773-08A	F1193-05A	G2114-03	J0429-14A	K0942-07	K0942-08
Sample Date	Water	6/8/06	8/22/07	11/11/08	3/10/10	5/25/11	5/25/11
Filtered/Unfiltered	Criteria	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Filtered
		conc. Q	conc. Q				
Aluminum	NC	213	177 B	ND	49.5 BE	99.1 B	ND
Antimony	3	1.8 B	4.6 B	ND	ND	ND	ND
Arsenic	25	ND	ND	ND	ND	ND	6.2 B
Barium	1,000	45.5 B	25.5 B	27.1 B	17.1 B	14.4 B	12.8 B
Beryllium	3	ND	ND	ND	0.051 B	ND	ND
Cadmium	5	2.9 B	1.2 B	0.23 B	3.6 B	ND	ND
Calcium	NC	10,800	11,900	8,180	6,950	8,580	8,480
Chromium	50	2.2 B	3.4 B	ND	2.4 B	1.4 B	ND
Cobalt	NC	2.6 B	1.5 BE	ND	ND	ND	ND
Copper	200	28.8 B	14.8 B	ND	ND	ND	ND
Iron	300	561	429	134 B	286 N	528	31.8 B
Lead	25	ND	6 B	ND	ND	ND	ND
Magnesium	35,000	1,640	1,630	1,330	1,380	1,490	1,430
Manganese	300	211	306	171	69.5	92.4	ND
Mercury	0.7	ND	ND	ND	ND	ND	ND
Nickel	100	8.6 B	2.9 B	ND	1.9 B	1.8 B	0.88 B
Potassium	NC	2,140	2,050	1,940	1,950	1,910	1,670
Selenium	10	ND	ND	ND	12.7 B	ND	ND
Silver	50	ND	2.2 B	ND	ND	ND	ND
Sodium	20,000	8,070	10,100	11,800	7,660	6,730	6,650
Thallium	0.5	ND	ND	ND	ND	ND	ND
Vanadium	NC	ND	0.83 B	ND	ND	ND	ND
Zinc	2,000	83.7	36 B	35.3 B	23.3 B	27.1 B	25.4 B

NC - No Criteria NA - Not analyzed ND - Not Detected

BOLD/Italics - exceeds criterion

 $\ensuremath{\mathsf{B}}$ - Estimated value (greater than MDL but less than RL)

N - Matrix spike recovery falls outside of the control limit

E - Estimated due to matrix interference

TABLE 3
DZUS FASTENERS SITE (1-52-033)
JUNE 2006 THROUGH MAY 2011 SAMPLING EVENTS
SUMMARY OF TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-13A	MW-13A	MW-13A	MW-13A	MW-13A	MW-13A
Sample ID	Class GA	MW-13A	DMW-13A	DMW-13A	DMW-13A	DMW-13A	DMW-13A
Laboratory ID	Ground	E0773-13A	F1193-14A	F1193-14A	J0429-15A	K0942-17	K0942-18
Sample Date	Water	6/8/06	8/22/07	11/12/08	3/10/10	5/25/11	5/25/11
Filtered/Unfiltered	Criteria	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Filtered
		conc. Q	conc.	conc.	conc.	conc.	conc.
Aluminum	NC	15,000	2,560	258	529 E	2,100	ND
Antimony	3	ND	ND	ND	ND	ND	ND
Arsenic	25	5.7 B	ND	ND	ND	13.1 B	ND
Barium	1,000	176 B	94 B	185 B	605	886	20.5 B
Beryllium	3	0.53 B	ND	ND	0.073 B	ND	ND
Cadmium	5	174	94.1	67.7	267	373	10.3
Calcium	NC	37,900	23,300	19,900	43,700	27,500	24,900
Chromium	50	12.9 B	2.7 B	ND	3.9 B	22.1	ND
Cobalt	NC	55.8	45.4 BE	35.4 B	144	268	1.1 B
Copper	200	34.3	ND	ND	17.9 B	20.8 B	ND
Iron	300	12,700	3,490	300	749 N	2,310	ND
Lead	25	5.7 B	2.5 B	ND	5.3 B	ND	ND
Magnesium	35,000	5,580	3,640	2,630	4,570	3,820	3,340
Manganese	300	9,560	8,040	16,400	33,900	61,600	1,720
Mercury	0.7	ND	ND	ND	0.063 B	ND	ND
Nickel	100	9.4 B	2.1 B	ND	2.6 B	3.3 B	ND
Potassium	NC	7,430	6,390	3,680	7,510	6,700 E	5,990 E
Selenium	10	ND	ND	ND	ND	ND	ND
Silver	50	ND	3.5 B	ND	ND	12.1 B	ND
Sodium	20,000	94,500	77,500	21,700	247,000	38,400	37,500
Thallium	0.5	44	ND	11.7 B	88.2	ND	ND
Vanadium	NC	17.6 B	3.7 B	ND	2.7 B	6.4 B	ND
Zinc	2,000	53.3	16.8 B	20.8 B	27.4 B	36.1 B	18 B

NC - No Criteria NA - Not analyzed ND - Not Detected

BOLD/Italics - exceeds criterion

B - Estimated value (greater than MDL but less than RL) N - Matrix spike recovery falls outside of the control limit

E - Estimated due to matrix interference

TABLE 3
DZUS FASTENERS SITE (1-52-033)
JUNE 2006 THROUGH MAY 2011 SAMPLING EVENTS
SUMMARY OF TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-13B	MW-13B	MW-13B	MW-13B	MW-13B	MW-13B
Sample ID	Class GA	MW-13B	DMW-13B	DMW-13B	DMW-13B	DMW-13B	DMW-13B
Laboratory ID	Ground	E0773-14A	F1193-13A	G2114-13	J0429-16A	K0942-19	K0942-20
Sample Date	Water	6/8/06	8/22/07	11/12/08	3/10/10	5/25/11	5/25/11
Filtered/Unfiltered	Criteria	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Filtered
		conc. Q	conc. Q				
Aluminum	NC	330	133 B	ND	114 BE	106 B	ND
Antimony	3	ND	ND	ND	ND	ND	ND
Arsenic	25	ND	ND	ND	ND	ND	ND
Barium	1,000	54.3 B	29 B	33.4 B	21.5 B	14.4 B	12.6 B
Beryllium	3	ND	ND	ND	ND	ND	ND
Cadmium	5	15	9.8	2.3 B	4.2 B	2.2 B	ND
Calcium	NC	10,700	9,840	11,700	8,880	10,900	10,900
Chromium	50	27.8	27.2	22.3	17.8 B	11.7 B	10.7 B
Cobalt	NC	3.9 B	1.9 BE	ND	ND	ND	ND
Copper	200	19.3 B	13.8 B	ND	ND	6.5 B	ND
Iron	300	614	404	106 B	286 N	469	ND
Lead	25	ND	7.7 B	3.1 B	ND	ND	ND
Magnesium	35,000	1,710	1,600	1,910	1,350	1,560	1,530
Manganese	300	621	426	153	243	148	ND
Mercury	0.7	ND	ND	ND	ND	ND	ND
Nickel	100	9.8 B	4.2 B	ND	1.3 B	1.5 B	ND
Potassium	NC	2,410	1,820	2,100	1,570	1,910 E	1,680 E
Selenium	10	ND	6.2 B	ND	ND	ND	ND
Silver	50	ND	2.3 B	ND	ND	ND	ND
Sodium	20,000	7,880	6,710	9,280	8,060	6,720	6,880
Thallium	0.5	ND	ND	ND	ND	ND	ND
Vanadium	NC	1.3 B	0.96 B	ND	0.54 B	ND	ND
Zinc	2,000	45.9 B	33.2 B	24.3 B	24.3 B	32.7 B	32.5 B

NC - No Criteria NA - Not analyzed ND - Not Detected

BOLD/Italics - exceeds criterion

 $\ensuremath{\mathsf{B}}$ - Estimated value (greater than MDL but less than RL)

N - Matrix spike recovery falls outside of the control limit

E - Estimated due to matrix interference

TABLE 3
DZUS FASTENERS SITE (1-52-033)
JUNE 2006 THROUGH MAY 2011 SAMPLING EVENTS
SUMMARY OF TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-15A	MW-15A	MW-15A	MW-15A	MW-15A	MW-15A
Sample ID	Class GA	MW-15A	DMW-15A	DMW-15A	DMW-15A	DMW-15A	DMW-15A
Laboratory ID	Ground	E0773-03A	F1193-15A	G2114-08	J0429-17A	K0942-21	K0942-22
Sample Date	Water	6/7/06	8/22/07	11/12/08	3/9/10	5/25/11	5/25/11
Filtered/Unfiltered	Criteria	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Filtered
		conc. Q	conc. Q				
Aluminum	NC	773	ND	ND	335 E	ND	ND
Antimony	3	ND	ND	ND	ND	ND	ND
Arsenic	25	ND	ND	ND	ND	ND	ND
Barium	1,000	53.7 B	15.5 B	20.1 B	30.8 B	23.1 B	16.4 B
Beryllium	3	ND	ND	ND	0.074 B	ND	ND
Cadmium	5	28.8	29.1	33.9	62.3	63	12.2
Calcium	NC	18,900	13,700	12,100	14,800	16,300	16,600
Chromium	50	3 B	0.45 B	ND	4.6 B	1.3 B	ND
Cobalt	NC	3.2 B	1.3 BE	ND	0.9 B	ND	ND
Copper	200	38	4.8 B	ND	8.4 B	9.8 B	ND
Iron	300	2,320	158 B	ND	1,000 N	164 B	ND
Lead	25	9.9 B	1.7 B	ND	5.2 B	ND	ND
Magnesium	35,000	3,170	2,240	1,890	2,780	2,410	2,380
Manganese	300	370	929	895	2,850	1,510	56
Mercury	0.7	ND	ND	ND	ND	ND	ND
Nickel	100	7.1 B	0.85 B	ND	3.6 B	1.7 B	ND
Potassium	NC	2,090	1,960	1,610	2,140	2,290 E	2,290 E
Selenium	10	ND	ND	ND	ND	ND	ND
Silver	50	ND	3.4 B	ND	ND	ND	ND
Sodium	20,000	18,000	13,300	9,040	17,100	19,500	19,800
Thallium	0.5	1.9 B	ND	ND	7.3 B	ND	ND
Vanadium	NC	2.6 B	ND	ND	0.69 B	ND	ND
Zinc	2,000	155	18.8 B	24.3 B	33.5 B	31.7 B	25.9 B

NC - No Criteria NA - Not analyzed ND - Not Detected

BOLD/Italics - exceeds criterion

B - Estimated value (greater than MDL but less than RL)

N - Matrix spike recovery falls outside of the control limit

E - Estimated due to matrix interference

TABLE 3
DZUS FASTENERS SITE (1-52-033)
JUNE 2006 THROUGH MAY 2011 SAMPLING EVENTS
SUMMARY OF TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-15B	MW-15B	MW-15B	MW-15B	MW-15B	MW-15B
Sample ID	Class GA	MW-15B	DMW-15B	DMW-15B	DMW-15B	DMW-15B	DMW-15B
Laboratory ID	Ground	E0773-04A	F1193-10A	G2114-07	Inaccessible	K0942-23	K0942-24
Sample Date	Water	6/7/06	8/22/07	11/12/08	3/10/10	5/25/11	5/25/11
Filtered/Unfiltered	Criteria	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Filtered
		conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Aluminum	NC	224	58.6 B	ND	NA	ND	ND
Antimony	3	ND	ND	ND	NA	ND	ND
Arsenic	25	1.7 B	ND	ND	NA	5.5 B	4.8 B
Barium	1,000	83.6 B	40.6 B	45 B	NA	34.6 B	34.4 B
Beryllium	3	ND	ND	0.19 B	NA	ND	ND
Cadmium	5	3.6 B	0.54 B	0.29 B	NA	ND	ND
Calcium	NC	16,400	13,700	13,700	NA	12,000	11,900
Chromium	50	2.1 B	0.56 B	ND	NA	ND	ND
Cobalt	NC	5.5 B	2.7 BE	1.9 B	NA	1.4 B	1.2 B
Copper	200	20.4 B	2.5 B	ND	NA	ND	ND
Iron	300	4,780	1,320	875	NA	1,410	1,130
Lead	25	3.3 B	ND	3.6 B	NA	ND	ND
Magnesium	35,000	5,930	5,290	5,240	NA	4,860	4,920
Manganese	300	239	228	267	NA	182	182
Mercury	0.7	ND	ND	ND	NA	ND	ND
Nickel	100	11.5 B	1.4 B	2.2 B	NA	1.9 B	2 B
Potassium	NC	2,450	1,500	1,980	NA	1,890 E	1,860 E
Selenium	10	ND	ND	ND	NA	ND	ND
Silver	50	ND	2.5 B	1 B	NA	ND	ND
Sodium	20,000	46,600	45,200	43,900	NA	40,600	40,600
Thallium	0.5	3 B	ND	ND	NA	ND	ND
Vanadium	NC	0.72 B	ND	ND	NA	ND	ND
Zinc	2,000	129	16.8 B	38.9 B	NA	37.3 B	33.7 B

NC - No Criteria NA - Not analyzed ND - Not Detected

BOLD/Italics - exceeds criterion

B - Estimated value (greater than MDL but less than RL)

N - Matrix spike recovery falls outside of the control limit

E - Estimated due to matrix interference

TABLE 3
DZUS FASTENERS SITE (1-52-033)
JUNE 2006 THROUGH MAY 2011 SAMPLING EVENTS
SUMMARY OF TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-18	MW-18	MW-18	MW-18	MW-18	MW-18
Sample ID	Class GA	MW-18	DMW-18	DMW-18	DMW-18	DMW-18	DMW-18
Laboratory ID	Ground	E0773-06A	F1193-16A	G2114-06	J0429-18A	K0942-25	K0942-26
Sample Date	Water	6/8/06	8/23/07	11/11/08	3/9/10	5/25/11	5/25/11
Filtered/Unfiltered	Criteria	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Filtered
		conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Aluminum	NC	1,430	829	88.1 B	2,270	3,280	ND
Antimony	3	ND	ND	5.1 B	12.2 B	ND	ND
Arsenic	25	ND	ND U	ND	5.9 B	7 B	ND
Barium	1,000	168 B	71.3 B	166 B	283	109 B	13.4 B
Beryllium	3	ND	ND	ND	0.31 B	0.29 B	ND
Cadmium	5	3 B	1.2 B	9.8	18.1	1.3 B	ND
Calcium	NC	13,900	9,790	12,600	27,000	19,000	18,400
Chromium	50	2.2 B	0.63 B	ND	5 B	3.9 B	ND
Cobalt	NC	7.3 B	5.5 BE	2 B	11.6 B	9.2 B	ND
Copper	200	17.7 B	3.5 B	11.1 B	112	12.2 B	ND
Iron	300	1,150	1,320	114 B	4,620	2,890	ND
Lead	25	ND	1.9 B	ND	19	ND	ND
Magnesium	35,000	2,340	1,550	2,440	4,130	3,300	3,070
Manganese	300	6,270	4,490	2,870	10,100 *	3,450	ND
Mercury	0.7	ND	ND	ND	ND	ND	ND
Nickel	100	17.5 B	13 B	29.3 B	48 BE	15.7 B	ND
Potassium	NC	1,520	1,180	1,540	4,120 E	2,050 E	1,860 E
Selenium	10	ND	ND	ND	16.4 B	ND	ND
Silver	50	ND	1.5 B	ND	ND	ND	ND
Sodium	20,000	7,870	6,020	12,100	10,600	16,800	17,300
Thallium	0.5	26.5	ND	ND	64.5	ND	ND
Vanadium	NC	2.6 B	1.4 B	ND	5 B	3.9 B	ND
Zinc	2,000	235	89	265	366	192	22.2 B

NC - No Criteria NA - Not analyzed ND - Not Detected

BOLD/Italics - exceeds criterion

B - Estimated value (greater than MDL but less than RL)

N - Matrix spike recovery falls outside of the control limit

E - Estimated due to matrix interference

TABLE 3
DZUS FASTENERS SITE (1-52-033)
JUNE 2006 THROUGH MAY 2011 SAMPLING EVENTS
SUMMARY OF TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-22A	MW-22A	MW-22A	MW-22A	MW-22A	MW-22A
Sample ID	Class GA	MW-22A	DMW-22A	DMW-22A	DMW-22A	DMW-22A	DMW-22A
Laboratory ID	Ground	E0773-11A	F1193-09A	G2114-09	J0429-19A	K0942-11	K0942-12
Sample Date	Water	6/7/06	8/22/07	11/12/08	3/9/10	5/25/11	5/25/11
Filtered/Unfiltered	Criteria	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Filtered
		conc. Q	conc. Q				
Aluminum	NC	4,320	2,870	2,620	1,060	159 B	ND
Antimony	3	1.7 B	5.2 B	ND	13 B	ND	ND
Arsenic	25	16 B	3.8 B	7.2 B	15.4 B	7.5 B	4.5 B
Barium	1,000	167 B	76.9 B	69.6 B	109 B	106 B	111 B
Beryllium	3	0.15 B	ND	0.21 B	0.19 B	ND	ND
Cadmium	5	38.9	22.1	13.5	13.7	6.8	ND
Calcium	NC	52,100	37,500	55,700	104,000	114,000	96,400
Chromium	50	18 B	12.8 B	13 B	8.8 B	2.8 B	0.76 B
Cobalt	NC	2.2 B	5.2 BE	ND	1.4 B	ND	ND
Copper	200	32.3	24 B	19.3 B	21.5 B	7.9 B	ND
Iron	300	70,400	22,400	22,000	61,100	16,700	2,260
Lead	25	8.6 B	13.1	11.3	12.4	ND	ND
Magnesium	35,000	8,300	5,580	7,860	13,800	15,600	13,100
Manganese	300	1,280	1,190	1,030	912 *	683	780
Mercury	0.7	ND	ND	ND	0.094 B	ND	ND
Nickel	100	6 B	3.7 B	2.6 B	4.7 BE	2.4 B	1.4 B
Potassium	NC	4,560	3,530	3,980	3,430 E	4,520 E	5,120 E
Selenium	10	8.7 B	ND	ND	24.3 B	ND	ND
Silver	50	ND	ND	ND	ND	ND	ND
Sodium	20,000	95,200	69,400	39,900	57,800	100,000	134,000
Thallium	0.5	ND	2.8 B	ND	ND	ND	ND
Vanadium	NC	17.4 B	9.2 B	7 B	6.3 B	3.1 B	ND
Zinc	2,000	1,650	1,170	714	1,360	1,000	546

NC - No Criteria NA - Not analyzed ND - Not Detected

BOLD/Italics - exceeds criterion

B - Estimated value (greater than MDL but less than RL) N - Matrix spike recovery falls outside of the control limit

E - Estimated due to matrix interference

TABLE 3
DZUS FASTENERS SITE (1-52-033)
JUNE 2006 THROUGH MAY 2011 SAMPLING EVENTS
SUMMARY OF TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-22B	MW-22B	MW-22B	MW-22B	MW-22B	MW-22B
Sample ID	Class GA	MW-22B	DMW-22B	DMW-22B	DMW-22B	DMW-22B	DMW-22B
Laboratory ID	Ground	E0773-12A	F1193-08A	G2114-11	J0429-20A	k0942-13	k0942-13
Sample Date	Water	6/7/06	8/22/07	11/12/08	3/9/10	5/25/11	5/25/11
Filtered/Unfiltered	Criteria	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Filtered
		conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Aluminum	NC	763 B	151 B	ND	56.3 B	ND	ND
Antimony	3	ND	4.7 B	ND	8.7 B	ND	ND
Arsenic	25	ND	ND	ND	ND	ND	ND
Barium	1,000	76.6 B	48.2 B	41.3 B	57.6 B	43.3 B	35.6 B
Beryllium	3	ND	ND	ND	0.039 B	ND	ND
Cadmium	5	29 B	4.4 B	1.2 B	1.7 B	ND	ND
Calcium	NC	12,800	20,400	27,200	21,400	19,500	19,700
Chromium	50	7.9 B	1.5 B	ND	1.6 B	0.66 B	ND
Cobalt	NC	17.4 B	3.9 BE	1.5 B	1 B	ND	ND
Copper	200	118 B	4 B	ND	ND	ND	ND
Iron	300	4,600	1,120	518	358	164 B	ND
Lead	25	8.6 B	3 B	2.4 B	3.3 B	ND	ND
Magnesium	35,000	2,660 B	3,130	5,090	3,510	3,230	3,300
Manganese	300	2,310	2,440	775	940 *	589	342
Mercury	0.7	ND	ND	ND	ND	ND	ND
Nickel	100	28 B	2.7 B	6.5 B	2 BE	0.85 B	ND
Potassium	NC	3,000 B	2,500	1,910	4,220 E	4,740 E	4,260 E
Selenium	10	ND	ND	ND	19 B	ND	ND
Silver	50	ND	4.2 B	ND	ND	ND	ND
Sodium	20,000	8,170 B	17,100	11,300	14,400	12,700	13,600
Thallium	0.5	20.1 B	3.5 B	ND	ND	ND	ND
Vanadium	NC	ND	0.49 B	ND	ND	ND	ND
Zinc	2,000	194 B	39.4 B	29.8 B	34.6 B	20.1 B	17.6 B

NC - No Criteria NA - Not analyzed ND - Not Detected

BOLD/Italics - exceeds criterion

B - Estimated value (greater than MDL but less than RL) N - Matrix spike recovery falls outside of the control limit

E - Estimated due to matrix interference

TABLE 3
DZUS FASTENERS SITE (1-52-033)
JUNE 2006 THROUGH MAY 2011 SAMPLING EVENTS
SUMMARY OF TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-23A	MW-23A	MW-23A	MW-23A	MW-23A	MW-23A
Sample ID	Class GA	MW-23A	DMW-23A	DMW-23A	DMW-23A	DMW-23A	DMW-23A
Laboratory ID	Ground	E0773-01A	F1193-12A	G2114-14	J0429-21A	K0942-15	K0942-16
Sample Date	Water	6/7/06	8/22/07	11/12/08	3'10/10	5/25/11	5/25/11
Filtered/Unfiltered	Criteria	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Filtered
		conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Aluminum	NC	941	2,440	3,200	3,790	5,060	ND
Antimony	3	1.8 B	5.8 B	ND	9.5 B	ND	ND
Arsenic	25	2 B	4.1 B	5.8 B	7.9 B	7.4 B	ND
Barium	1,000	87.5 B	51.2 B	40.1 B	47.8 B	47.4 B	34.6 B
Beryllium	3	ND	ND	0.29 B	0.23 B	ND	ND
Cadmium	5	110	702	1,080	704	924	10
Calcium	NC	34,200	40,900	31,000	38,600	29,300	27,800
Chromium	50	3.6 B	4.9 B	3.6 B	6.4 B	6.4 B	0.97 B
Cobalt	NC	3.2 B	6.1 BE	ND	0.76 B	ND	ND
Copper	200	33.2	35.9	47.6	137	190	ND
Iron	300	10,300	29,700	13,100	11,500	15,200	2,030
Lead	25	ND	6.6 B	9.5 B	11.2	5.6 B	ND
Magnesium	35,000	6,660	6,280	9,020	8,010	5,160	5,100
Manganese	300	1,100	612	1,390	1,410 *	1,600	1,480
Mercury	0.7	0.065 B	ND	ND	0.12 B	0.035 B	ND
Nickel	100	9.3 B	7.1 B	2.2 B	6.3 BE	3.7 B	1.2 B
Potassium	NC	7,070	5,200	6,780	6,930 E	6,270 E	6,420 E
Selenium	10	1.3 B	6.1 B	ND	13.5 B	ND	ND
Silver	50	0.92 B	ND	ND	ND	ND	ND
Sodium	20,000	60,200	32,400	37,800	64,600	67,900	70,800
Thallium	0.5	9.3 B	ND	ND	11.3 B	ND	ND
Vanadium	NC	5.5 B	12.6 B	20.5 B	11.4 B	16.4 B	ND
Zinc	2,000	181	26.9 B	42.7 B	48.3 B	70.5	15.6 B

NC - No Criteria NA - Not analyzed ND - Not Detected

BOLD/Italics - exceeds criterion

B - Estimated value (greater than MDL but less than RL)

N - Matrix spike recovery falls outside of the control limit

E - Estimated due to matrix interference

TABLE 3
DZUS FASTENERS SITE (1-52-033)
JUNE 2006 THROUGH MAY 2011 SAMPLING EVENTS
SUMMARY OF TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-23B	MW-23B	MW-23B	MW-23B	MW-23B	MW-23B
Sample ID	Class GA	MW-23B	DMW-23B	DMW-23B	DMW-23B	DMW-23B	DMW-23B
Laboratory ID	Ground	E0773-02A	F1193-11A	G2114-15	J0429-22A	K0942-27	K0942-28
Sample Date	Water	6/7/06	8/22/07	11/12/08	3/10/10	5/25/11	5/25/11
Filtered/Unfiltered	Criteria	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Filtered
		conc. Q	conc. Q				
Aluminum	NC	2,450	632	406	2,820	1,810	ND
Antimony	3	3.2 B	ND	ND	6.2 B	ND	ND
Arsenic	25	4.1 B	ND	ND	6.7 B	ND	ND
Barium	1,000	215	86.4 B	64.6 B	77.4 B	64.8 B	150 B
Beryllium	3	0.21 B	ND	0.13 B	0.3 B	ND	ND
Cadmium	5	320	60	42.2	43.8	40.1	5.8
Calcium	NC	21,500	25,100	15,700	24,400	24,800	21,700
Chromium	50	74.9	13.9 B	4.3 B	61.6	12.6 B	8.5 B
Cobalt	NC	4.8 B	2.4 BE	ND	3.5 B	1.7 B	0.91 B
Copper	200	94.6	19.8 B	24.6 B	54.8	25.6 B	13.9 B
Iron	300	8,220	2,140	1,270	7,870	5,200	36,100
Lead	25	35.7	10.3	17.7	43.9	22.6	ND
Magnesium	35,000	1,890	1,290	1,590	2,730	4,150	2,460
Manganese	300	<i>548</i>	508	52.1	398 *	126	169
Mercury	0.7	0.11 B	ND	ND	0.11 B	ND	ND
Nickel	100	68.8	16.7 B	20.5 B	23.2 BE	14.8 B	10 B
Potassium	NC	2,400	1,970	1,660	1,650 E	2,450 E	2,110 E
Selenium	10	ND	8.6 B	ND	19.3 B	ND	ND
Silver	50	ND	5 B	0.81 B	ND	ND	ND
Sodium	20,000	2,390	3,870	2,200	84,400	18,900	18,500
Thallium	0.5	3.1 B	ND	ND	6.1 B	ND	ND
Vanadium	NC	17.7 B	9 B	5.9 B	12.1 B	12.9 B	ND
Zinc	2,000	417	145	198	376	410	47 B

NC - No Criteria NA - Not analyzed ND - Not Detected

BOLD/Italics - exceeds criterion

B - Estimated value (greater than MDL but less than RL)

N - Matrix spike recovery falls outside of the control limit

E - Estimated due to matrix interference

TABLE 4
DZUS FASTENERS SITE (1-52-033)
MAY 2011 SAMPLING EVENT
TOTAL VERSUS DISSOLVED METALS CONCENTRATIONS IN GROUNDWATER

Sample Location	NYSDEC	MW-2	MW-2	MW-2	MW-3	MW-3	MW-3	MW-9	MW-9	MW-9
Sample ID	Class GA	DMW-2	DMW-2	DMW-2	DMW-3	DMW-3	DMW-3	DMW-9	DMW-9	DMW-9
Laboratory ID	Ground	K0942-01	K0942-02	K0942-02	K0942-03	K0942-04	K0942-04	K0942-05	K0942-06	K0942-06
Sample Date	Water	5/25/11	5/25/11	5/25/11	5/25/11	5/25/11	5/25/11	5/25/11	5/25/11	5/25/11
Filtered/Unfiltered	Criteria	Unfiltered	Filtered	Percent	Unfiltered	Filtered	Percent	Unfiltered	Filtered	Percent
Metal		conc. Q	conc. Q	Dissolved	conc. Q	conc. Q	Dissolved	conc. Q	conc. Q	Dissolved
Aluminum	NC	1,500	0	0.0%	8,520	0	0.0%	2,850	0	0.0%
Antimony	3	ND	ND	NC	ND	ND	NC	ND	ND	NC
Arsenic	25	12.4 B	5.0 B	40.3%	7.1 B	6.3 B	88.7%	11.5 B	4.9 B	42.6%
Barium	1,000	51.1 B	34.2 B	66.9%	59.7 B	20.3 B	34.0%	71 B	49.2 B	69.3%
Beryllium	3	0.33 B	0	0.0%	0.70 B	0	0.0%	0.42 B	0	0.0%
Cadmium	5	ND	ND	NC	73.5	13.1	17.8%	18.7	9.5	50.8%
Calcium	NC	38,700	34,500	89.1%	11,000	9,750	88.6%	29,000	25,600	88.3%
Chromium	50	2.2 B	0	0.0%	11.4 B	0	0.0%	85.5	2.9 B	3.4%
Cobalt	NC	11.4 B	7.6 B	66.7%	4.7 B	0	0.0%	2.5 B	0	0.0%
Copper	200	7.9 B	0	0.0%	9.7 B	0	0.0%	41.1	0	0.0%
Iron	300	88,900	17,600	19.8%	7,430	0	0.0%	11,600	1,760	15.2%
Lead	25	7.5 B	0	0.0%	7.5 B	0	0.0%	9.9 B	0	0.0%
Magnesium	35,000	3,690	3,510	95.1%	2,890	1,970	68.2%	4,110	3,900	94.9%
Manganese	300	882	655	74.3%	980	0	0.0%	149	15 B	10.3%
Mercury	0.7	ND	ND	NC	0.057 B	0	0.0%	ND	ND	NC
Nickel	100	6.5 B	2.8 B	43.1%	5.0 B	0	0.0%	6.5 B	2.4 B	36.9%
Potassium	NC	2,470	2,410	97.6%	2,170	1,790	82.5%	6,310	5,210	82.6%
Selenium	10	ND	ND	NC	ND	ND	NC	ND	ND	NC
Silver	50	ND	ND	NC	ND	ND	NC	ND	ND	NC
Sodium	20,000	25,200	24,100	95.6%	20,400	19,400	95.1%	72,800	68,700	94.4%
Thallium	0.5	ND	ND	NC	ND	ND	NC	ND	ND	NC
Vanadium	NC	2.5 B	0	0.0%	9.6 B	0	0.0%	12.8 B	0	0.0%
Zinc	2,000	111	30.5 B	27.5%	34 B	18.9 B	55.6%	90.9	36.6 B	40.3%

Notes: ND - Not Detected

B - Estimated value (greater than MDL but less than RL) NC - both filtered and unfiltered result was "not detected"

TABLE 4
DZUS FASTENERS SITE (1-52-033)
MAY 2011 SAMPLING EVENT
TOTAL VERSUS DISSOLVED METALS CONCENTRATIONS IN GROUNDWATER

Sample Location	NYSDEC	MW-9B	MW-9B	MW-9B	MW-13A	MW-13A	MW-13A	MW-13B	MW-13B	MW-13B
Sample ID	Class GA	DMW-9B	DMW-9B	DMW-9B	DMW-13A	DMW-13A	DMW-13A	DMW-13B	DMW-13B	DMW-13B
Laboratory ID	Ground	K0942-07	K0942-08	K0942-08	K0942-17	K0942-18	K0942-18	K0942-19	K0942-20	K0942-20
Sample Date	Water	5/25/11	5/25/11	5/25/11	5/25/11	5/25/11	5/25/11	5/25/11	5/25/11	5/25/11
Filtered/Unfiltered	Criteria	Unfiltered	Filtered	Percent	Unfiltered	Filtered	Percent	Unfiltered	Filtered	Percent
Metal		conc. Q	conc. Q	Dissolved	conc.	conc.	Dissolved	conc. Q	conc. Q	Dissolved
Aluminum	NC	99 B	0	0.0%	2,100	0	0.0%	106 B	0	0.0%
Antimony	3	ND	ND	NC	ND	ND	NC	ND	ND	NC
Arsenic	25	ND	6.2 B		13.1 B	0	0.0%	ND	ND	NC
Barium	1,000	14.4 B	12.8 B	88.9%	886	20.5 B	2.3%	14.4 B	12.6 B	87.5%
Beryllium	3	ND	ND	NC	ND	ND	NC	ND	ND	NC
Cadmium	5	ND	ND	NC	373	10.3	2.8%	2.2 B	0	NC
Calcium	NC	8,580	8,480	98.8%	27,500	24,900	90.5%	10,900	10,900	100.0%
Chromium	50	1.4 B	0	0.0%	22.1	0	0.0%	11.7 B	10.7 B	91.5%
Cobalt	NC	ND	ND	NC	268	1.1 B	0.4%	ND	ND	NC
Copper	200	ND	ND	NC	20.8 B	0	0.0%	6.5 B	0	0.0%
Iron	300	528	32 B	6.0%	2,310	0	0.0%	469	0	0.0%
Lead	25	ND	ND	0.0%	ND	ND	NC	ND	ND	NC
Magnesium	35,000	1,490	1,430	96.0%	3,820	3,340	87.4%	1,560	1,530	98.1%
Manganese	300	92	0	0.0%	61,600	1,720	2.8%	148	0	0.0%
Mercury	0.7	ND	ND	NC	ND	ND	NC	ND	ND	NC
Nickel	100	1.8 B	0.88 B	48.9%	3.3 B	0	0.0%	1.5 B	0	0.0%
Potassium	NC	1,910	1,670	87.4%	6,700 E	5,990 E	89.4%	1,910 E	1,680 E	88.0%
Selenium	10	ND	ND	NC	ND	ND	NC	ND	ND	NC
Silver	50	ND	ND	NC	12.1 B	0	0.0%	ND	ND	NC
Sodium	20,000	6,730	6,650	98.8%	38,400	37,500	97.7%	6,720	6,880	102.4%
Thallium	0.5	ND	ND	NC	ND	ND	NC	ND	ND	NC
Vanadium	NC	ND	ND	NC	6.4 B	0	0.0%	ND	ND	NC
Zinc	2,000	27.1 B	25.4 B	93.7%	36.1 B	18 B	49.9%	32.7 B	32.5 B	99.4%

Notes: ND - Not Detected

B - Estimated value (greater than MDL but less than RL) NC - both filtered and unfiltered result was "not detected"

TABLE 4
DZUS FASTENERS SITE (1-52-033)
MAY 2011 SAMPLING EVENT
TOTAL VERSUS DISSOLVED METALS CONCENTRATIONS IN GROUNDWATER

Sample Location	NYSDEC	MW-15A	MW-15A	MW-15A	MW-15B	MW-15B	MW-15B	MW-18	MW-18	MW-18
Sample ID	Class GA	DMW-15A	DMW-15A	DMW-15A	DMW-15B	DMW-15B	DMW-15B	DMW-18	DMW-18	DMW-18
Laboratory ID	Ground	K0942-21	K0942-22	K0942-22	K0942-23	K0942-24	K0942-24	K0942-25	K0942-26	K0942-26
Sample Date	Water	5/25/11	5/25/11	5/25/11	5/25/11	5/25/11	5/25/11	5/25/11	5/25/11	5/25/11
Filtered/Unfiltered	Criteria	Unfiltered	Filtered	Percent	Unfiltered	Filtered	Percent	Unfiltered	Filtered	Percent
Metal		conc. Q	conc. Q	Dissolved	conc. Q	conc. Q	Dissolved	conc. Q	conc. Q	Dissolved
Aluminum	NC	ND	ND	NC	ND	ND	NC	3,280	0	0.0%
Antimony	3	ND	ND	NC	ND	ND	NC	ND	ND	NC
Arsenic	25	ND	ND	NC	5.5 B	4.8 B	87.3%	7.0 B	0	0.0%
Barium	1,000	23.1 B	16.4 B	71.0%	34.6 B	34.4 B	99.4%	109 B	13.4 B	12.3%
Beryllium	3	ND	ND	MC	ND	ND	NC	0.29 B	0	0.0%
Cadmium	5	63	12.2	19.4%	ND	ND	NC	1.3 B	0	0.0%
Calcium	NC	16,300	16,600	101.8%	12,000	11,900	99.2%	19,000	18,400	96.8%
Chromium	50	1.3 B	0	0.0%	ND	ND	NC	3.9 B	0	0.0%
Cobalt	NC	ND	ND	NC	1.4 B	1.2 B	85.7%	9.2 B	0	0.0%
Copper	200	9.8 B	0	0.0%	ND	ND	NC	12.2 B	0	0.0%
Iron	300	164 B	0	0.0%	1,410	1,130	80.1%	2,890	0	0.0%
Lead	25	ND	ND	NC	ND	ND	NC	ND	ND	NC
Magnesium	35,000	2,410	2,380	98.8%	4,860	4,920	101.2%	3,300	3,070	93.0%
Manganese	300	1,510	56	3.7%	182	182	100.0%	3,450	0	0.0%
Mercury	0.7	ND	ND	NC	ND	ND	NC	ND	ND	NC
Nickel	100	1.7 B	0	0.0%	1.9 B	2 B	105.3%	15.7 B	0	0.0%
Potassium	NC	2,290 E	2,290 E	100.0%	1,890 E	1,860 E	98.4%	2,050 E	1,860 E	90.7%
Selenium	10	ND	ND	NC	ND	ND	NC	ND	ND	NC
Silver	50	ND	ND	NC	ND	ND	NC	ND	ND	NC
Sodium	20,000	19,500	19,800	101.5%	40,600	40,600	100.0%	16,800	17,300	103.0%
Thallium	0.5	ND	ND	NC	ND	ND	NC	ND	ND	NC
Vanadium	NC	ND	ND	NC	ND	ND	NC	3.9 B	0	0.0%
Zinc	2,000	31.7 B	25.9 B	81.7%	37.3 B	33.7 B	90.3%	192	22.2 B	11.6%

Notes: ND - Not Detected

B - Estimated value (greater than MDL but less than RL) NC - both filtered and unfiltered result was "not detected"

TABLE 4 DZUS FASTENERS SITE (1-52-033) MAY 2011 SAMPLING EVENT TOTAL VERSUS DISSOLVED METALS CONCENTRATIONS IN GROUNDWATER

Sample Location	NYSDEC	MW-22A	MW-22A	MW-22A	MW-22B	MW-22B	MW-22B
Sample ID	Class GA	DMW-22A	DMW-22A	DMW-22A	DMW-22B	DMW-22B	DMW-22B
Laboratory ID	Ground	K0942-11	K0942-12	K0942-12	k0942-13	k0942-13	k0942-13
Sample Date	Water	5/25/11	5/25/11	5/25/11	5/25/11	5/25/11	5/25/11
Filtered/Unfiltered	Criteria	Unfiltered	Filtered	Percent	Unfiltered	Filtered	Percent
Metal		conc. Q	conc. Q	Dissolved	conc. Q	conc. Q	Dissolved
Aluminum	NC	159 B	0	0.0%	ND	ND	NC
Antimony	3	ND	ND	NC	ND	ND	NC
Arsenic	25	7.5 B	4.5 B	60.0%	ND	ND	NC
Barium	1,000	106 B	111 B	104.7%	43.3 B	35.6 B	82.2%
Beryllium	3	ND	ND	NC	ND	ND	NC
Cadmium	5	6.8	0	NC	ND	ND	NC
Calcium	NC	114,000	96,400	84.6%	19,500	19,700	101.0%
Chromium	50	2.8 B	0.76 B	27.1%	0.66 B	0	0.0%
Cobalt	NC	ND	ND	NC	ND	ND	NC
Copper	200	7.9 B	0	0.0%	ND	ND	NC
Iron	300	16,700	2,260	13.5%	164 B	0	0.0%
Lead	25	ND	ND	0.0%	ND	ND	0.0%
Magnesium	35,000	15,600	13,100	84.0%	3,230	3,300	102.2%
Manganese	300	683	780	114.2%	589	342	58.1%
Mercury	0.7	ND	ND	NC	ND	ND	NC
Nickel	100	2.4 B	1.4 B	58.3%	0.85 B	0	0.0%
Potassium	NC	4,520 E	5,120 E	113.3%	4,740 E	4,260 E	89.9%
Selenium	10	ND	ND	NC	ND	ND	NC
Silver	50	ND	ND	NC	ND	ND	NC
Sodium	20,000	100,000	134,000	134.0%	12,700	13,600	107.1%
Thallium	0.5	ND	ND	NC	ND	ND	NC
Vanadium	NC	3.1 B	0	0.0%	ND	ND	NC
Zinc	2,000	1000	546	54.6%	20.1 B	17.6 B	87.6%

Notes: ND - Not Detected

B - Estimated value (greater than MDL but less than RL) NC - both filtered and unfiltered result was "not detected"

TABLE 4 DZUS FASTENERS SITE (1-52-033) MAY 2011 SAMPLING EVENT TOTAL VERSUS DISSOLVED METALS CONCENTRATIONS IN GROUNDWATER

Sample Location	NYSDEC	MW-23A	MW-23A	MW-23A	MW-23B	MW-23B	MW-23B
Sample ID	Class GA	DMW-23A	DMW-23A	DMW-23A	DMW-23B	DMW-23B	DMW-23B
Laboratory ID	Ground	K0942-15	K0942-16	K0942-16	K0942-27	K0942-28	K0942-28
Sample Date	Water	5/25/11	5/25/11	5/25/11	5/25/11	5/25/11	5/25/11
Filtered/Unfiltered	Criteria	Unfiltered	Filtered	Percent	Unfiltered	Filtered	Percent
Metal		conc. Q	conc. Q	Dissolved	conc. Q	conc. Q	Dissolved
Aluminum	NC	5,060	0	0.0%	1,810	0	0.0%
Antimony	3	ND	ND	NC	ND	ND	NC
Arsenic	25	7.4 B	0	0.0%	ND	ND	NC
Barium	1,000	47.4 B	34.6 B	73.0%	64.8 B	150 B	231.5%
Beryllium	3	ND	ND	NC	ND	ND	NC
Cadmium	5	924	9.5	1.0%	40.1	5.8	14.5%
Calcium	NC	29,300	27,800	94.9%	24,800	21,700	87.5%
Chromium	50	6.4 B	0.97 B	15.2%	12.6 B	8.5 B	67.5%
Cobalt	NC	ND	ND	NC	1.7 B	0.91 B	53.5%
Copper	200	190	ND	NC	25.6 B	13.9 B	54.3%
Iron	300	15,200	2,030	13.4%	5,200	36,100	694.2%
Lead	25	5.6 B	0	0.0%	22.6	0	0.0%
Magnesium	35,000	5,160	5,100	98.8%	4,150	2,460	59.3%
Manganese	300	1,600	1,480	92.5%	126	169	134.1%
Mercury	0.7	0.035 B	0	0.0%	ND	ND	NC
Nickel	100	3.7 B	1.2 B	32.4%	14.8 B	10 B	67.6%
Potassium	NC	6,270 E	6,420 E	102.4%	2,450 E	2,110 E	86.1%
Selenium	10	ND	ND	NC	ND	ND	NC
Silver	50	ND	ND	NC	ND	ND	NC
Sodium	20,000	67,900	70,800	104.3%	18,900	18,500	97.9%
Thallium	0.5	ND	ND	NC	ND	ND	NC
Vanadium	NC	16.4 B	0	0.0%	12.9 B	0	NC
Zinc	2,000	70.5	15.6 B	22.1%	410	47 B	11.5%

Notes: ND - Not Detected

B - Estimated value (greater than MDL but less than RL)

NC - both filtered and unfiltered result was "not detected"

TABLE 5 DZUS FASTENERS SITE (1-52-033) JUNE 2006 THROUGH MAY 2011 SAMPLING EVENTS SUMMARY OF TAL METALS IN WILLETTS CREEK AND LAKE CAPRI SURFACE WATER SAMPLES

Sample Location	NYSDEC	Lake	Lake	Lake	Lake	Lake	Lake	Lake	Lake	Lake	Lake
	Class A	Capri	Capri	Capri	Capri	Capri	Capri	Capri	Capri	Capri	Capri
Sample ID	Surface	SW-1	SW-1	SW-1	SW-1	SW-1	SW-2	SW-2	SW-2	SW-2	SW-2
Laboratory ID	Water	E0868-01A	F1193-20A	G2136-11	J0376-01A	K0911-08	E0868-03A	F1194-02A	G2136-09	J0376-02A	K0911-09
Sample Date	Criteria	6/21/06	8/23/07	11/14/08	3/4/10	5/22/11	6/21/06	8/23/07	11/14/08	3/4/10	5/22/11
		conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc.	conc. Q	conc. Q	conc. Q
Aluminum	NC	31.9 B	40.1 B	ND	29.6 B	ND	16.8 B	98.4 B	ND	33.2 B	ND
Antimony	3	ND	ND	6.0 B	ND	ND	ND	ND	ND	5.7 B	ND
Arsenic	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Barium	1,000	13.2 B	23.1 B	31.8 B	22.4 B	13.6 B	12.2 B	24.3 B	32.4 B	24.2 B	12.9 B
Beryllium	3	ND	ND	ND	ND	ND U	ND	ND	ND	ND	ND
Cadmium	5	1.1 B	2.3 B	1.5 B	2.6 B	1.6 B	1.0 B	2.1 B	2.0 B	2.8 B	1.7 B
Calcium	NC	15,100	14,100	14,300	15,300	13,900	14,900	13,300	14,300	16,100	13,900
Chromium	50	0.6 B	0.95 B	ND	0.52 B	1.3 B	0.52 B	1.2 B	ND	0.86 B	0.72 B
Cobalt	NC	0.94 B	1.4 BE	ND	0.76 B	0.77 B	0.92 B	1 B	ND	1 B	ND
Copper	200	8.9 B	3.1 B	ND	ND	ND	ND	4.4 B	ND	6.2 B	ND
Iron	300	691	738	598	387	416	649	819	675	478	508
Lead	50	ND	2.1 B	ND	ND	ND	ND	3.1 B	2.4 B	ND	ND
Magnesium	35,000	3,500	2,860	3,570	3,420	2,960	3,490	2,940	3,530	3,700	2,940
Manganese	300	1,050	862	1,610	996	1,000	1,010	819 E	1,560	968	1,080
Mercury	0.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel	100	1.3 B	0.6 B	ND	1.6 B	ND	1.1 B	0.81 B	ND	2.4 B	ND
Potassium	NC	2,000	1,930	2,250	2,070	2,040	1,990	1,990	2,320	2,080	1,990
Selenium	10	ND	6 B	ND	ND	ND	ND	ND	ND	ND	ND
Silver	50	1.8 B	2.8 B	0.98 B	ND	ND	1.6 B	3.1 B	ND	ND	ND
Sodium	20,000	18,500	15,800	19,000	22,500	18,700	18,100	16,200 E	19,500	22,000	18,600
Thallium	0.5	ND	ND	ND	ND	ND	ND	ND	ND	7.2 B	ND
Vanadium	NC	0.78 B	0.79 B	ND	2.6 B	ND	ND	0.88 B	1.1 B	3.3 B	ND
Zinc	2,000	22.4 B	22.8 B	22.3 B	38 B	22.3 B	15.6 B	27.4 B	21 B	34.5 B	20.3 B

Notes: All values in μg/L

NC - No Criteria ND - Not Detected

BOLD/Italics - exceeds criterion

B - Estimated value (greater than MDL but less than RL)

E - Estimated due to matrix interference

^{* -} Replicate RPDs were not within QC limits

TABLE 5 DZUS FASTENERS SITE (1-52-033) JUNE 2006 THROUGH MAY 2011 SAMPLING EVENTS SUMMARY OF TAL METALS IN WILLETTS CREEK AND LAKE CAPRI SURFACE WATER SAMPLES

Sample Location	NYSDEC	Lake	Lake	Lake	Lake	Lake	Lake	Lake	Lake	Lake	Lake
	Class A	Capri	Capri	Capri	Capri	Capri	Capri	Capri	Capri	Capri	Capri
Sample ID	Surface	SW-3	SW-3	SW-3	SW-3	SW-3	SW-4	SW-4	SW-4	SW-4	SW-4
Laboratory ID	Water	E0868-05A	F1194-04A	G2136-13	J0376-03A	K0911-10	E0868-07A	F1194-06A	G2136-15	J0376-04A	K0911-11
Sample Date	Criteria	6/21/06	8/23/07	11/14/08	3/4/10	5/22/11	6/21/06	8/23/07	11/14/08	3/4/10	5/22/11
		conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Aluminum	NC	69.5 B	37 U	ND	27 B	ND	ND	ND	ND	27.4 B	ND
Antimony	3	ND	ND	ND	7.2 B	ND	ND	ND	ND	ND	ND
Arsenic	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Barium	1,000	7.9 B	12.6 B	38.6 B	19.6 B	10.1 B	5.7 B	14 B	31.9 B	20.2 B	9.8 B
Beryllium	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	5	1.9 B	0.32 B	0.97 B	2.8 B	1.4 B	0.89 B	0.77 B	0.63 B	2.6 B	1.4 B
Calcium	NC	15,200	13,100	14,000	15,000	13,900	14,600	12,900	14,000	15,300	13,700
Chromium	50	0.58 B	0.7 B	ND	0.59 B	0.67 B	ND	0.88 B	ND	0.51 B	0.75 B
Cobalt	NC	0.72 B	1.0 B	ND	ND	ND	0.37 B	1.2 B	ND	ND	ND
Copper	200	ND	3.9 B	ND	ND	ND	11.7 B	4.9 B	ND	ND	ND
Iron	300	<i>788</i>	280	772	332	311	610	609	741	344	322
Lead	50	0.92 B	ND	ND	ND	ND	ND	2.2 B	ND	ND	ND
Magnesium	35,000	3,540	2,990	3,440	3,380	3,030	3,510	2,950	3,490	3,420	2,980
Manganese	300	882	73.9 E	1,790	911	990	786	135 E	1,630	943	918
Mercury	0.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel	100	0.96 B	ND	ND	1.3 B	ND	0.6 B	ND	ND	0.88 B	ND
Potassium	NC	2,000	2,020	2,290	2,000	2,000	1,950	2,040	2,310	1,980	1,960
Selenium	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver	50	1.3 B	3.4 B	0.64 B	ND	ND	ND	2.8 B	ND	ND	ND
Sodium	20,000	18,300	16,800 E	17,700	23,300	18,800	18,100	16,600 E	17,800	22,900	18,700
Thallium	0.5	ND	ND	ND	5.9 B	ND	ND	ND	ND	ND	ND
Vanadium	NC	0.7 B	0.42 B	ND	2.8 B	ND	ND	ND	ND	2 B	ND
Zinc	2,000	21.5 B	14 B	16.4 B	33.4 B	18.9 B	20.2 B	18 B	9.7 B	31.9 B	18.9 B

Notes: All values in μg/L

NC - No Criteria

ND - Not Detected

BOLD/Italics - exceeds criterion

B - Estimated value (greater than MDL but less than RL)

E - Estimated due to matrix interference

TABLE 5 DZUS FASTENERS SITE (1-52-033) JUNE 2006 THROUGH MAY 2011 SAMPLING EVENTS SUMMARY OF TAL METALS IN WILLETTS CREEK AND LAKE CAPRI SURFACE WATER SAMPLES

Sample Location	NYSDEC	Willetts	Willetts	Willetts	Willetts	Willetts	Willetts	Willetts	Willetts	Willetts	Willetts
	Class A	Creek	Creek	Creek	Creek	Creek	Creek	Creek	Creek	Creek	Creek
Sample ID	Surface	SW-5	SW-5	SW-5	SW-5	SW-5	SW-6	SW-6	SW-6	SW-6	SW-6
Laboratory ID	Water	E0868-09A	F1193-18A	G2114-20	J0376-05A	K0911-12	E0868-11A	F1194-08A	G2114-16	J0376-06	K0911-13
Sample Date	Criteria	6/21/06	8/23/07	11/12/08	3/4/10	5/22/11	6/21/06	8/23/07	11/12/08	3/4/10	5/22/11
		conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Aluminum	NC	15.3 B	ND	ND	79.3 B	305	40.5 B	ND	190 B	63.9 B	103 B
Antimony	3	1.5 B	4.4 B	ND	ND	ND	ND	8 B	ND	ND	ND
Arsenic	50	ND	ND	ND	5.2 B	ND	ND	ND	ND	ND	ND
Barium	1,000	36.9 B	36.4 B	26.2 B	24.6 B	40.7 B	35.5 B	40.6 B	37.7 B	22.8 B	27.8 B
Beryllium	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	5	5.7	5.6	3 B	5.1	8.8	0.55 B	2.8 B	75.4	ND	ND
Calcium	NC	14,400	16,100	12,500	17,800	19,200	26,700	27,200	20,100	19,200	25,100
Chromium	50	ND	0.39 B	ND	0.99 B	2.6 B	0.99 B	0.88 B	7.2 B	1.5 B	0.73 B
Cobalt	NC	0.82 B	1.9 BE	ND	ND	1.8 B	3.1 B	2.8 B	ND	ND	ND
Copper	200	ND	1.7 B	ND	5.6 B	11.3 B	ND	2.8 B	ND	ND	ND
Iron	300	632	599	1,060	959	4,080	5,400	2,170	4,010	639	2,280
Lead	50	ND	ND	ND	ND	10.2	ND	2.5 B	9.8 B	ND	ND
Magnesium	35,000	3,550	3,420	3,100	3,960	4,020	5,130	5,290	4,080	4,320	4,960
Manganese	300	1,420	1,110	956	450	923	2,610	1,510 E	1,040	406	869
Mercury	0.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel	100	0.98 B	0.85 B	ND	1.1 B	1.4 B	1.4 B	1.5 B	ND	1.8 B	ND
Potassium	NC	2,080	2,040	1,780	2,070	2,340	2,230	2,480	2,830	2,250	2,810
Selenium	10	ND	ND	ND	ND	ND	ND	ND	ND	10.5 B	ND
Silver	50	ND	3.1 B	ND	ND	ND	ND	5.9 B	ND	ND	ND
Sodium	20,000	21,100	21,800	18,100	20,300	26,900	29,200	33,600 E	26,000	20,500	33,800
Thallium	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vanadium	NC	ND	ND	0.99 B	12.1 B	6.9 B	1.1 B	0.63 B	1.6 B	1.6 B	ND
Zinc	2,000	22 B	21.2 B	10.4 B	38.5 B	98.7	35.6 B	32.2 B	48.2 B	43.3 B	35.8 B

Notes: All values in μg/L

NC - No Criteria

ND - Not Detected

BOLD/Italics - exceeds criterion

B - Estimated value (greater than MDL but less than RL)

E - Estimated due to matrix interference

^{* -} Replicate RPDs were not within QC limits

TABLE 6 DUZS FASTENERS SITE (1-52-033) JUNE 2006 THROUGH MAY 2011 SAMPLING EVENTS SUMMARY OF TAL METALS IN WILLETTS CREEK AND LAKE CAPRI SEDIMENT SAMPLES

Sample	NYS	DEC	Lake	Lake	Lake	Lake	Lake	Lake	Lake	Lake	Lake	Lake
Location	Tech	ınical	Capri	Capri	Capri	Capri	Capri	Capri	Capri	Capri	Capri	Capri
Sample ID	Guida	nce for	SED-1	SED-1	SED-1	SED-1	SED-1	SED-2	SED-2	SED-2	SED-2	SED-2
Laboratory ID	Sedimen	t Criteria	E0868-02A	F1193-19A	G2136-10	J0376-09A	K0911-01	E0868-04A	F1194-01A	G2136-08	J0376-10A	K0911-02
Sample Date	Lowest	Highest	6/21/06	8/23/07	11/14/08	3/4/10	5/22/11	6/21/06	8/23/07	11/14/08	3/4/10	5/22/11
	Effect	Effect	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Aluminum	NC	NC	5,020	895	7630 *	6,730 E	9,620	15,500	1,850	2,800 *	9,050 E	8,310
Antimony	2.0	25	0.7 B	0.41 B	2.2 BN	6.4	ND	0.92 B	0.82 B	0.19 BN	1.3 B	ND
Arsenic	6.0	33	7.9	1.5	8.7	16.1	15.2 *	19.7	2 B	1.8	20.2	13.4 *
Barium	NC	NC	81.2	31.9	67.7 B*E	175	445	89.8	57.9	40.8 *E	173	108
Beryllium	NC	NC	0.5 B	0.074 B	0.64 B	0.75 BE	0.87 B	1.2	0.16 B	0.16 B	0.89 E	0.75 B
Cadmium	0.6	9	47.8	11.6	61.4 N*E	69.2	81.2 *	133	21.2	12.5 N*E	111	96.6 *
Calcium	NC	NC	2,540	646	3,140 *	5,180 *	7,440 *	2,860	1,320	1,400 *	3,810 *	4,330 *
Chromium	26	110	20.7	2.8	27.1 E	39.1 *	<i>50</i> *	33.7	7.7	6.5 E	49.4 *	<i>45.2</i> *
Cobalt	NC	NC	7.6	3.7	20.2 E	20.9	29.4 E	12.1	8.1	3 BE	17.8	11.1 E
Copper	16	110	38.6	86.3	65.7	127 *	121 *	210	19.6	15.6	97.7 *	80.2 *
Iron	20,000	20,000	10,300	3,880	19,700 E	36,000	44,600 *	20,300	8,940	3,850 E	27,500	17,300 *
Lead	31	110	170	19.3	176 N*E	225	226 N*	315	40.7	25.8 N*E	375	315 N*
Magnesium	NC	NC	1,300	217	1,260 *E	1,770	2,100 *E	1,510	404	305 *E	1,690	1,360 *E
Manganese	460	1,100	1,290	1,200	181 *	2,250	22,600 *	153	1,300	769 *	3,510	1,480 *
Mercury	0.15	1.3	0.21	0.0071 B	0.34	0.38	0.33 B	0.45	0.047 BN	0.018 B	0.35	0.5
Nickel	16	50	11.4	3	19.4	24.1 E	24.1 *	17.6	6.8 E	3.2 B	22 E	17.6 *
Potassium	NC	NC	514	91.9	465 *	429	748	555	200 E	123 *	373	389
Selenium	NC	NC	1.6 B	0.64 B	ND	5 B	ND	2.2 B	1.2 B	ND	ND	ND
Silver	1.0	2.2	ND	ND	ND	ND	2.7 B	0.33 B	ND	ND	ND	ND
Sodium	NC	NC	117	44.2 B	136 B	339	433	143	92.5 B	46.5 B	200	219
Thallium	NC	NC	5.8	ND	ND	12.7	3.8 B	0.39 B	ND	ND	20.5	2.5 B
Vanadium	NC	NC	29.4	5.1	39.9 E	78.7 E	99.2	55.9	11.9	5.8 E	61.3 E	54
Zinc	120	270	215	71.6	445 *E	493 *	<i>57</i> 2 *	402	138	67.9 *E	495 *	406 *

Notes: All values in mg/kg

E - Replicate RPDs were not within QC limits

NC - No Criteria

* - Percent recovery for duplicates were not within QC limits

ND - Not Detected

N - Spike recoveries were not within QC limts

B - Estimated value (greater than MDL but less than RL)

BOLD/Italics - exceeds lowest effects criterion

TABLE 6 DUZS FASTENERS SITE (1-52-033) JUNE 2006 THROUGH MAY 2011 SAMPLING EVENTS SUMMARY OF TAL METALS IN WILLETTS CREEK AND LAKE CAPRI SEDIMENT SAMPLES

Sample	NYS	DEC	Lake	Lake	Lake	Lake	Lake	Lake	Lake	Lake	Lake	Lake
Location	Tech	nical	Capri	Capri	Capri	Capri	Capri	Capri	Capri	Capri	Capri	Capri
Sample ID	Guida	nce for	SED-3	SED-3	SED-3	SED-3	SED-3	SED-4	SED-4	SED-4	SED-4	SED-4
Laboratory ID	Sedimen	t Criteria	E0868-06A	F1194-03A	G2136-14	J0376-11A	K0911-03	E0868-08A	F1194-05A	G2136-16	J0376-12A	K0911-04
Sample Date	Lowest	Highest	6/21/06	8/23/07	11/14/08	3/4/10	5/22/11	6/21/06	8/23/07	11/14/08	3/4/10	5/22/11
	Effect	Effect	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Aluminum	NC	NC	690	2,010	5,860 *	3,490 E	5,890	2,730	3,290	1,790 *	2,170 E	5,850
Antimony	2.0	25	ND	0.35 B	0.63 BN	ND	ND	0.22 B	0.76 B	0.42 BN	0.3 B	ND
Arsenic	6.0	33	0.31 B	3.1	4.2 B	2.4	5.7 *	3.4	4	3.9	1.9	4.4 *
Barium	NC	NC	6.7	29.7	88.2 *E	23.1	65.1	41.5	47.8	177 *E	18.7	64.8
Beryllium	NC	NC	0.047 B	0.18 B	0.3 B	0.29 BE	0.5	0.2 B	0.22 B	0.13 B	0.19 BE	0.45 B
Cadmium	0.6	9	1.5	27.7	<i>1.7</i> N*E	22.3	16.1 *	32.3	32.3	<i>15.8</i> N*E	14.8	47.3 *
Calcium	NC	NC	104	605	11,700 *	1,260 *	2,940 *	588	1,240	8,090 *	758 *	2,560 *
Chromium	26	110	1.5	7.9	9.6 E	13.7 *	9.1 *	8.6	12.5	6.8 E	8.1 *	21.7 *
Cobalt	NC	NC	0.66 B	4.7	12.6 E	3.6	5.7 E	4.9	10	7 E	3.1	9.5 E
Copper	16	110	2.7	16.7	32.4	32.5 *	10.9 *	21.6	35.7	17.1	22.6 *	49.5 *
Iron	20,000	20,000	920	5,730	10,900 E	3,770	6,240 *	4,450	9,330	7,280 E	2,540	9,170 *
Lead	31	110	9.2	44.2	34 N*E	85.9	46 N*	71.2	193	34.3 N*E	60.6	129 N*
Magnesium	NC	NC	121	326	4,200 *E	527	675 *E	352	519	653 *E	304	868 *E
Manganese	460	1,100	89.8	568	908 *	357	1,090 *	837	845	11,700 *	272	1,150 *
Mercury	0.15	1.3	0.016 B	0.049 BN	0.074 B	0.11	0.061 B	0.096	0.059 BN	0.21	0.082	0.18
Nickel	16	50	1.6 B	5 E	8.5 B	7.4 E	5.8 *	6	10.7 E	6.3	4.8 E	13 *
Potassium	NC	NC	115	168 E	1,010 *	173	254	145	236 E	281 *	103	383
Selenium	NC	NC	0.2 B	1.2 B	ND	ND	ND	0.76 B	1.9 B	3.3	ND	ND
Silver	1.0	2.2	ND	ND	ND	ND	ND	ND	ND	1.1 B	ND	ND
Sodium	NC	NC	13.7 B	51.5 B	528	90.5	103	35.4 B	87	131	56 B	145 B
Thallium	NC	NC	0.33 B	ND	ND	1.7	1.1 B	3.7	ND	2.8	1.6	1.7 B
Vanadium	NC	NC	1.8	9.5	36.4 E	12.5 E	10.7	9.2	16.9	7.4 E	7.2 E	26.6
Zinc	120	270	10	110	71.3 *E	106 *	73.5 *	122	186	110 *E	71.3 *	232 *

Notes: All values in mg/kg

E - Replicate RPDs were not within QC limits

NC - No Criteria

* - Percent recovery for duplicates were not within QC limits

ND - Not Detected

N - Spike recoveries were not within QC limts

B - Estimated value (greater than MDL but less than RL)

BOLD/Italics - exceeds lowest effects criterion

TABLE 6 DUZS FASTENERS SITE (1-52-033) JUNE 2006 THROUGH MAY 2011 SAMPLING EVENTS SUMMARY OF TAL METALS IN WILLETTS CREEK AND LAKE CAPRI SEDIMENT SAMPLES

Sample	NYS	DEC	Willetts	Willetts	Willetts	Willetts	Willetts	Willetts	Willetts	Willetts	Willetts	Willetts
Location	Tech	nical	Creek	Creek	Creek	Creek	Creek	Creek	Creek	Creek	Creek	Creek
Sample ID	Guida	nce for	SED-5	SED-5	SED-5	SED-5	SED-5	SED-6	SED-6	SED-6	SED-6	SED-6
Laboratory ID	Sedimen	t Criteria	E0868-10A	F1193-17A	G2114-21	J0376-13A	K0911-05	E0868-12A	F1194-07A	G2114-17	J0376-14	K0911-06
Sample Date	Lowest	Highest	6/21/06	8/23/07	11/14/08	3/4/10	5/22/11	6/21/06	8/23/07	11/14/08	3/4/10	5/22/11
	Effect	Effect	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Aluminum	NC	NC	1,060	552	5,150	2,540 E	6,300	1,030	775	7,700	802 E	1,370
Antimony	2.0	25	0.074 B	0.27 B	1.1 BN	0.68 B	1.4 BN	0.076	0.38 B	2.6 N	0.38 B	0.44 BN
Arsenic	6.0	33	0.6 B	0.52 B	8.2	6.5	9.3 *	0.97	0.84 B	6.4	0.79	2.7 *
Barium	NC	NC	12.1	13.6	96.6	84.6	114	7.4	4.7 B	89.7	3.6 B	10.4
Beryllium	NC	NC	0.083 B	0.03 B	0.34 B	0.24 BE	0.57 B	0.094	0.049 B	0.36 B	0.069 BE	0.11 B
Cadmium	0.6	9	0.43	1.6	52	28.8	73.5 *	0.23	0.31	101	0.31	ND
Calcium	NC	NC	228	1,430	4,150	3,470 *	7,960 *	4,760	599	7,690	2,450 *	4,670 *
Chromium	26	110	3.8	2.7	33.3	18.5 *	44 *	2.4	3.4	41.8	4.4 *	15.9 *
Cobalt	NC	NC	1.2 B	1.1 B	7.8	7.4	13.3 E	1.8	0.77 B	8.1	0.65 B	1.9 BE
Copper	16	110	4.7	4.7	103	54 *	166 *	28.3	6.3	77.3	9.4 *	21.5 *
Iron	20,000	20,000	3,400	3,410	23,900	25,800	39,900 *	3,290	2,900	25,600	2,810	36,900 *
Lead	31	110	7.9	4.9	215 E	83.3	229 N*	7.9	10.3	109 E	9.5	39.7 N*
Magnesium	NC	NC	604	864	1,370	701	1,370 *E	2,930	468	1,980	1,410	1,290 *E
Manganese	460	1,100	174	291	2,140	3,750	1,210 *	102	30.4	978	21.3	118 *
Mercury	0.15	1.3	0.016 B	0.0055 B	0.48	0.26	0.37	0.036 B	ND	0.15	ND	0.019 B
Nickel	16	50	1.6	1 B	19.2	8 E	22.5 *	1.8	1.9 BE		1.8 BE	10.1 *
Potassium	NC	NC	135	58.3	320	188	360	118	122 E	528	66.4	97.5
Selenium	NC	NC	0.28 B	0.56 B	ND	2.3 B	ND	ND	0.69 B	ND	ND	ND
Silver	1.0	2.2	ND	ND	ND	0.52 B	ND	ND	ND	ND	ND	ND
Sodium	NC	NC	18.3 B	102	204	141	323	24.9 B	70.7	414	47.7	51.8
Thallium	NC	NC	0.56 B	ND	2.1 B	20.1	1.9 B	0.25 B	0.36 B	0.98 B	ND	ND
Vanadium	NC	NC	5.6	4.5	54.2	44.6 E	175	9.9	6	42.4	4.2 E	8.5
Zinc	120	270	13.2	26.2	290 E	171 *	440 *	17.2	24.2	<i>409</i> E	31 *	68.9 *

Notes: All values in mg/kg

E - Replicate RPDs were not within QC limits

NC - No Criteria

* - Percent recovery for duplicates were not within QC limits

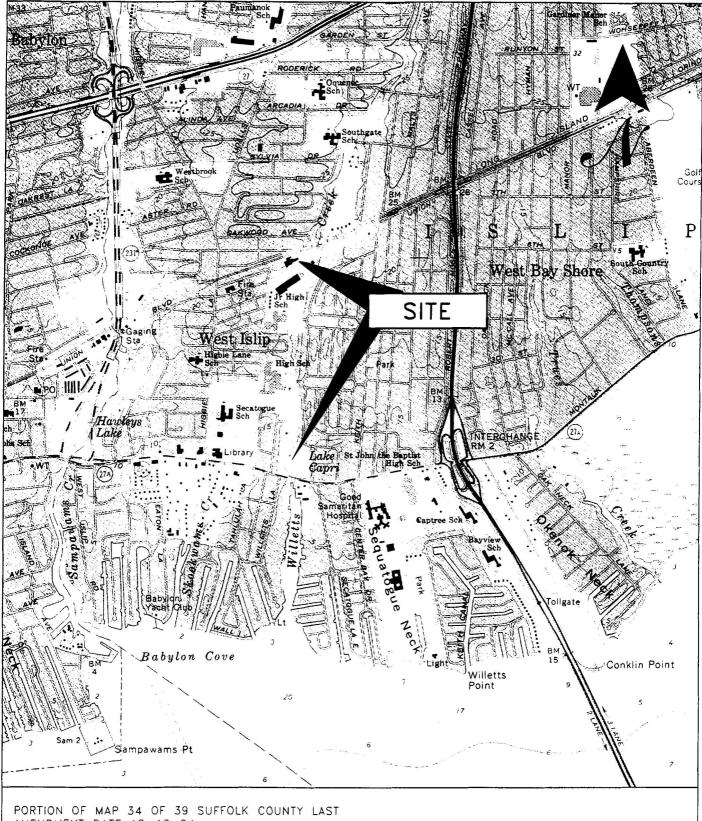
ND - Not Detected

N - Spike recoveries were not within QC limts

B - Estimated value (greater than MDL but less than RL)

BOLD/Italics - exceeds lowest effects criterion

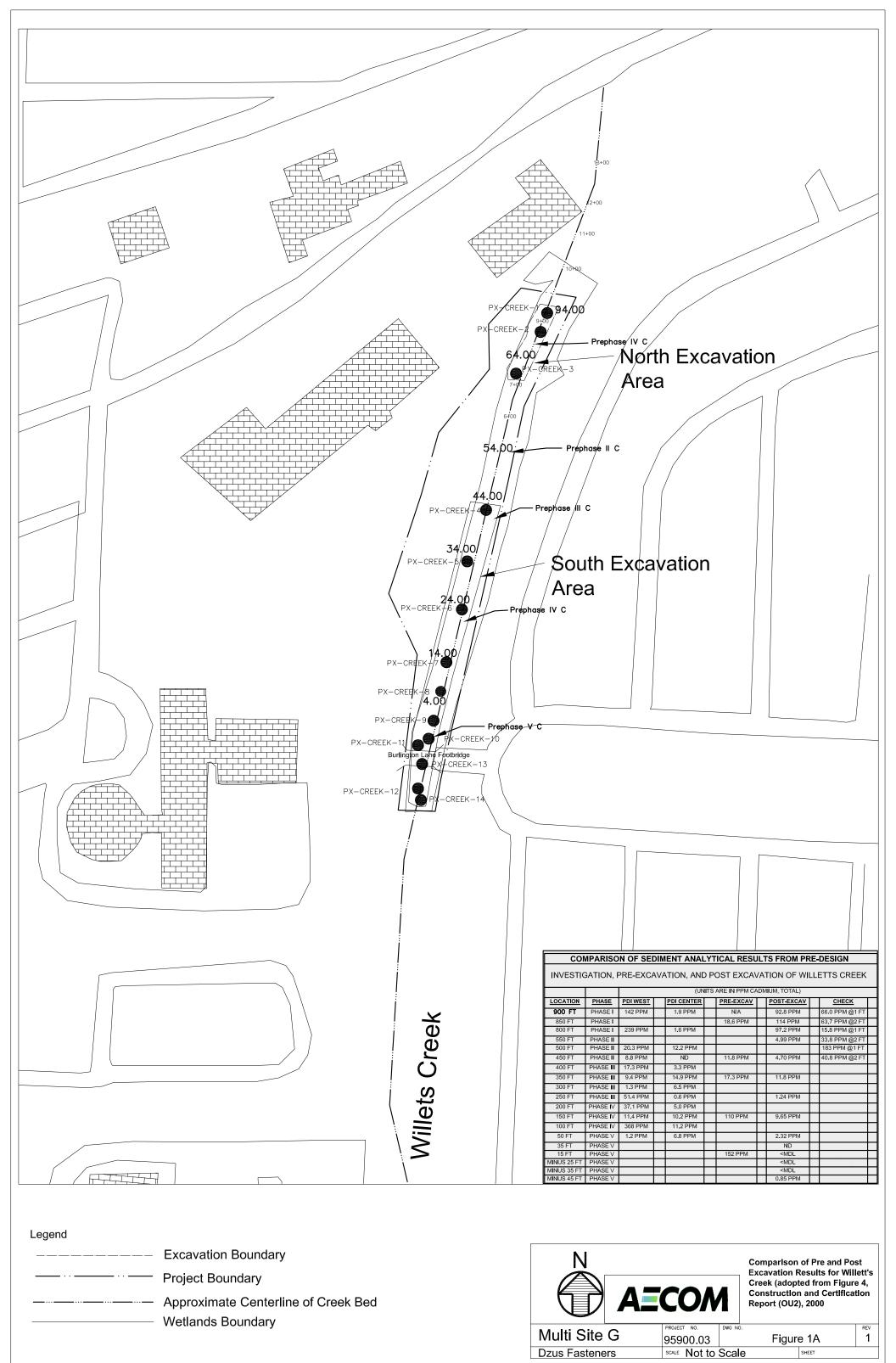
TABLE 7 DZUS FASTENERS SITE (SITE # 1-52-033) JULY 2006, MAY 2007, AND OCTOBER 2010 SUMMARY OF CADMIUM IN FISH TISSUE

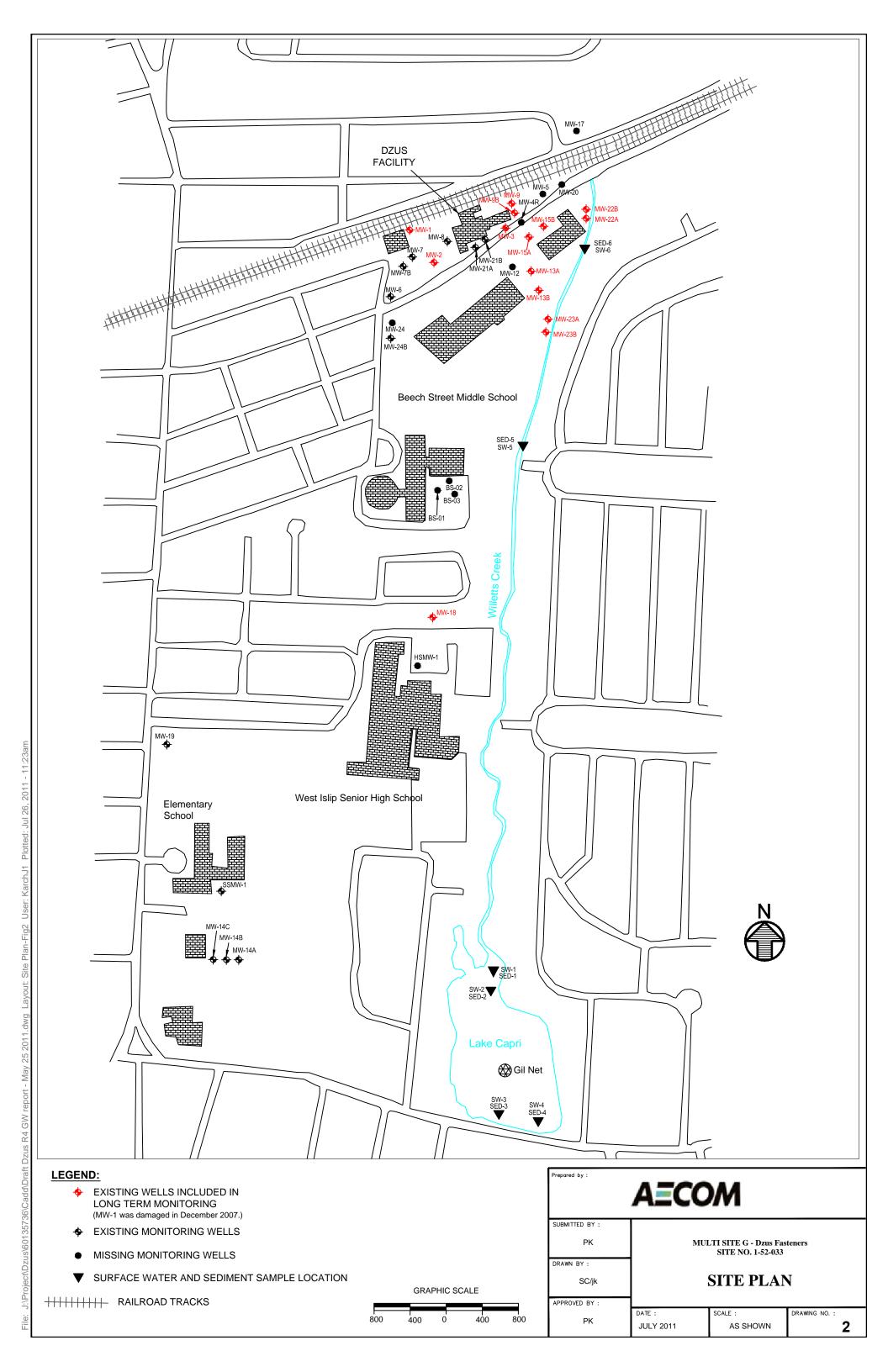

Sampling	Sample	Common	Total	Cadmium
Event		Name	Weight (g)	Concentration (µg/kg)
	South 1	Largemouth bass	700	28
	South 2	Largemouth bass	240	28
	South 3*	Bluegill	24**	190
	South 4*	Largemouth bass	6**	270
	North 1	Pumpkinseed	110	80
July	North 2	Pumpkinseed	24**	120
2006	North 3	Bluegill	124	39
	North 4	Bluegill	61**	76
	North 5	American eel	51**	120
	North 6*	Pumpkinseed	61**	130
	North 7*	Largemouth bass	30**	160
	North 8*	Bluegill	60**	140
	North 1	American eel	56**	170
	North 2	Bluegill	33**	230
May	North 3	American eel	152	170
2007	North 4*	American eel	33**	220
	North 5*	Bluegill	24.5**	190
	North 6*	Bluegill	20**	190
	DF-F1-BG-1*	Bluegill	94**	260
	DF-F1-BG-2*	Bluegill	78**	120
	DF-F1-BG-3*	Bluegill	64**	200
	DF-F1-BG-4*	Bluegill	41**	160
	DF-F1-EE-1*	American eel	15**	370
	DF-F1-PS-1	Pumpkinseed	138	7.6
	DF-F1-PS-2*	Pumpkinseed	50**	170
October	DF-F1-PS-3*	Pumpkinseed	140	96
2010	DF-F2-BG-1*	Bluegill	102	210
	DF-F2-BG-2*	Bluegill	140	230
	DF-F2-BG-3*	Bluegill	144	120
	DF-F2-EE-1*	American eel	31**	250
	DF-F2-LB-1	Largemouth bass	649	38
	DF-F2-LB-2*	Largemouth bass	71**	150
	DF-F2-PS-1	Pumpkinseed	50.5**	270
	DF-F2-PS-2*	Pumpkinseed	177.5	120

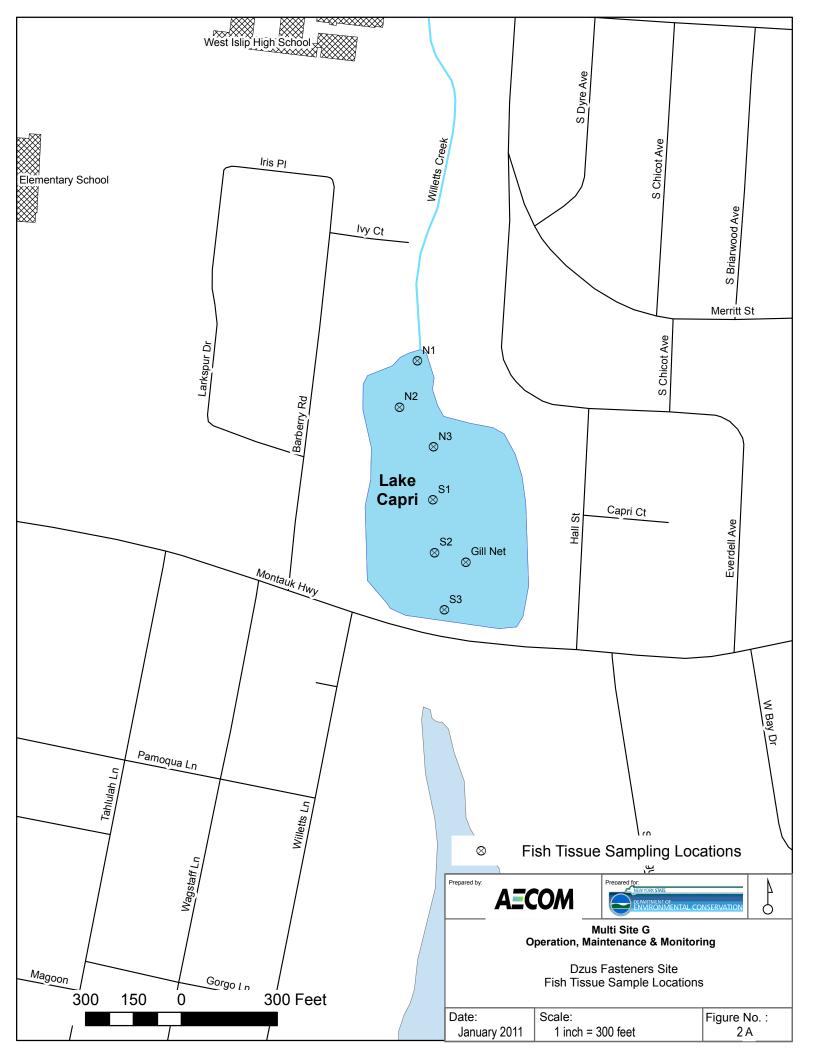
Notes: * Sample comprised of more than one individual.

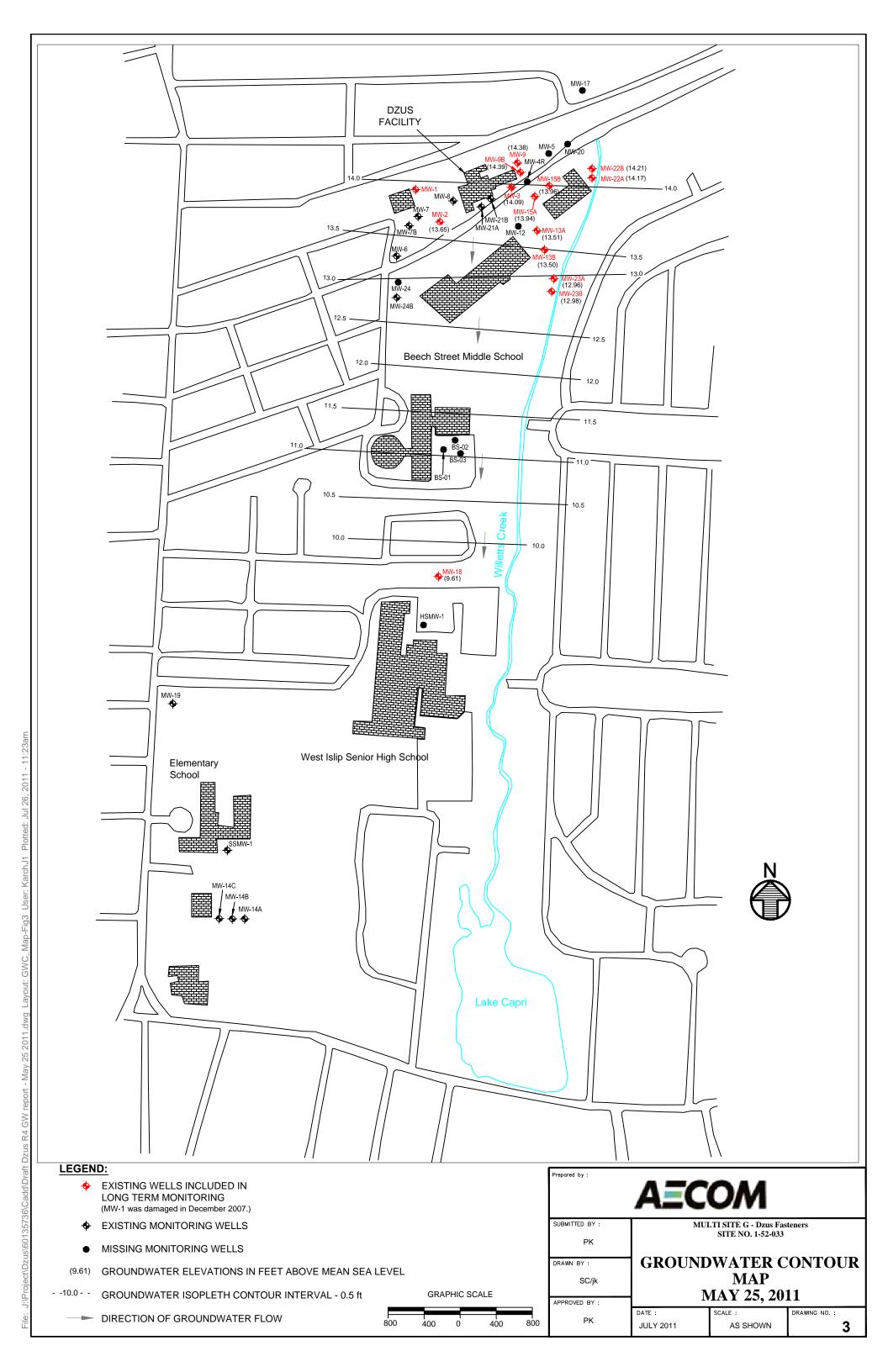
^{**} Total sample weight below the 100g minimum sample requirement

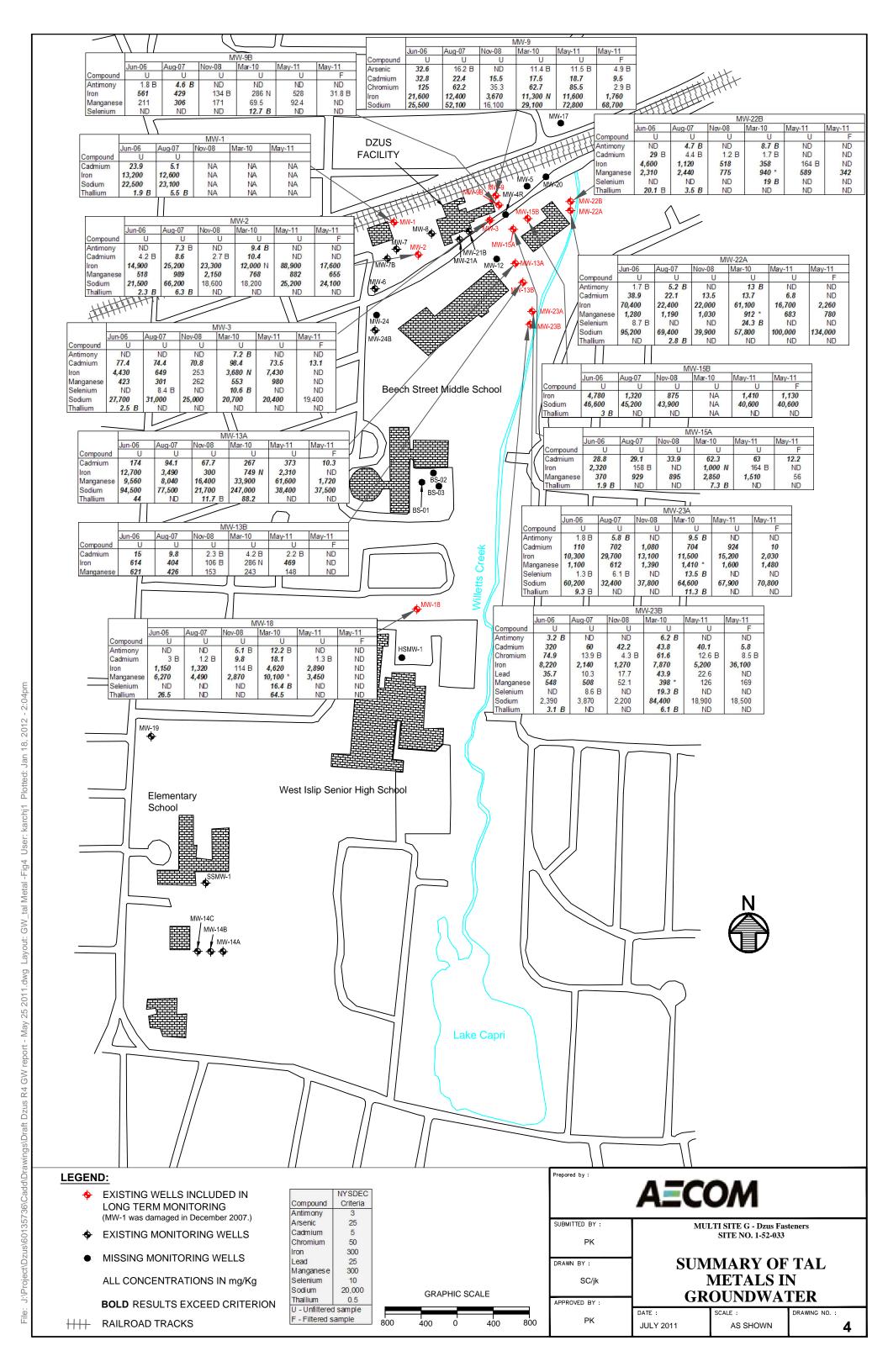
AECOM Environment

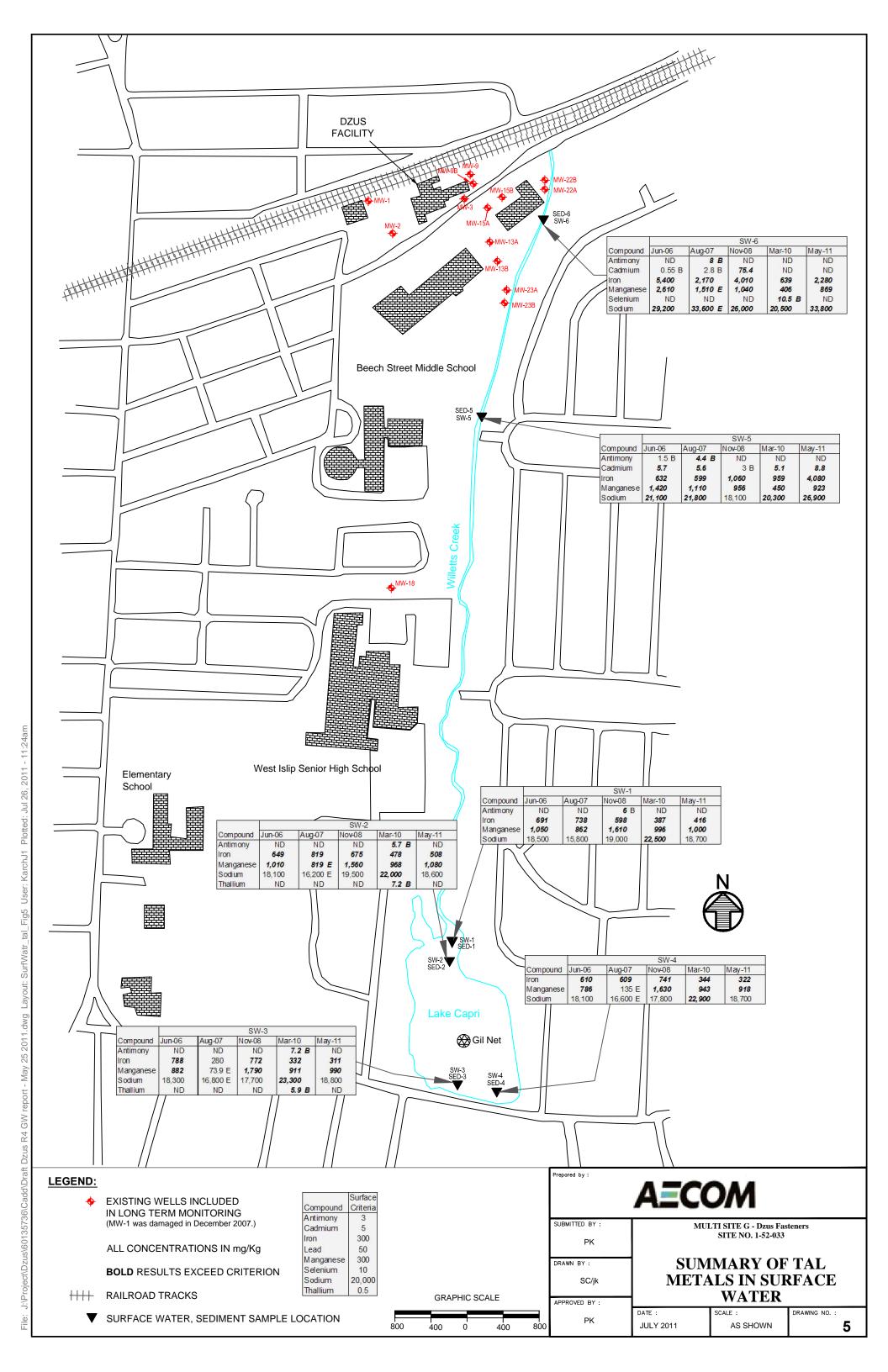

Figures

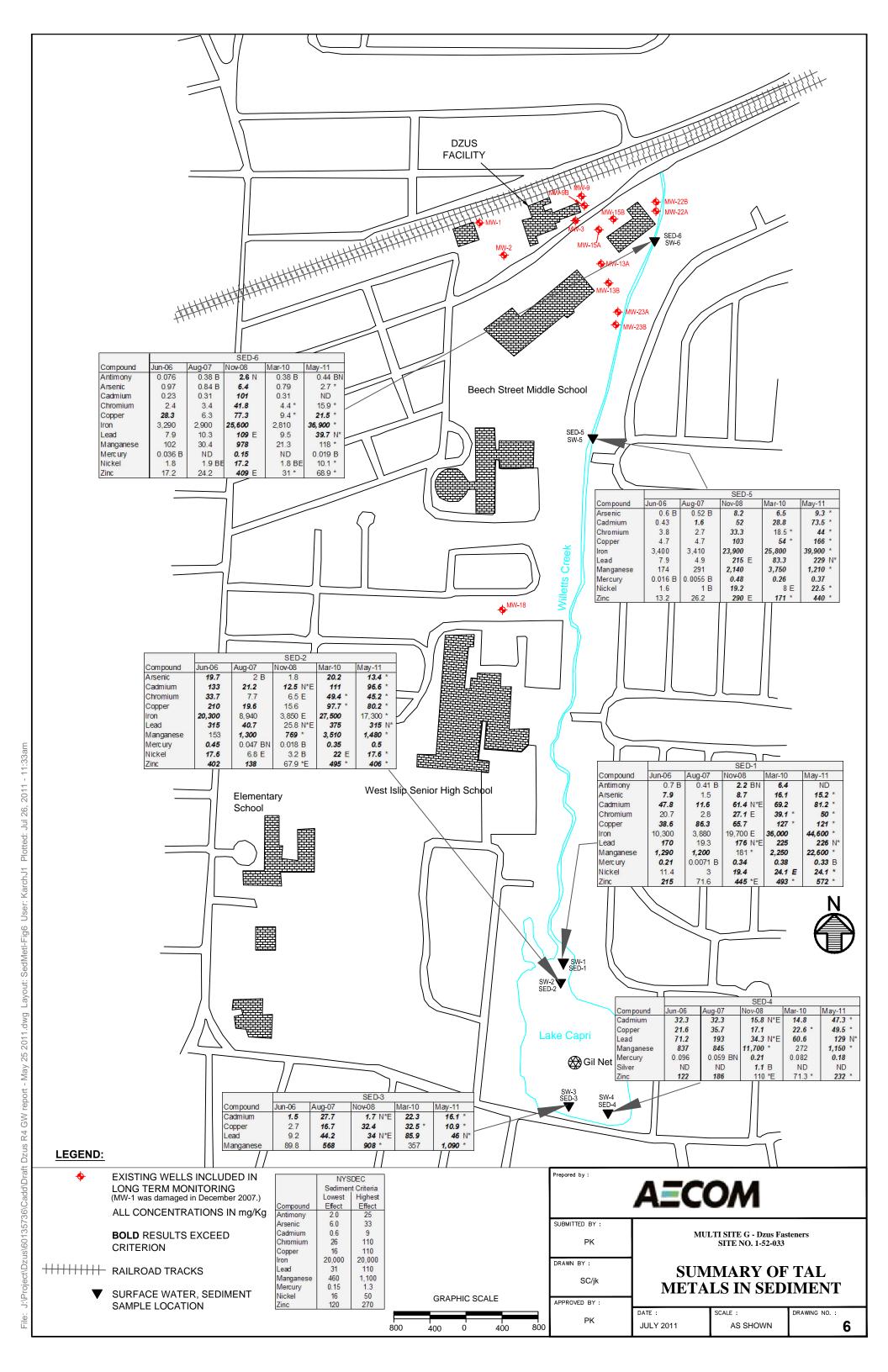


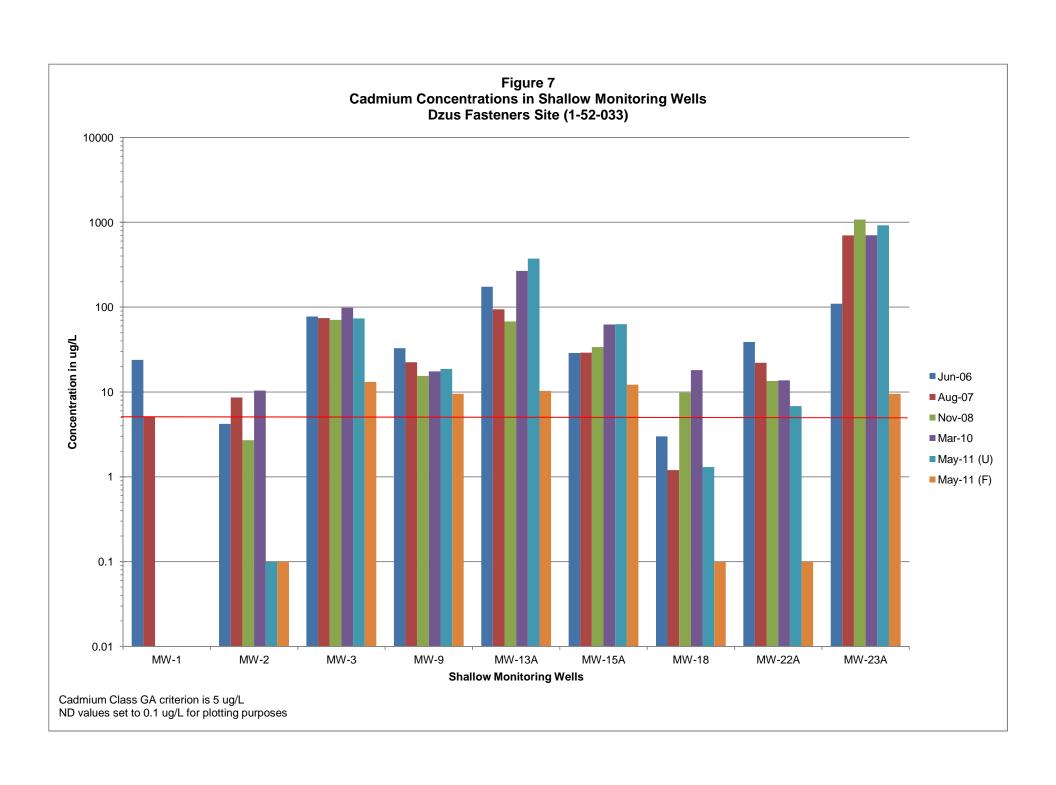

PORTION OF MAP 34 OF 39 SUFFOLK COUNTY LAST AMENDMENT DATE 10-12-94 BAY SHORE WEST, NY QUADRANGLE. SCALE 1"=2000"

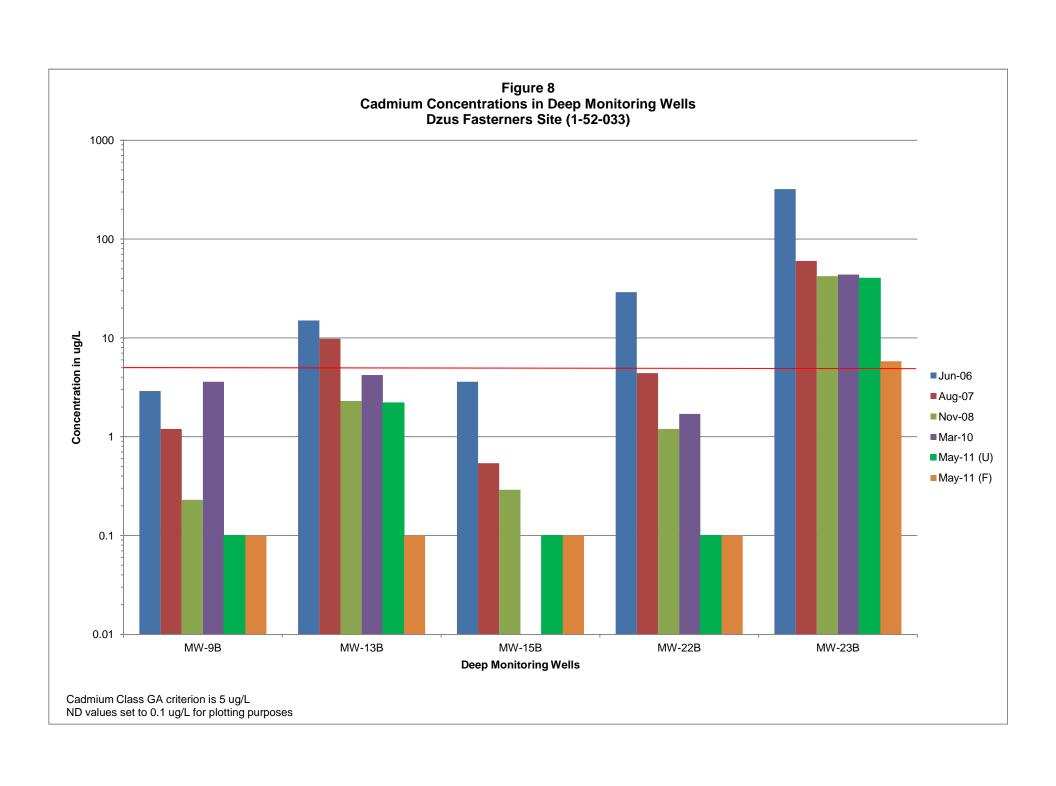


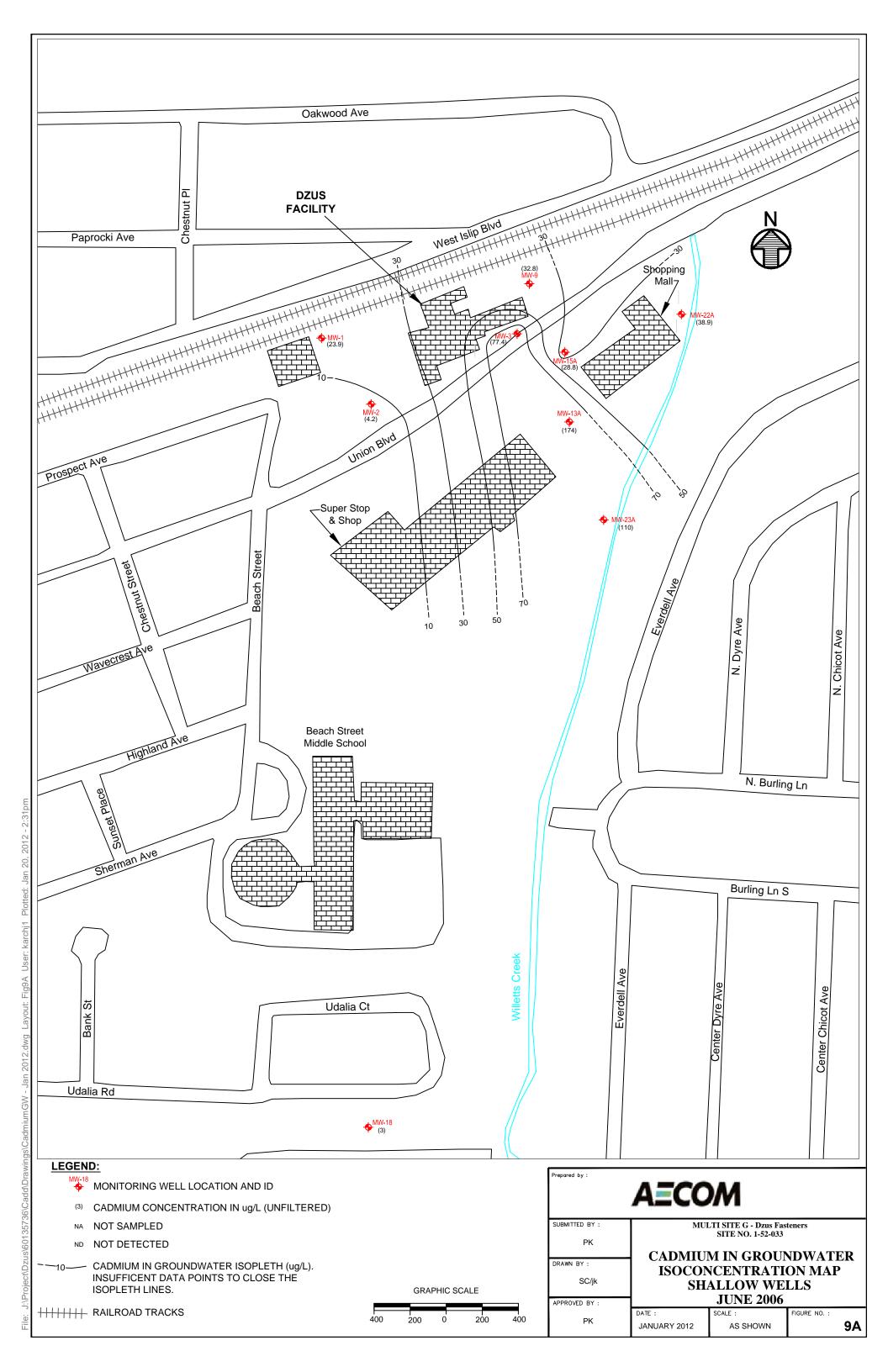

FIGURE I SITE LOCATION MAP DZUS FASTENER SITE LAKE CAPRI/WILLETTS CREEK

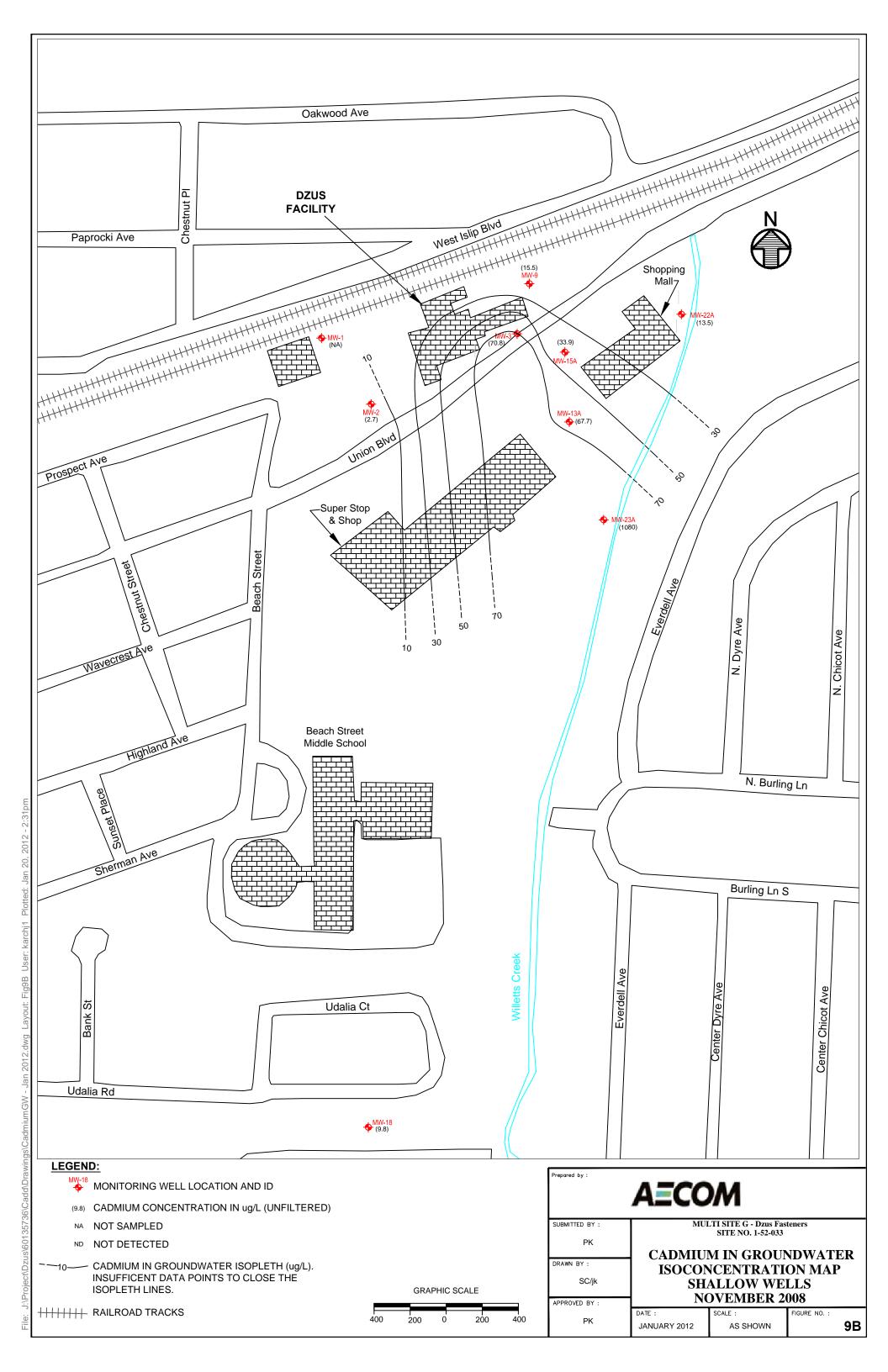


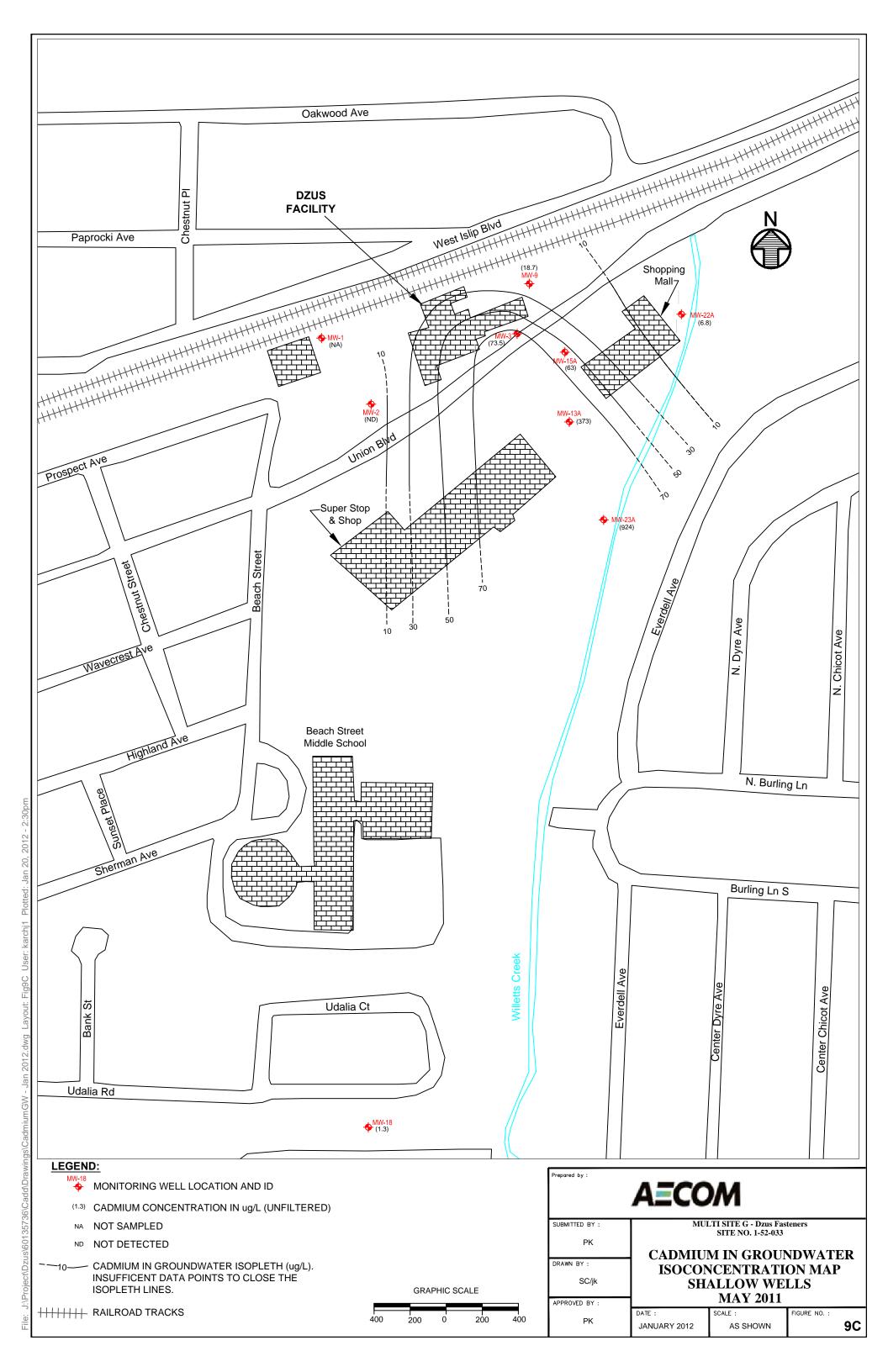


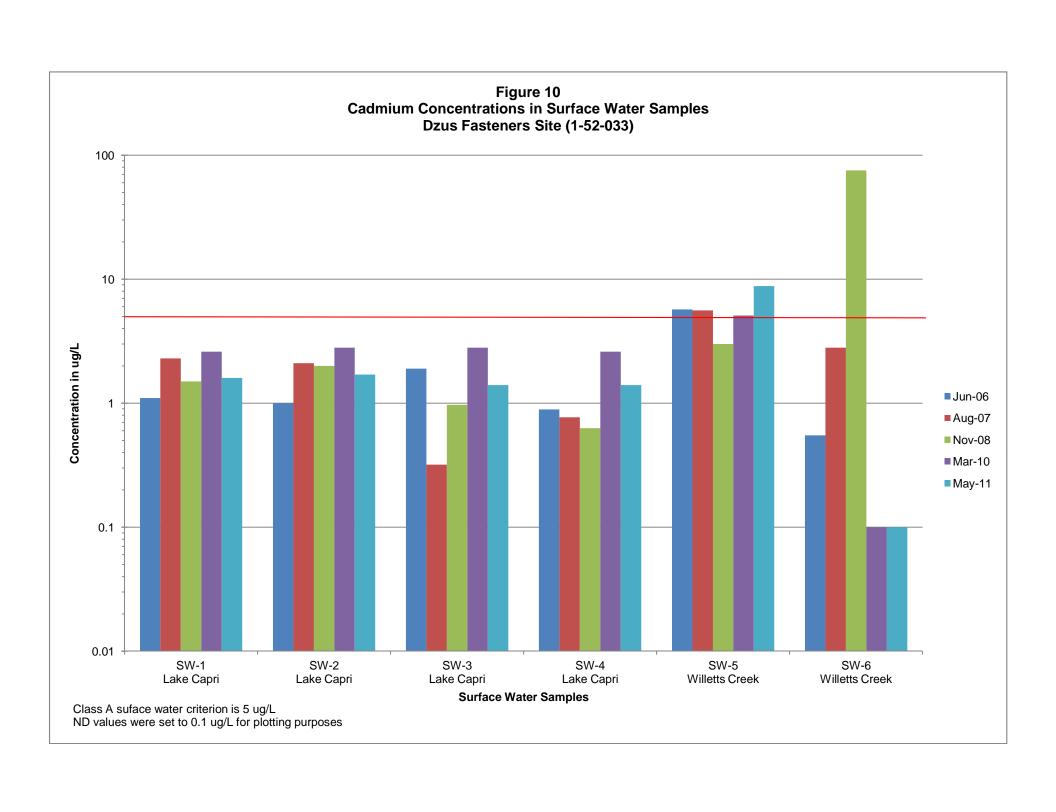


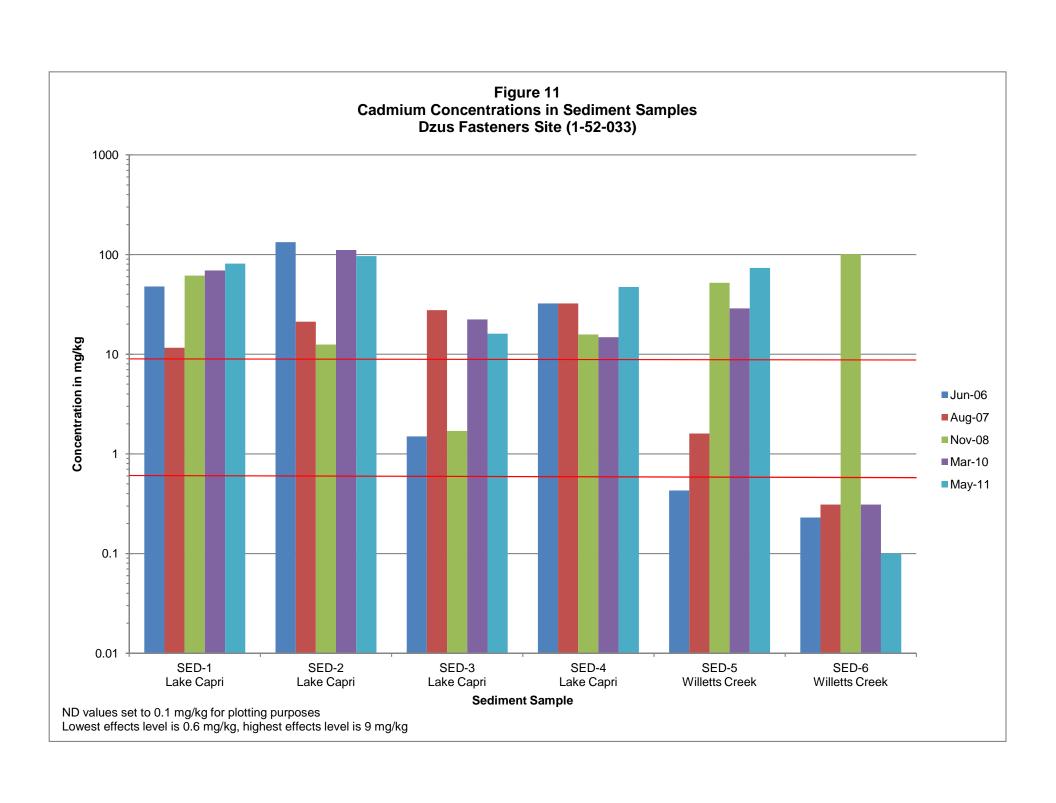


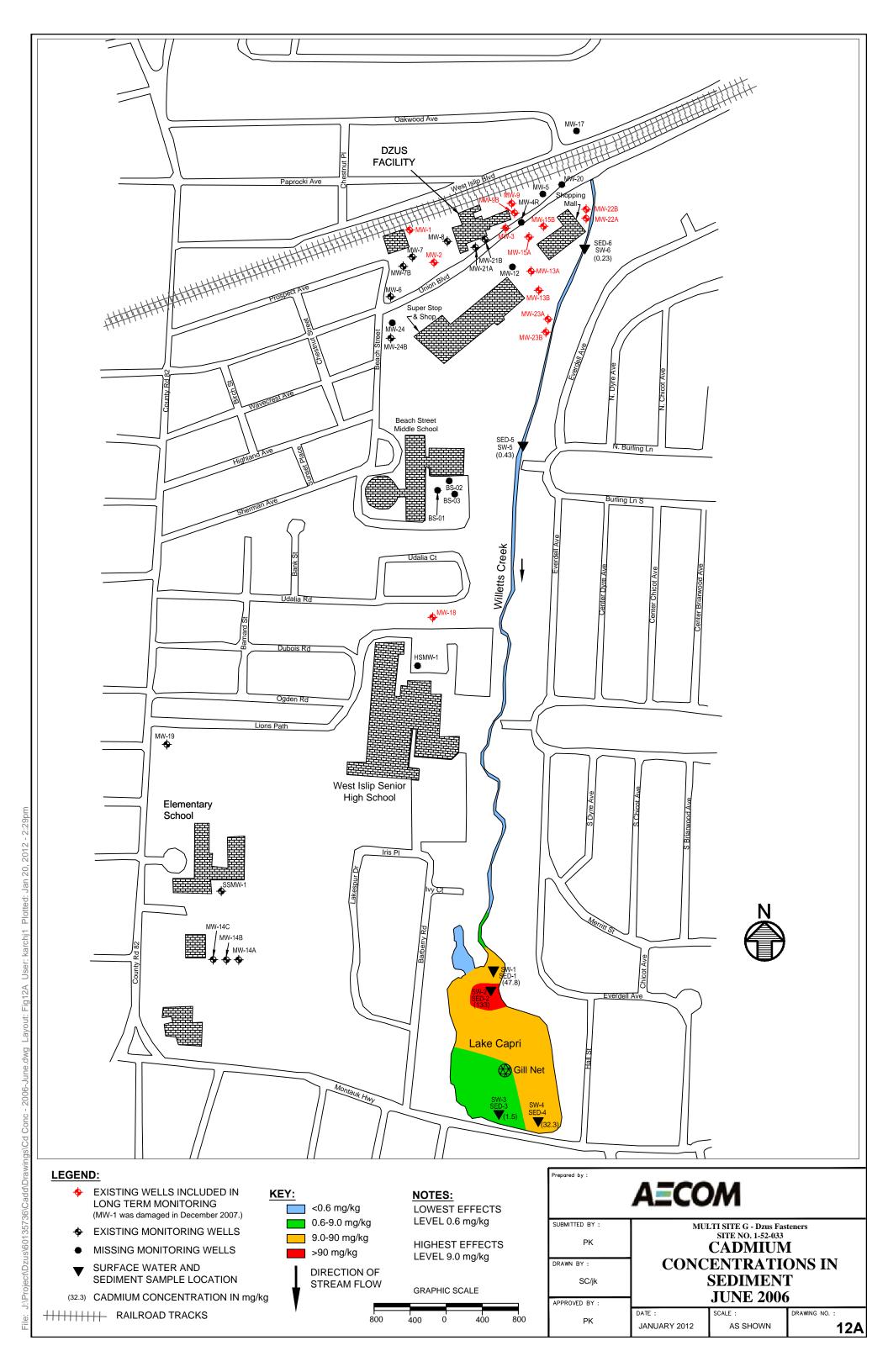


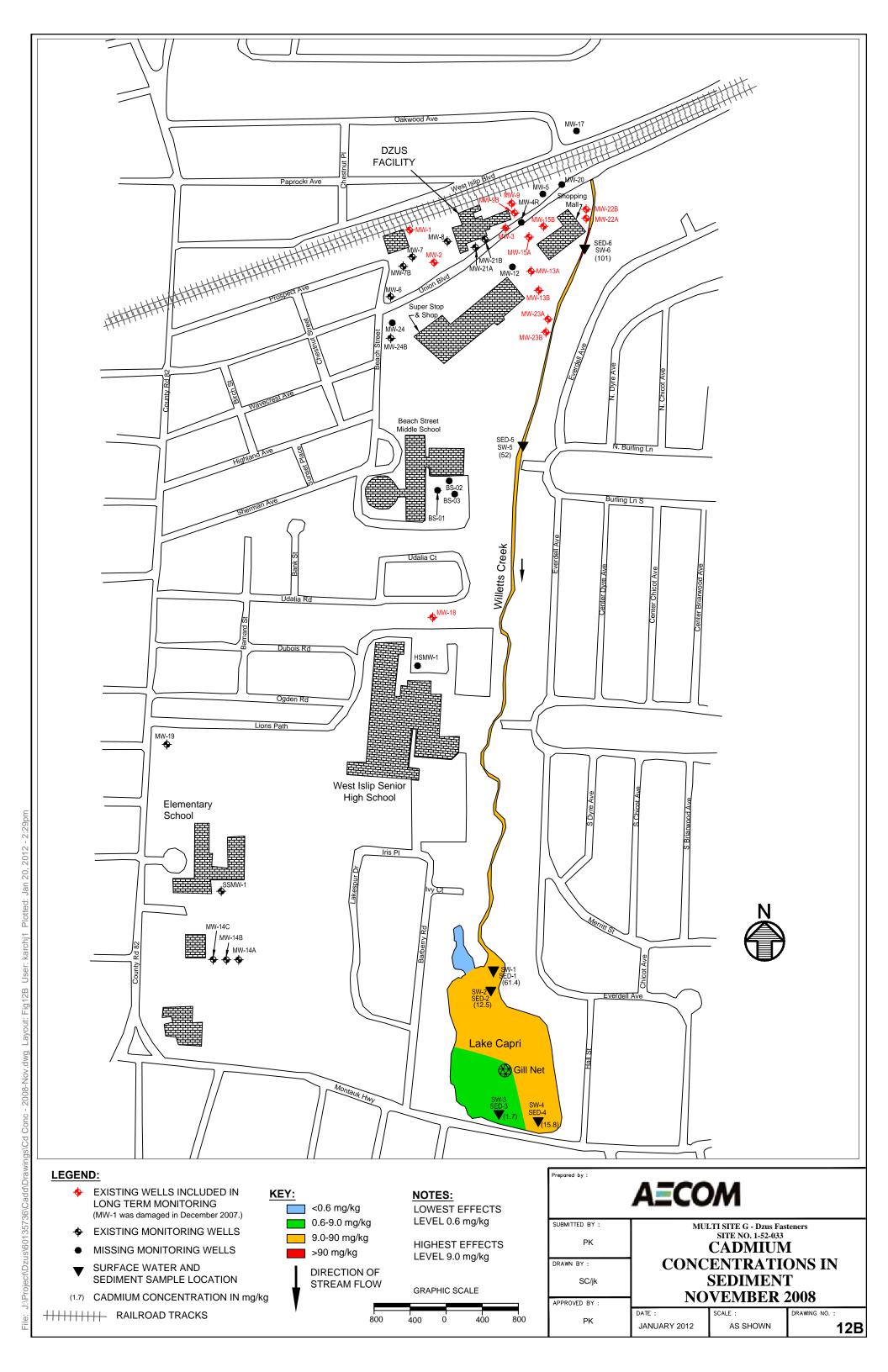


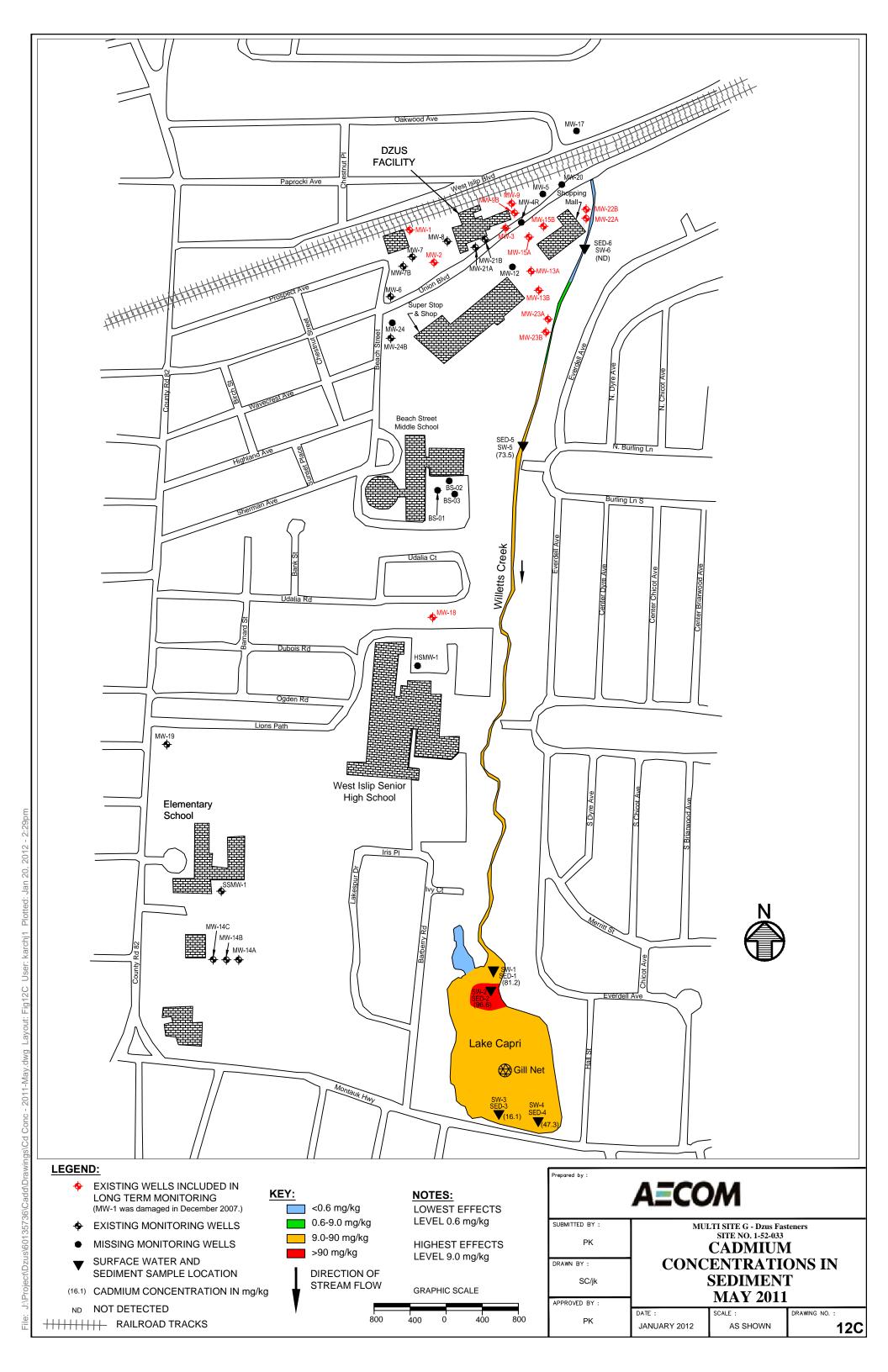


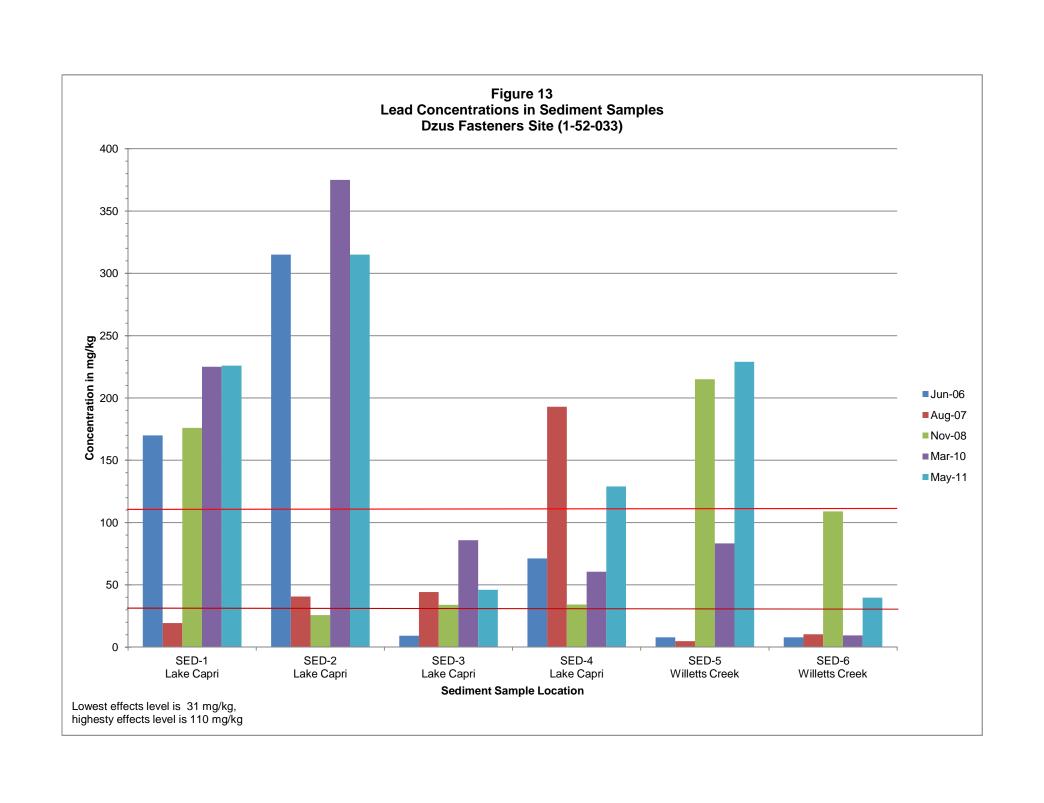


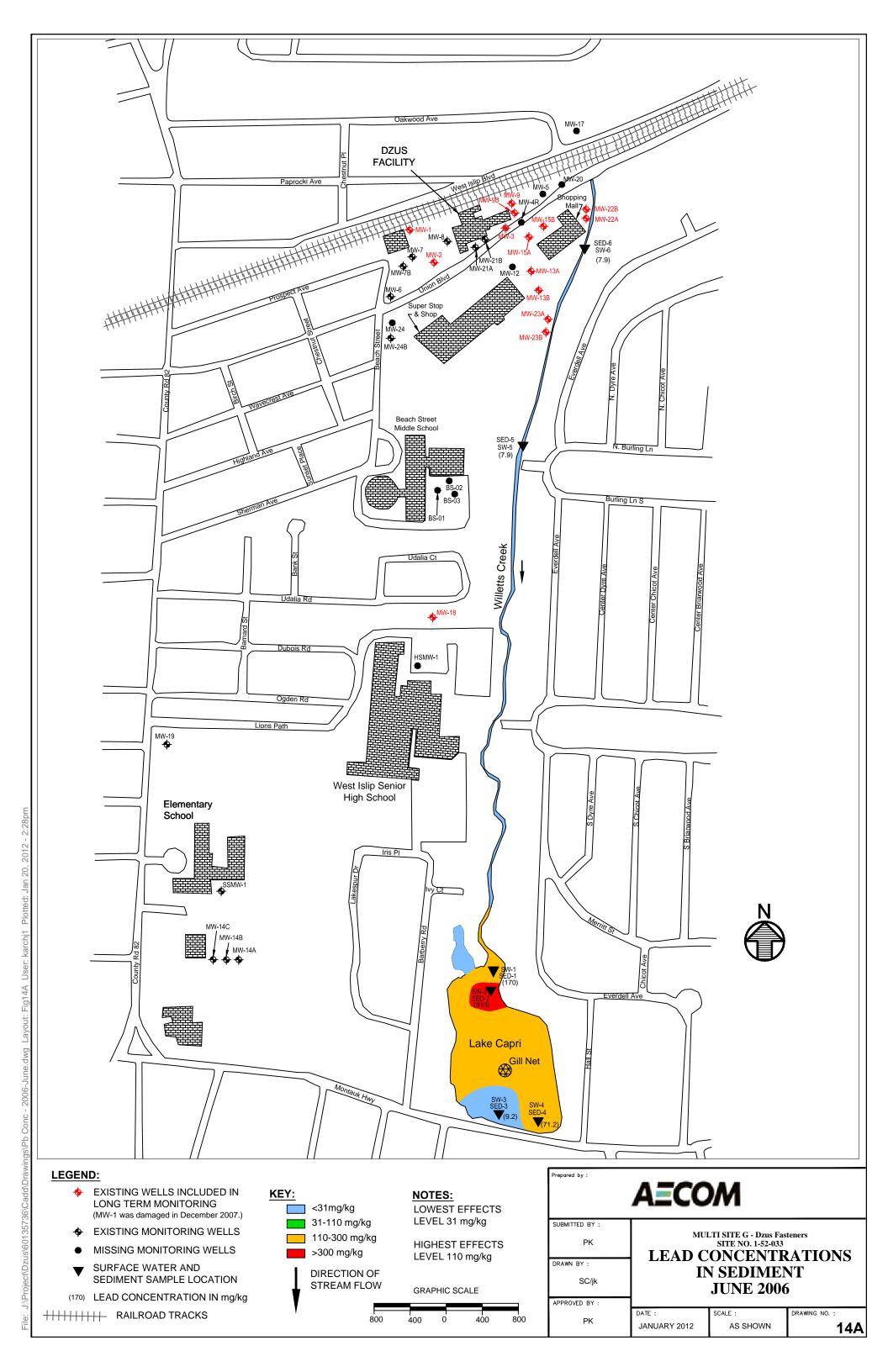


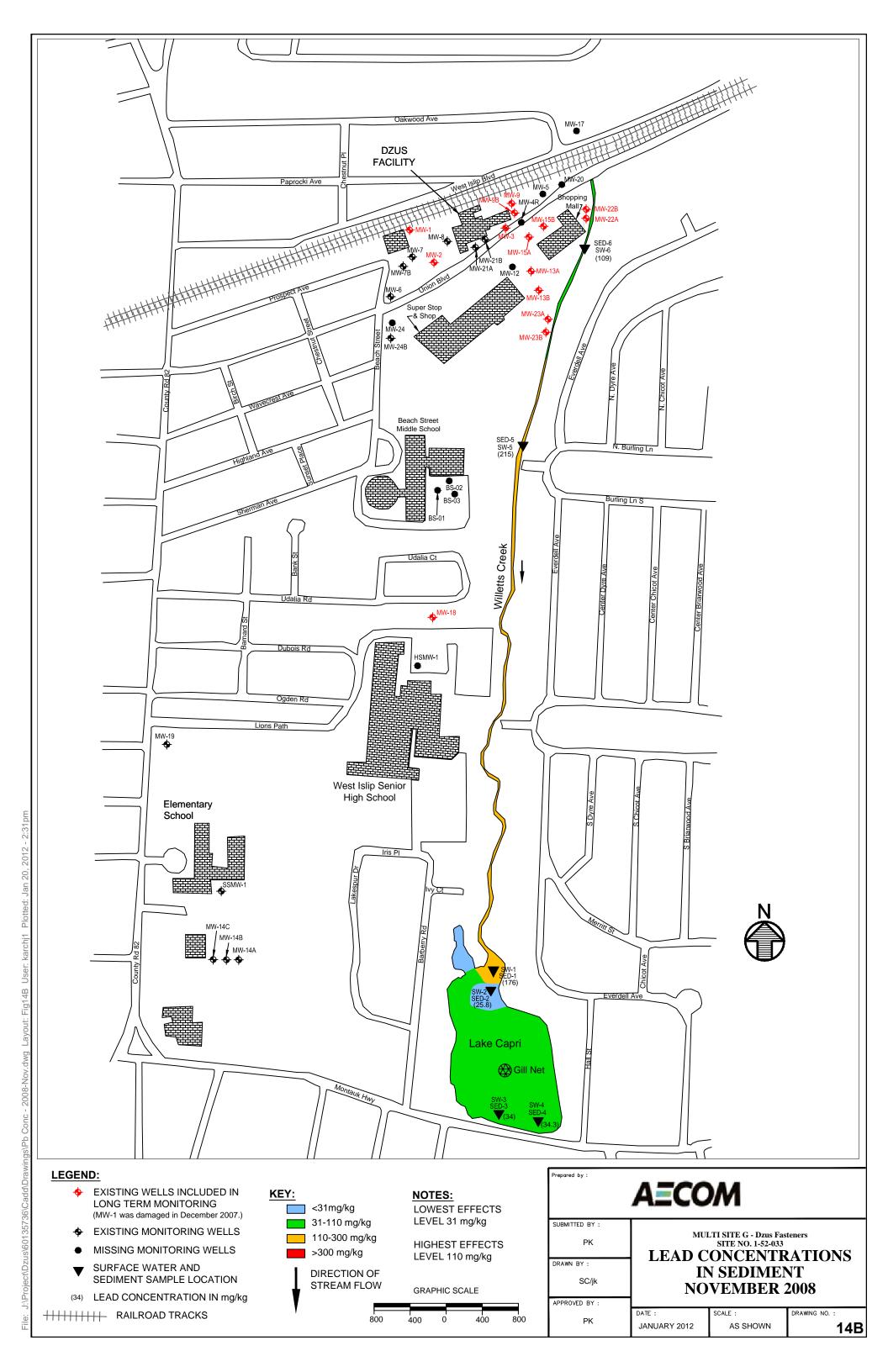


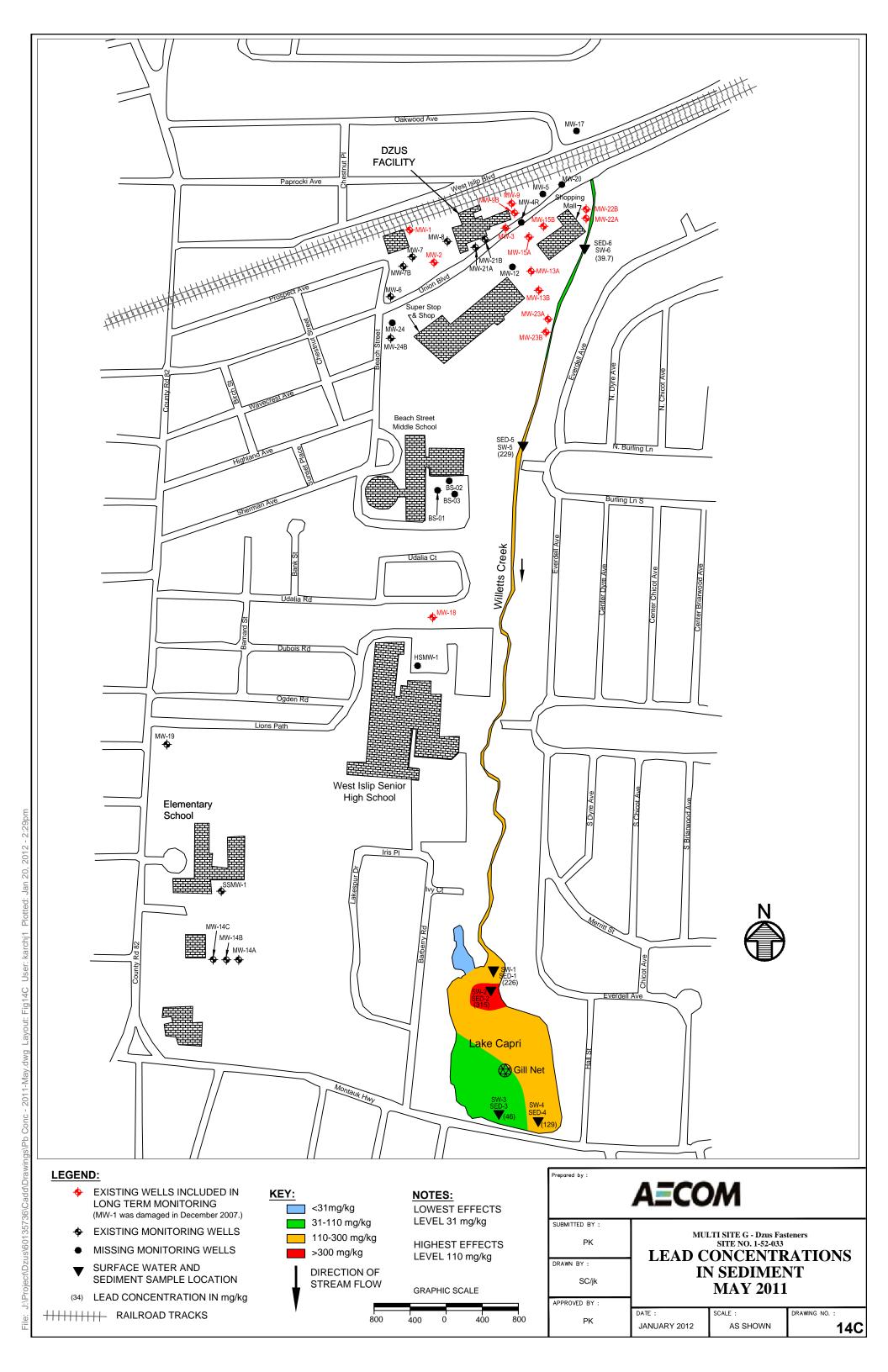












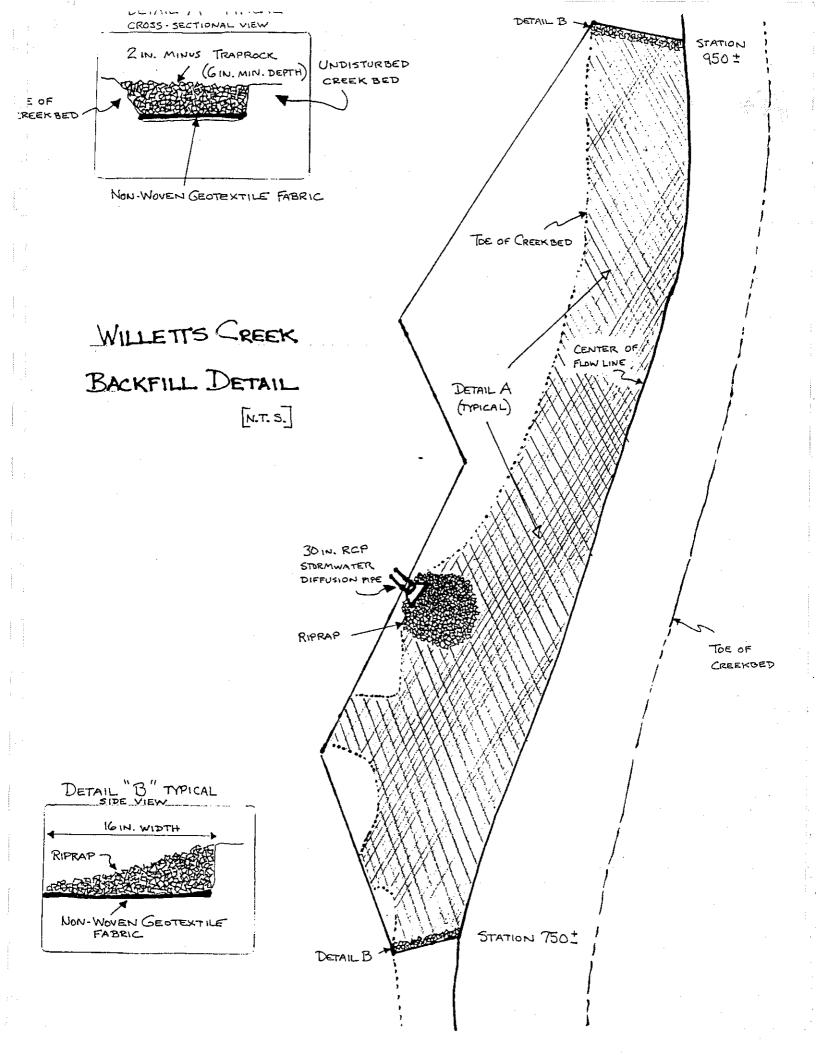
AECOM Environment

Appendix A

IC/EC Certification

AECOM Environment

Appendix B


Post-Dredging Results

COMPARISON OF ANALYTICAL RESULTS FROM PRE-DESIGN INVESTIGATION, PRE-EXCAVATION, AND POST-EXCAVATION OF WILLETTS CREEK

Location (in Feet)	PDI West	PDI Centerline	Pre-Excavation	Post-Excavation
900	142 ppm	1.9 ppm		92.8 ppm .
850			18.6 ppm	114.0 ppm
800	239 ppm	1.6 ppm		97.2 ppm
550				4.99 ppm
500	20.3 ppm	12.2 ppm		
450	8.8 ppm	ND .	11.8 ppm	4.70 ppm
400	17.3 ppm	3.3 ppm		
350	9.4 ppm	14.9 ppm	17.3 ppm	11.8 ppm
300	1.3 ppm	6.5 ppm		
250	51.4 ppm	0.6 ppm		1.24 ppm
200	37.1 ppm	5.0 ppm		
150	11.4 ppm	10.2 ppm	110 ppm	9.65 ppm
100	368 ppm	11.2 ppm		
50	1.2 ppm	6.8 ppm		2.32 ppm, ND*
00	37.6 ppm	9.7 ppm	152 ppm	<mdl*< td=""></mdl*<>
-50				

^{*} These samples were not taken exactly at 50 ft north of bridge, but within 15 - 35 feet north of bridge.

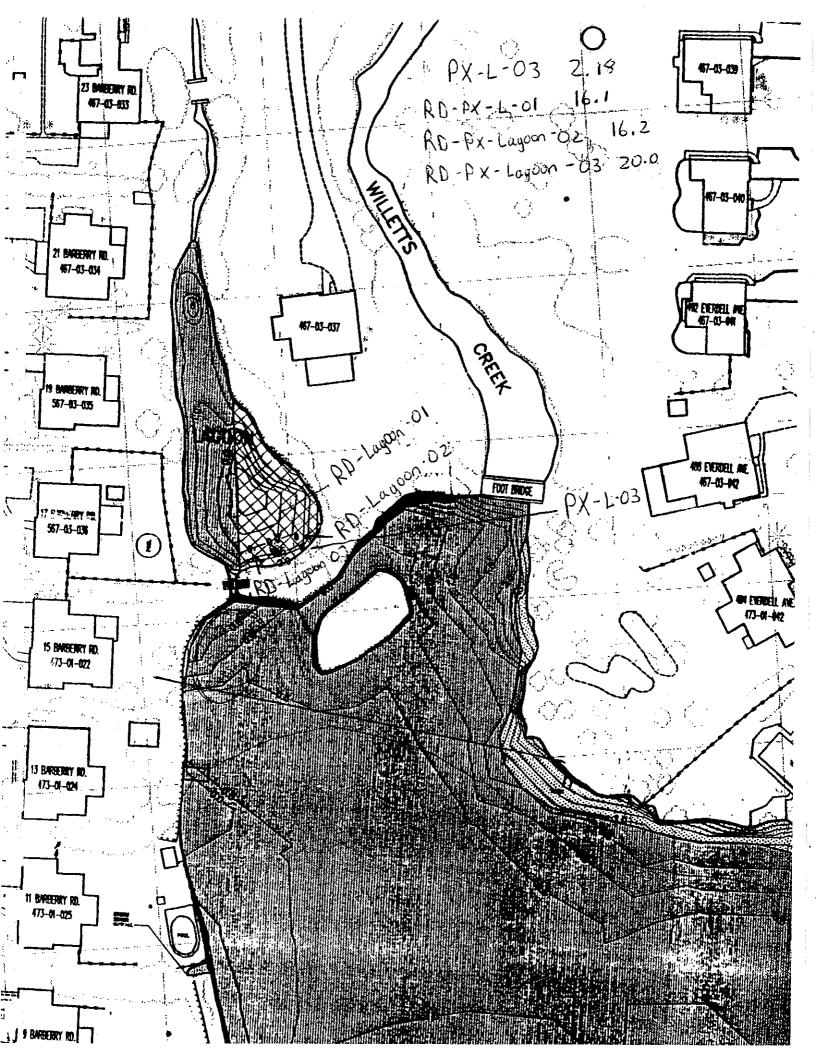
NOTE: The analytical results was the basis for decision to encapsulate per detail "Willets Creek Backfill Detail".

CONSTRUCTION CERTIFICATION REPORT

DZUS FASTENER SITE (OU2)

APPENDIX D

POST DREDGING/EXCAVATON DATA


LAGOON ANALYTICAL DATA SUMMARY

DZUS Fastener Site NYSDEC Site ID Number 1-52-033 POST- EXCAVATION SAMPLING REQUIREMENTS

NORTH LAGOON AREA

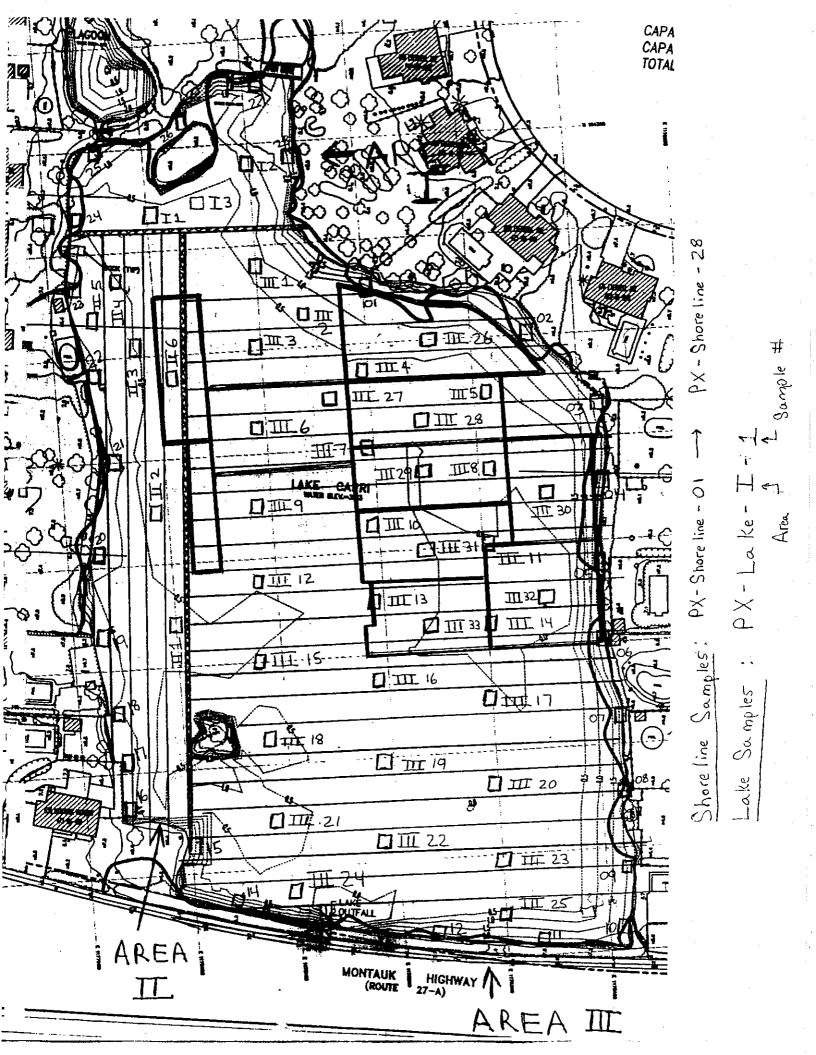
POST EXCAVATION SAMPLES

ID#	Collection	Collected	Collection	Analytical		
ID#	Date	By	Time	Results		Comments
PX-L-01	07/20/99	JShn	1455 hrs.	<0.5 ppm Cd total		
PX-L-02	07/22/99	JShn	1400 hrs.	0.42 ppm		
PX-L-03	07/22/99	JShn	1415 hrs	2.18 ppm		
				11.7 ppm	(SciLab)	split check
RD-PX-L-01	07/28/99	JShn	1515 hrs	16.1 ppm		post redredge
l	01720700	00,	10101110	6.5 ppm	(SciLab)	split check
RD-PX-L-02	08/03/99	Jwolf	1540 hrs	18.2 ppm	(00.1100)	6ft under H20
				12.7 ppm	(SciLab)	
RD-PX-L-03	08/03/99	Jwolf	1550 hrs	20.0 ppm	` ,	8ft under H20
				24.3 ppm	(SciLab)	
RD-PX-L-04	09/10/99	Jwolf	1330 hrs	50.5 ppm		
RD-PX-L-05	09/10/99	Jwolf	1340 hrs	131 ppm		
RD-PX-L-06	09/10/99	Jwolf	1350 hrs	1.14 ppm		
RD-PX-L-07	09/10/99	Jwolf	0400 hrs	0.30 ppm		
RD-PX-L-08	09/13/99	Jwoif	1500 hrs	0.17 ppm		
				2.3 ppm	(SciLab)	
RD-PX-L-09	09/13/99	Jwolf	1515 hrs	0.23 ppm		
				0.93 ppm	(SciLab)	

CONSTRUCTION CERTIFICATION REPORT

DZUS FASTENER SITE (OU2)

APPENDIX D

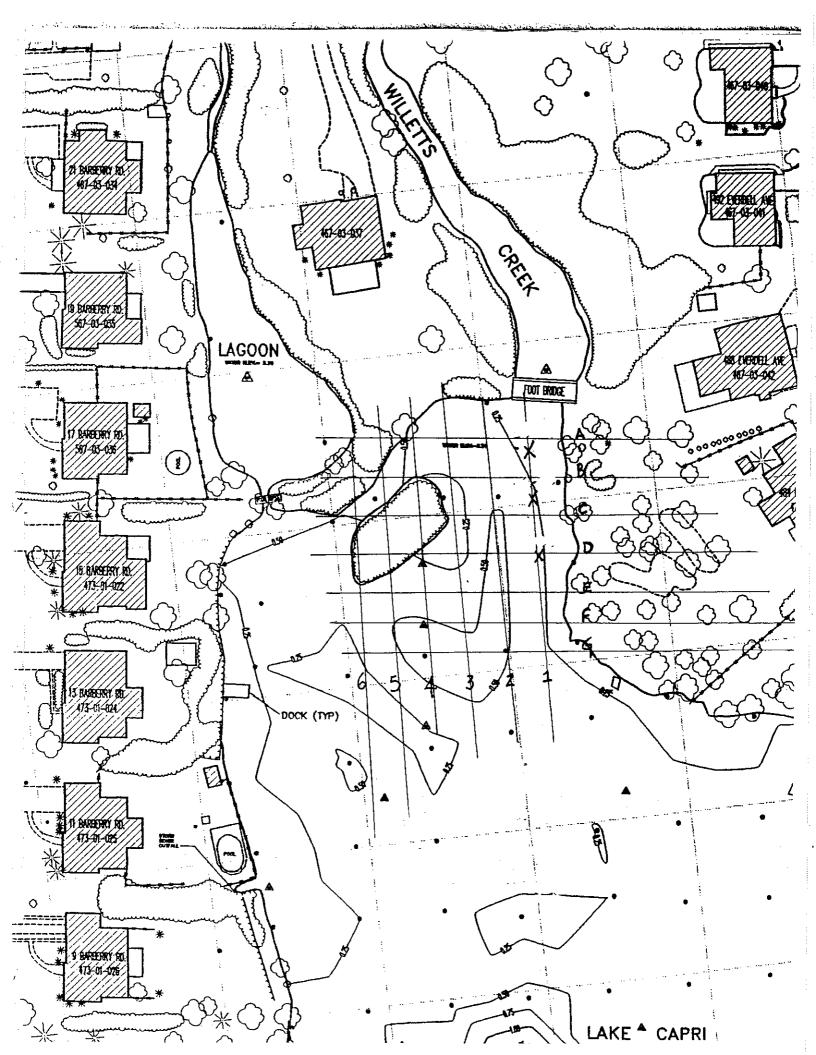

POST DREDGING/EXCAVATION DATA

LAKE CAPRI ANALYTICAL DATA SUMMARY

Lake

SHORELINE POST-EXCAVATION SAMPLES - Total Cd (ppm)

PX	Dry	Wet	Wet + 4hr	QA/QC
1	1.02	0.41		
2	0.71	0.70		
3	0.11	0.45		
4	9.96	0.17		
4d	1.13			
4s	8.60			
5	0.98	0.55		
6	0.70	1.13		
7	0.89	1.56		1.30
8	1.98	1	2.07	
9	NA		1.59	0.90
10	NA	1.73		
11	NA	61.20	3.37	
12	NA	0.47	6.47	
13	NA		1.77	-
14	NA			
15	NA			
16	NA			
17	NA			
18	NA	1.43		0.80
19	NA	0.29		
20	NA	0.62		
21	NA	0.74	0.86	0.70
22	NA	0.25	0.70	
23	NA	0.82	0.22	<0.1
24	NA	2.45		
25	NA	0.18		
26	NA			
27	NA	0.31		
28	NA	1.00		- .



DZUS Fastener Site NYSDEC Site ID Number 1-52-033 ANALYTICAL RESULTS FOR NORTHEAST COVE AREA

GRID	47.CD 407	10: (07.45.7	
LOCATION	AT GRADE	12 in < GRADE	30 in < GRADE
A1	0.12 ppm	<mdl< th=""><th></th></mdl<>	
B1			
C1	37.8 ppm	0.4 ppm	3.7 ppm
D1			
E1	11.5 ppm	0.7 ppm	
F1		0.3 ppm	
G1			
A2			
B2	12.4 ppm	1.2 ppm	73 ppm
C2			6.5 ppm
D2	24.1 ppm	11.0 ppm	1.0 ppm /1.7 ppm
E2			
F2	5.96 ppm	0.1 ppm	<mdl< th=""></mdl<>
G2			
A3	28.6 ppm	1.1 ppm	
B3			
C3	10.3 ppm	2.7 ppm	
D3			
E3	44.9 ppm		0.20 ppm
F3		3.9 ppm	
G3	31.0 ppm		
A4			·
B4			
C4			
D4			
E4			0.70 ppm
F4			

DZUS Fastener Site NYSDEC Site ID Number 1-52-033 ANALYTICAL RESULTS FOR NORTHEAST COVE AREA

GRID LOCATION	AT GRADE	12 in < GRADE	30 in < GRADE
G4			
A5			
B5			
C5			
D5			
E5			
F5	135 ppm	0.1 ppm	
G5			
A6			
B6			
C6			
D6			
E6			
F6			
G6	1.0 ppm /4.0 ppm		
A7			
B7			
C7			
D7			
E7			
F7			
G7			
A8			
B8			
C8			
D8			
E8			

Notes			J - Concentration detected below MDL	J - Concentration detected below MDL Revised 12/2/99	O mg 1cported as 0.34 ppm O					Experimental Sample 1' below grade	Revised 11/29/99 Orio renorded as 1 95 mm	Hidd core on season day the	Experimental Sample 1' below grade	Revised 11/29/99	Experimental Sample 1' below grade	Revised 11/29/99			Experimental Sample 1' below grade Revised 11/29/99	Orig. reported as 60.9 ppm	Experimental Sample 1' below grade Revised 11/29/99
ERM/BWE Anabytical Results (ppm)		34.8	0.13	0.44	27.0	27.0	11.5	2.01	12.4	1.2.1	1.95	24.1	1.1.7	1/4.1	70.0	57.3	28.6	28.5		10.4	8.63
Earth Tech Analytical Results (ppm)																					
Date Cat B Package Received		10/15/99	10/15/99	12/08/99	10/15/99	12/08/99	10/15/99	12/08/99	10/15/99		12/02/99	10/15/99	12/02/99	10/15/99	00/00/61	10/15/00	66/01/01	10/15/99	12/02/99	10/15/99	12/02/99
Date Data Received		09/20/99	09/20/99	10/29/99	09/20/60	10/29/99	09/20/60	10/29/99	. 66/02/60		10/28/99	09/20/60	10/28/99	09/20/60	00/8/01	00/00/00	66/07/60	09/20/99	10/28/99	09/20/99	10/28/99
Date Analyzed	20,00	09/18/99	66/81/60	10/29/99	66/81/60	10/29/99	66/81/60	10/29/99	09/18/99		10/28/99	66/81/60	10/28/99	66/81/60	10/28/99	00/18/00	00/10/00	09/18/99	10/28/99	06/18/60	10/28/99
Date Collected	00/21/00	09/11/60	09/17/99	10/28/99	09/11/60	10/28/99	09/11/60	10/28/99	06/11/60		10/27/99	66/11/60	10/26/99	66/11/60	10/27/99	66/1/60	00/11/00	09/11/99	10/26/99	09/17/99	10/26/99
ERM Sample 1D	Dun (191700	DV Come A1	ra-cove-A1	PX-Cove-A1-RD	PX-Cove-C1	PX-Cove-CI-RD	PX-Cove-E1	PX-Cove-E1-RD	PX-Cove-B2		PX-Cove-B2-RD	PX-Cove-D2	PX-Cove-D2-RD	PX-Cove-F2	PX-Cove-F2-RD	PX-Cove-A3	PX-Cove-A3 MS/MSD		PX-Cove-A3-RD	PX-Cove-C3	PX-Cove-C3-RD
Chain of Custody#	17116-1	171169	1/110-2	I 5258-1	17116-3	15258-2	17116-4	I 5258-3	17116-9		J 5254-2	17116-7	J 5254-1	17116-5	J 5254-3	17116-10	17116-11		J 5253-3	17116-8	J 5253-2

File: L: work/32419/certrpt tables/post ex data 122299.xls

Chain of		Dute	7.4		Date Cat B	Earth Tech Analytical	ERMUBWE	
Custody#	FRM Sample ID	Collected	Analyzed	Received	rackage Received	Results (DDM)	Anziytical Regults (nom:	77.72
17116-6	PX-Cove-E3	66/11/60	66/81/60	09/20/99	10/15/99		44.8	
J 5253-1	PX-Cove-E3-RD	10/26/99	10/28/99	10/28/99	12/02/99		38.0	Experimental Sample 1' below grade
CAKE BOTTON	Ju						200	Verliged 11.(22)39
I 5160-1	PX-LB-201	66/60/01	10/11/99	10/12/99	66/61/11		0.22	- Concentration detected below MIX
J 3965-1	PX-Lake-25A	12/10/99	12/13/99	12/15/99	01/19/00		14.1	TOTAL MARCH BACKET TOTAL MARCH
J 4623-1	PX-Lake-25A +4	12/17/99	10/20/99	12/21/99	01/19/00	06'/06'/08'	1.99	Revised 1/13/00 Orig renorted as 1 98 pour
SHORELLAE								mdd comment of the co
I 9836-1	PX-Shoreline-01	06/52/60	09/29/99	66/30/60	11/19/99		0.41	
I 9836-2	PX-Shoreline-02	06/52/60	09/23/60	09/30/60	11/19/99		0.0	
I 9836-3	PX-Shoreline-03	09/29/99	09/29/99	09/30/99	11/19/99		0.75	1994
I 9836-4	PX-Shoreline-04	66/57/60	09/23/99	09/30/99	11/19/99		71.0	
I 9836-5	PX-Shoreline-05	09/29/99	09/23/60	09/30/99	11/19/99		0.55	
I 9836-6	PX-Shoreline-06	09/29/99	09/29/99	06/30/60	11/19/99		1.13	
J 3953-2	PX-Shoreline-07 +4	12/05/99	12/07/99	12/07/99	01/19/00	1.3	1 59	Revised 1/11/00
J 3956-2	PX-Shoreline-08 +4	12/08/99	12/10/99	12/13/99	01/19/00		2.06	Aug. reported as 1.50 ppm Revised 1/12/00
J 3962-2	PX-Shoreline-09 +4	12/09/99	12/13/99	12/14/99	01/19/00	6.0	1.59	Ong. reported as 2.07 ppm
J 3946-2	PX-Shoreline-10	12/03/99	12/04/99	12/06/99	01/19/00		1.73	Deigner & Association
J 3946-3	PX-Shoreline-11	12/03/99	12/04/99	12/06/99	01/19/00			Revised 1/11/00 Orig reported as 61.2 ppm
J 3964-2	PX-Shoreline-11 +4	12/10/99	12/14/99	12/14/99	01/16/00		0.10	Prior to Augering Revised 1/12/00
J 4619-4	PX-Shoreline-11 +4 RS	12/15/99	12/16/99	12/16/99	01/19/00		1 58	Orig. reported as 3.40 ppm Revised 1/13/00
J 3946-4	PX-Shoreline-12	12/03/99	12/04/99	12/06/99	01/19/00		60.0	Ong. reported as 1.0 ppm Prior to Augering
File: L:\work\	File: L:\work\32419\certrof tables\toost ex data 122299 vis	299 vle			22.54.75		0.72	J - Concentration detected below MDL

		Notes			Revised 1/12/00	mid 1:1 i him			Revised 1/13/00 On'o renorted as 2.52 mm	Revised 1/13/00	ong. 1sponed as 2.70 ppm				T. Constant of the state of the	Revised 1/04/00	Org. Lyoung as 0,74 ppm		- Concentration detected below MD).	Revised 11/29/99	Ong. reported as 0.82 ppm	J - Concentration detected below MDL		J - Concentration detected below MDL	
	ERM/BWE Analytical Results	(BpB)	6.47	0.46	1.76	869	169	2.09	2.51	27.6	0 60	66.0	0.40	69.0	0.47	22.0	0.86	0.40	02.0	20.0	1.00	0.48			1.02
Earth Tech	Analytical Results	(mdd)									0.0	300	0				2.0				Idd	BUL			
Date	Cat B Package	Received	01/19/00	01/19/00	00/61/10	01/24/00	01/19/00	01/24/00	01/19/00	01/19/00	01/16/00	01/04/00	00/20/10	01/02/00	01/02/00	01/02/00	01/02/00	01/02/00	00/20/10	12/02/99	01/07/00	11/10/00	11/10/00	11/13/39	
	Date Data	Received	12/14/99	12/16/99	12/14/99	12/15/99	12/16/99	12/15/99	12/16/99	12/16/99	12/15/99	11/19/99	11/19/99	11/19/99	11/18/99	11/18/99	11/22/99	11/18/99	11/22/99	10/20/99	11/22/90	10/18/00	10/18/00	10/10/22	
	Date	Analyzed	12/14/99	12/16/99	12/14/99	12/13/99	12/16/99	12/13/99	12/16/99	12/16/99	12/15/99	11/18/99	11/18/99	11/18/99	11/18/99	11/15/99	11/21/99	11/15/99	11/21/99	10/18/99	11/21/99	10/15/99	10/15/00		
	Date	Collected	12/10/99	12/15/99	12/10/99	12/10/99	12/15/99	12/10/99	12/15/99	12/15/99	12/14/99	11/13/99	11/13/99	11/13/99	11/12/99	11/12/99	11/13/99	11/12/99	11/13/99	10/14/99	11/13/99	10/14/99	10/13/99	04/26/99	
		ERM Sample ID	PX-Shoreline-12 +4	PX-Shoreline-12 +4 RD	PX-Shoreline-13 +4	PX-Shoreline-14	PX-Shoreline-14 +4	PX-Shoreline-15	PX-Shoreline-15 +4	PX-Shoreline-16 +4	PX-Shoreline-17 +4	PX-Shoreline-18	PX-Shoreline-19	PX-Shoreline-20	111299 Dup	PX-Shoreline-21	PX-Shoreline-21 +4	PX-Shoreline-22	PX-Shoreline-22 +4	PX-Shoreline-23	PX-Shoreline-23 +4	PX-Shoreline-24	PX-Shoreline-25	PX-Shoreline 26 is PX-Lake-01	File: L'iwork/32419/centrat tables/asset se tour L'imork/32419/centrat tables/asset se tour se
	Chain of	Custody#	J 3964-3	J 4620-1	J 3964-4	J 3966-2	J 4620-3	J 3966-3	J 4619-1	J 4619-2	J 4618-2	J 3414-3	J 3414-2	J 3414-1	J 3411-1	13411-2	J 3415-3	J 3411-3	J 3415-2	I 5165-1	J 3415-1	I 5164-1	15162-1	I 5075	File: L:\work\3

File: L: Work\32419\certrpt tables\post ex data 122299.xls

	rajov.	J - Concentration detected below MDL	-	Revised 11/29/99	Ong. reported as 37.2 ppm Duplicate Revised 11/29/99	Revised 12/2/99	City reported as 2.99 ppm	O - Autayucat vatic is a non-detect	J - Concentration detected below MDE. Revised 12/2/99	Ong. reported as 0.34 ppm. U		J - Concentration detected below MDL	T Anathrical units is	I Consentation death is a Holl-United	Concentration detected below MDL	J - Concentration detected below MDL		J - Concentration detected below MDL	J - Concentration detected below MDL	J - Concentration defected below MDL Revised 01/04/00 Orig. reported as 1.48 ppm	13
ERMIBWE Analytical Results form)	0.47	0.47	1.00	35.8	30.6	2.98	0.43		0.450	1.450	0.45	0.43	0.43	0.45	0.42	24:0	0.45	0.45	0.45	0.83	
Earth Jech Analytical Results	2									1.7										0.1	
Date Cat B Package Received	12/08/99	12/08/00	120021	12/02/99	12/02/99	12/08/99	01/02/00		12/08/99	01/02/00	12/08/99	01/02/00	01/19/00	01/02/00	01/19/00	01/02/00	01/02/00	01/07/00	12/08/99	01/01/00	
Date Data Received	10/29/99	10/29/99		10/29/99	10/29/99	11/11/99	11/19/99		66/91/11	11/22/99	11/16/99	11/22/99	11/17/99	11/22/99	11/17/99	11/22/99	11/18/99	11/22/99	11/16/99	11/22/99	
Date Analyzed	10/29/99	10/29/99		10/29/99	10/29/99	11/10/99	11/18/99		11/10/99	11/21/99	11/10/99	11/21/99	11/15/99	11/21/99	11/15/99	11/21/99	11/15/99	11/21/99	11/10/99	11/21/99	
Date Collected	10/27/99	10/28/99		10/27/99	10/27/99	11/05/99	11/15/99		11/08/99	11/13/99	66/60/11	11/13/99	11/11/99	11/13/99	66/11/11	11/13/99	11/12/99	11/13/99	66/80/11	11/13/99	
ERM Sample ID	PX-Shoreline-27	PX-Shoreline-28		PX-Lake-I-2	102799	PX-Lake-I-2-RD	PX-Lake-I-3 +4		PX-Lake-II-1	PX-Lake-II-1 +4	PX-Lake-II-2	PX-Lake-II-2 +4	PX-Lake-II-3	PX-Lake-II-3 +4	PX-Lake-II-4	PX-Lake-II-4 +4	PX-Lake-II-5	PX-Lake-II-5 +4	PX-Lake-11-6	PX-Lake-II-6 +4	Elle 1 Numerica 2010 mentions to be a consequent
Chain of Custody#	I 5257-1	I 5261-1	LIKEI	I 5256-1	I 5256-2	17123-1	J 3416-2	LAKEJI	17126-2	J 3415-4	17126-3	J 3415-5	J 3409-1	J3415-6	J 3409-2	J 3415-7	J34114	J 3415-8	17126-1	6-	Ella: 1 stunetia

AECOM Environment

Appendix C

Site Inspection Photos

AECOM

PHOTOGRAPHIC LOG

Client Name: Dzus Fasteners NYS DEC Work Order D004445-14.2A Site Location: Dzus Fasteners Site, West Islip, NY

Project No.

Photo No.

Date: 08/19/09

Direction Photo

Taken: Facing east

Description:

Willetts Creek, by the outfall, sampling location SED-6

Photo No.

Date: 08/19/09

Direction Photo Taken:

Facing east

Description:

DZUS Fasteners site, asphalt cap.

AECOM

PHOTOGRAPHIC LOG

Client Name: Dzus Fasteners NYS DEC Work Order D004445-14.2A Site Location: Dzus Fasteners Site, West Islip, NY

Project No.

Photo No.

Date: 08/19/09

Direction Photo

Taken: Facing east

Description:

DZUS Fasteners site, asphalt cap.

Photo No.

4

Date: 08/19/09

Direction Photo

Taken:

Facing east

Description:

Willetts Creek. Just south of the Middle School Burling Lane bridge, location of SED-5 sample.

AECOM

PHOTOGRAPHIC LOG

Client Name: Dzus Fasteners NYS DEC Work Order D004445-14.2A Site Location: Dzus Fasteners Site, West Islip, NY

Project No.

Photo No.

Date: 08/19/09

Direction Photo

Taken:

Facing north

Description:

Willetts Creek, immediately north of the Edmore Lane bridge

Photo No.

Date: 08/19/09

Direction Photo Taken:

Facing North-west

Description:

Lake Capri

AECOM Environment

Appendix D
Well Sampling Logs

_		ernational Ltd.		PROJECT					PROJECT No.	SHEET	SHEETS
WELL	SAMP	LING FO	RM	MULTI S	ITE-G			IDATE WELL	87616 / 03	1 OF	1
		ers, West	Islip, N	Y, #1-52-0)33			6/8/06		6/8/06	
New Y	ork Sta	te Depart	ment of	f Environn	nental (Conser	vation	Kevin Se	ise, Jason Kl	lein	
DRILLING	COMPANY							SIGNATURE (OF INSPECTOR		
ONE WELL	VOLUME	: 1.15			WELL TD:	15.06			PUMP I	INTAKE DEPTH:	
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water (ft)	Rate (ml/min)	Temp. (C)	Conduct. (ms/cm)	DO (mg/L)	рН	ORP	Turbidity (ntu)		REMARKS	
	8	(1111/11111)	14.5	0.138	6.09	5.47	247.8				
12:00	0		13.79		6.77	5.59	226.7	20	Purge Volun	ne 3.456 gal.	-
12.00			13.73	0.130	0.77	3.33	220.1	20	i dige volui	116 3.430 gai.	
			ļ	<u> </u>							
			 	 	 						
	 										
	 										
			ļ								
			 	 	\vdash						
			 								
									<u> </u>		
Pump	Туре:	Centrifug	jal pum	p with bla	ck poly	tubing					
Analyti	cal Par	ameters:		TAL Meta	als						

_		ernational Ltd.		PROJECT					PROJECT No.	SHEET	SHEETS
WELL	SAMP	LING FO	₹M	MULTI S	ITE-G			DATE WELL S	87616 / 03	1 OF	1
		ers, West	Islip, N`	Y, #1-52-0)33			6/8/06	;	6/8/06	
New Y	ork Sta	te Depart	ment of	f Environn	nental (Conser	vation	Kevin Se	ise, Jason K	lein	
DRILLING	COMPANY							SIGNATURE (OF INSPECTOR		
ONE WELL	VOLUME	: 1.00			WELL TD:	14.3			PUMP I	INTAKE DEPTH:	
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water (ft)	Rate (ml/min)	Temp. (C)	Conduct. (ms/cm)	DO (mg/L)	рН	ORP	Turbidity (ntu)	1	REMARKS	
	8.15	(,	14.79		3.4	5.95	193.1	1.23			
14:35	0110		14.34		6.01	5.97	119.1	1.79	Purge Volur	ne 3.0 gal.	
1 1.00			1 110 1	01112	0.0 .	0.07	11011	1110	i argo volar	no oro gan	
			<u> </u>								
											
			-	 	\vdash						
				p with bla		tubing					
Analyti	cal Par	ameters:		TAL Meta	ais						

_		ernational Ltd.		PROJECT					PROJECT No.	SHEET	SHEETS
WELL	SAMP	LING FO	RM	MULTI S	ITE-G				87616 / 03	1 оғ	1
LOCATION Dzus F CLIENT		ers, West	Islip, N`	Y, #1-52-0)33			6/8/06	;	6/8/06	
New Y	ork Sta	te Depart	ment of	f Environn	nental (Conser	vation	Kevin Se	ise, Jason K	lein	
DRILLING	COMPANY	•						SIGNATURE (OF INSPECTOR		
ONE WELI	L VOLUME	:			WELL TD:	15.03			PUMP	INTAKE DEPTH:	
	Depth to	Purge		FIEI	LD MEAS	SUREME	NTS				
Time	Water (ft)	Rate (ml/min)	Temp. (C)	Conduct. (ms/cm)	DO (mg/L)	рН	ORP	Turbidity (ntu)]	REMARKS	
	5.77	(,	16.65		7.19	5.8	227.4				
9:20	0		16.1	0.226	6.44	5.76	229.1	1.6			
0.20				0.220	0	00					
Pump	Type:	Centrifug	al pum	p with bla	ck poly	tubing					
Analyti	ical Par	ameters:		TAL Meta	als						

A ty	CO Into	ternational Ltd.	. Company							
WELL	SAMP	LING FOR	RM	PROJECT MULTI S	SITE-G				PROJECT No. 87616 / 03	SHEET SHEETS 1 OF 1
LOCATION Dzus F CLIENT	astene	ers, West I	Islip, N	Y, #1-52-0	033			6/8/06	STARTED SPECTOR	6/8/06
New Y	Ork Sta	ate Departi	ment of	Environn	nental C	Conserv	vation	Kevin Se	eise, Jason Kloof inspector	ein
ONE WELI	L VOLUME	: 1.19			WELL TD:				PUMP II	NTAKE DEPTH:
	Depth to	Purge			LD MEAS					
Time	Water (ft)	Rate (ml/min)	Temp.	Conduct. (ms/cm)	(mg/L)		ORP	Turbidity (ntu)		REMARKS
	4.59		17.5	0.067	7.75	6.72	183.3			
8:50			16.61	0.202	7.5	6.04	211.8	2.68	Purge Volum	ne 3.59 gal.
		 	<u> </u>						<u> </u>	
	<u> </u>						<u> </u>			
									<u> </u>	
	 	<u> </u>	 	 	<u> </u>	 	 	 	 	_
				 	 		<u> </u>	 		
		<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>			
	<u> </u>									
		<u> </u>	 '		<u> </u> '	↓	<u> </u>	<u> </u>	<u> </u>	
	 	<u> </u> '	 	 	<u> </u> '	—	<u> </u>	├ ──	 	
	 			 	<u> </u> !	 	 	 	 	
	 	<u> </u>	 	 		 	 	 		
		<u> </u>							<u> </u>	
		<u> </u>								
	<u> </u>	<u> </u> '	 '	<u> </u>	<u> </u> '	↓	<u> </u>	<u> </u>	<u> </u>	
	 	<u> </u> '	 	 	<u> </u> '	—	<u> </u>	 	 	
	├──	<u> </u>	 	 	<u> </u>	 	 	├──	 	
	 	<u> </u>	 	 	 					
			 		 	 	<u> </u>	 	+	
		<u> </u>					†		 	
		Centrifug				tubing			•	
Analyti	cal Par	rameters:		TAL Meta	als					

_		ernational Ltd.		PROJECT					PROJECT No.	SHEET	SHEETS
WELL	SAMP	LING FO	RM	MULTI S	ITE-G			I	87616 / 03	1 of	1
LOCATION Dzus F CLIENT		ers, West	Islip, N`	Y, #1-52-0)33			6/8/06	;	6/8/06	
New Y	ork Sta	te Depart	ment of	f Environn	nental (Conser	vation	Kevin Se	eise, Jason K	lein	
DRILLING	COMPANY							SIGNATURE (OF INSPECTOR		
ONE WELI	L VOLUME	: 6.48			WELL TD:	44.22			PUMP	INTAKE DEPTH:	
	Depth to	Purge		FIE	LD MEAS	SUREME	ENTS				
Time	Water (ft)	Rate (ml/min)	Temp. (C)	Conduct. (ms/cm)	DO (mg/L)	рН	ORP	Turbidity (ntu)		REMARKS	
	4.5	(,	18.19		7.03	5.91	222.8				
9:10			15.8	0.15	3.96	5.66	235.8		Purge Volur	ne 19.44 gal.	
0.10			10.0	0.10	0.00	0.00	200.0	1100	i argo voiai	no rorri gan	
			<u> </u>								
			<u> </u>	 	<u> </u>						
			 	 							
			<u> </u>	<u> </u>							
			ļ	<u> </u>							
			 	 							
			 	 	 						
Pump	Туре:	Centrifug	jal pum	p with bla	ck poly	tubing					
Analyti	ical Par	ameters:		TAL Meta	als						

WELL NO. MW-13A

ALY	GU Into	ernational Ltd.	. Company						Inno 1507 H	
WELL	SAMP	LING FO	RM	PROJECT MULTI S	ITF-G				PROJECT No. 87616 / 03	SHEET SHEETS 1 of 1
LOCATION	1		X.141	IMOLITO				DATE WELL S		DATE WELL COMPLETED
Dzus F	astene	ers, West	Islip, N	Y, #1-52-0)33			6/8/06		6/8/06
CLIENT		1 . D		(-				NAME OF INS		- •
New Y	ORK Sta	ite Depart	ment of	f Environn	nental C	Jonser	vation	Kevin Se	eise, Jason Kl	ein
DKILLING	COMPANT							SIGNATURE	OF INSPECTOR	
ONE WELI	L VOLUME	:			WELL TD:	10.65			PUMP I	NTAKE DEPTH:
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS			
Time	Water	Rate	Temp.	Conduct.		pН	ORP	Turbidity		REMARKS
	(ft) 2.59	(ml/min)	(c)	(ms/cm)	(mg/L) 2.72	6.60	106.0	(ntu) 110		
7:50	2.59		17.1		2.72	6.62 6.86	196.9 232.7	92		
7.50			17.1	0.622	2.32	0.00	232.1	92		
			 	 						
				 						
			 	 						
			†	†						
			<u> </u>							
				<u> </u>						
			<u> </u>							
			-							
			-	 						
			 	 	\vdash					
				 						
			 	 						
	!	!						1	1	
Pump	Type:	Centrifug	jal pum	p with bla	ck poly	tubing				
Analyti	ical Par	ameters:		TAL Meta	als					

WELL NO. MW-13B

_		ernational Ltd.		PROJECT					PROJECT No.	SHEET	SHEETS
WELL	SAMP	LING FO	RM	MULTI S	ITE-G				87616 / 03	1 of	1
LOCATION Dzus F CLIENT		ers, West	Islip, N	Y, #1-52-0)33			6/8/06	;	6/8/06	
New Y	ork Sta	te Depart	ment of	f Environn	nental (Conser	vation	Kevin Se	eise, Jason K	lein	
DRILLING	COMPANY							SIGNATURE (OF INSPECTOR		
ONE WELI	_ VOLUME	:			WELL TD:	44.95			PUMP	INTAKE DEPTH:	
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				-
Time	Water (ft)	Rate (ml/min)	Temp. (C)	Conduct. (ms/cm)	DO (mg/L)	рН	ORP	Turbidity (ntu)		REMARKS	
	2.39	(,	16.2	0.101	8.49	6.63	226.4				
8:04	2.00		15.53		5.55	5.77	238				
0.01			10.00	0.000	0.00	0.77	200				
			<u> </u>								
Pump	Туре:	Centrifug	jal pum	p with bla	ck poly	tubing					
Analyti	cal Par	ameters:		TAL Meta	als						

WELL NO. MW-15A

_		ernational Ltd.		PROJECT					PROJECT No.	SHEET	SHEETS
WELL	SAMP	LING FO	RM	MULTI S	ITE-G			DATE WELL S	87616 / 03	1 OF	1
		ers, West	Islip, N`	Y, #1-52-0)33			6/7/06	;	6/7/06	
New Y	ork Sta	te Depart	ment of	f Environn	nental (Conser	vation	Kevin Se	ise, Jason K	lein	
DRILLING	COMPANY							SIGNATURE (OF INSPECTOR		
ONE WELL	VOLUME	: 3.754			WELL TD:	28.55			PUMP	INTAKE DEPTH:	
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water (ft)	Rate (ml/min)	Temp. (C)	Conduct. (ms/cm)	DO (mg/L)	рН	ORP	Turbidity (ntu)	1	REMARKS	
	5.48	(,	15.97		1.16	5.68	188.3	3.27			
11:42	0.10		14.54		4.8	5.99	180.9	1.62	Purge Volur	me 11.26 gal.	
				51.15		0.00			i ungo rom	<u></u>	
				<u> </u>							
					-						
	 										
	 										
				 							
				<u> </u>							
Pump	Туре:	Centrifug	jal pum	p with bla	ck poly	tubing					
Analyti	cal Par	ameters:		TAL Meta	als						

WELL NO. MW-15B

_		ernational Ltd.		PROJECT					PROJECT No.	SHEET	SHEETS
WELL	SAMP	LING FO	RM	MULTI S	ITE-G			DATE WELL S	87616 / 03	1 OF	1
		ers, West	Islip, N`	Y, #1-52-0)33			6/7/06		6/7/06	
New Y	ork Sta	te Depart	ment of	f Environn	nental (Conser	vation	Kevin Se	ise, Jason K	lein	
DRILLING	COMPANY							SIGNATURE C	OF INSPECTOR		
ONE WELL	VOLUME	: 12.88			WELL TD:	84.31			PUMP	INTAKE DEPTH:	
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water (ft)	Rate (ml/min)	Temp. (C)	Conduct. (ms/cm)	DO (mg/L)	рН	ORP	Turbidity (ntu)	1	REMARKS	
	5.35	(,	15.95		2.79	5.34	178.3	3.85			
11:15	5.41		14.25		2.92	5.43	189	1.67	Purae Volur	me 38.659 gal	
			1				100	1101	i ingi i ina		
				ļ							
			<u> </u>	 							
				 							
			├──	 	<u> </u>						
			 	 							
											-
			 	 	 						
			1	†							
Pump	Туре:	Centrifug	jal pum	p with bla	ck poly	tubing					
Analyti	cal Par	ameters:		TAL Meta	als						

_		ernational Ltd.		PROJECT					PROJECT No.	SHEET	SHEETS
WELL	SAMP	LING FO	RM	MULTI S	ITE-G			IDATE WELL	87616 / 03	1 OF	1
		ers, West	Islip, N	Y, #1-52-0)33			6/8/06		6/8/06	
New Y	ork Sta	te Depart	ment of	f Environn	nental (Conser	vation	Kevin Se	ise, Jason K	lein	
DRILLING	COMPANY							SIGNATURE C	OF INSPECTOR		
ONE WELL	. VOLUME	: 0.898			WELL TD:	13.43			PUMP	INTAKE DEPTH:	
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water (ft)	Rate (ml/min)	Temp. (C)	Conduct. (ms/cm)	DO (mg/L)	рН	ORP	Turbidity (ntu)		REMARKS	
	7.93	(,	14.68		7.74	6.16	217.5				
11:15	7.00		13.63		4.19	6.11	218.2	2.2	Purge Volur	ne 2.693 gal	
			10.00	01111		0	2.0.2		i argo volar	110 21000 gai	
				ļ							
			 								
			1	 							
	 										
				ļ							
			 	 	<u> </u>						
			-	 							
				p with bla		tubing					
Analyti	cal Par	ameters:		TAL Meta	als						

WELL NO. MW-22A

ALY	LU INTO	ernationai Ltd.	Company							
WFII	SAMP	LING FOI	RM	PROJECT MULTI S	ITF-G				PROJECT No. 87616 / 03	SHEET SHEETS 1 of 1
LOCATION	I		XIVI	MOLITO	112 0			DATE WELL S		DATE WELL COMPLETED
Dzus F	astene	rs, West	lslip, N	Y, #1-52-0)33			6/7/06		6/7/06
CLIENT	1 01	. 5 .		, <u> </u>		`		NAME OF INS		
New Y	ork Sta company	te Depart	ment of	f Environn	nental C	Jonser	ation	Kevin Se	ise, Jason Kl	ein
DRILLING	COMPANT							SIGNATURE	or inspector	
ONE WELL	- VOLUME	:			WELL TD:	14.4			PUMP I	NTAKE DEPTH:
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS			
Time	Water	Rate	Temp.	Conduct.	DO (m m/l)	pН	ORP	Turbidity	1	REMARKS
	(ft) 6	(ml/min)	(C)	(ms/cm) 0.615	(mg/L) 2.54	6.31	19.1	(ntu) 1.36		
9:50	0		13.03	0.677	2.76	6.43	23.2	1.41	Duplicate	
9.50			13.21	0.077	2.70	0.43	23.2	1.41	Duplicate	
				 					-	
				 					-	
				 					<u> </u>	
				 					-	
				 						
				 						
			,							
Pump	Type:	Centrifug	al pum	p with bla	ck poly	tubing			_	
Analyti	cal Par	ameters:		TAL Meta	als					

WELL NO. MW-22B

ALY	GU Inte	ernational Ltd.	. Company						Inno inot his	OUEST OUESTO
WELL	SAMP	LING FO	RM	PROJECT MULTI S	ITF-G				PROJECT No. 87616 / 03	SHEET SHEETS 1 of 1
LOCATION	1			IMOLITO				DATE WELL S		DATE WELL COMPLETED
Dzus F	astene	rs, West	Islip, N	Y, #1-52-0)33			6/7/06		6/7/06
CLIENT	1.04	. 5 .						NAME OF INS		
New Y	ork Sta	te Depart	ment of	f Environn	nental (Jonser	vation	Kevin Se	eise, Jason Kl	ein
DKILLING	COMPANT							SIGNATURE	or inspector	
ONE WELL	VOLUME	:			WELL TD:	14.4			PUMP I	INTAKE DEPTH:
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS			
Time	Water (ft)	Rate (ml/min)	Temp. (C)	Conduct. (ms/cm)	DO (mg/L)	рН	ORP	Turbidity (ntu)]	REMARKS
	5.82	(1111/111111)	14.1	0.106	5.84	5.6	184.1	1.38		
10:00	3.02		14.32		5.76	5.43	180.6	1.25	MS	
10.00			14.52	0.104	3.70	3.43	100.0	1.23	MSD	
									IVIOD	
			 	 	 					
			1	†						_
			Ь		<u> </u>		<u> </u>	<u> </u>		
Pump	Туре:	Centrifug	jal pum	p with bla	ck poly	tubing				
Analyti	cal Par	ameters:		TAL Meta	als					

WELL NO. MW-23A

_		ernational Ltd.		PROJECT					PROJECT No.	SHEET	SHEETS
WELL	SAMP	LING FO	RM	MULTI S	ITE-G			DATE WELL S	87616 / 03	1 OF	11
		ers, West	Islip, N`	Y, #1-52-0)33			6/7/06		6/7/06	
New Y	ork Sta	te Depart	ment of	f Environn	nental (Conser	vation	Kevin Se	ise, Jason K	lein	
DRILLING	COMPANY							SIGNATURE C	OF INSPECTOR		
ONE WELI	VOLUME	: 1.628			WELL TD:	14.57			PUMP I	INTAKE DEPTH:	
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water (ft)	Rate (ml/min)	Temp. (C)	Conduct. (ms/cm)	DO (mg/L)	рН	ORP	Turbidity (ntu)	1	REMARKS	
	4.59	(1111/111111)	17.45		1.4	6.43	3.6	170			
9:30	4.00		17.40	0.449	3.17	6.3	18.5	170	Purge Volur	ne 4.886 gal.	
0.00				01110	0	0.0	10.0		r argo volar	no noco gan	
		<u> </u>	<u> </u>						<u> </u>		
Pump	Type:	Centrifug	jal pum	p with bla	ck poly	tubing					
Analyti	cal Par	ameters:		TAL Meta	als						

WELL NO. MW-23B

_		ernational Ltd.		PROJECT	.== -				PROJECT No.	SHEET	SHEETS
WELL	SAMP	LING FO	RM	MULTI S	ITE-G			DATE WELL S	87616 / 03	1 OF DATE WELL COMPLETED	11
		ers, West	Islip, N`	Y, #1-52-0)33			6/7/06	;	6/7/06	
New Y	ork Sta	te Depart	ment of	f Environn	nental (Conserv	vation	Kevin Se	ise, Jason K	lein	
DRILLING	COMPANY							SIGNATURE C	OF INSPECTOR		
ONE WELI	VOLUME	: 6.55			WELL TD:	44.67			PUMP I	INTAKE DEPTH:	
	Depth to	Purge		FIEI	LD MEAS	SUREME	NTS				
Time	Water (ft)	Rate (ml/min)	Temp. (C)	Conduct. (ms/cm)	DO (mg/L)	pН	ORP	Turbidity (ntu)		REMARKS	
	4.51	(,	18.62		6.68	6.86	75.4	200			
9:40			16.56		6.45	6.52	62.4	12.3	Purae Volur	ne 19.66 gal.	
01.10				0.0.0	01.10	0.02	0		i ungo rom		
			├								
			 								
			 								
			 								
			<u> </u>								
			<u> </u>								
			 								
			 								
			 								
			<u> </u>								
Pump	Туре:	Centrifug	jal pum	p with bla	ck poly	tubing					
Analyti	cal Par	ameters:		TAL Meta	als						

ALY		ternational Ltd.	. Company	PROJECT					PROJECT No.	SHEET SHEETS
WELL	SAMP	LING FO	RM	MULTI S	ITE-G				87616 / 03	1 of 1
LOCATION	1	LING FO	14101	•				DATE WELL S	STARTED	DATE WELL COMPLETED
Dzus F	-astene	ers, West ate Depart	Islip, N	Y, #1-52-0)33			6/21/06		6/21/06
CLIENT New Y	ork Sta	ate Denart	ment of	f Environr	nental (Conserv	vation	NAME OF INS	вресток eise, Jason Kl	lain
DRILLING	COMPANY	/	mont c.	LIIVIIO	Homa.	7011001	/ation	SIGNATURE (OF INSPECTOR	ieii i
ONE WEL	L VOLUME	.:			WELL TD:				PUMP !	INTAKE DEPTH:
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS			
Time	Water (ft)	_	Temp. (C)	Conduct. (ms/cm)	DO (mg/L)	pН	ORP	Turbidity (ntu)	1	REMARKS
9:05	ν- ,	,	22.4	0.2	12.06		90.8	(†	
-		<u> </u>						†	†	
	<u> </u>	<u> </u>		<u> </u>				<u> </u>	<u> </u>	
	<u> </u>	↓	<u> </u>		<u> </u>	<u> </u>		 	 	
	 	 	_	 	ļ!	├ ──'	 	 	 	
	 	 	<u> </u>	 	 		<u></u>	 	 	
		+	<u> </u>	 	 			+	+	
	 	1	 		 			+	+	
		+		1				+	+	
								† <u> </u>		
	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	Ι	<u> </u>	
	<u> </u>	 	<u> </u>	<u> </u>		<u> </u>	<u> </u>	 	 	
<u> </u>	 	 	 	<u> </u>		<u> </u>		 	 	
<u> </u>	 	 	 	 				 	+	
<u> </u>	 	+	<u> </u>	 	 		 	+	+	
		+			+ +			+	+	
		<u> </u>						†	<u> </u>	
		<u> </u>	<u> </u>					<u>1</u>	1	
<u> </u>	<u> </u>	 	<u> </u>	<u> </u>	<u> </u>	<u> </u>	_	 	 	
<u> </u>	<u> </u>	↓	<u> </u>	 	 	└		↓	 	
<u> </u>	 	 	<u> </u>	 	 	 '	<u> </u>	 	 	
	 	 	 				 	+	+	
 	 	1	 		 			+	+	
		<u> </u>						†	†	
		1	İ	İ	[<u> </u>	† <u> </u>	İ	
Pump	Туре:	grab sam	nple						_	
Analyti	ical Par	rameters:		TAL Meta	als					

ALY	LU IIII	ernational Ltd.		PROJECT					PROJECT No.	SHEET SHEETS
WELL	SAMP	LING FO	RM	MULTI S	SITE-G				87616 / 03	1 OF 1
LOCATION	1							DATE WELL S	STARTED	DATE WELL COMPLETED
Dzus h	-astene	ers, West	Islip, N	Y, #1-52-()33			6/21/06 NAME OF INS		6/21/06
New Y	ork Sta	ate Depart	ment of	f Environr	nental (Conser	vation		eise, Jason Kl	lein
DRILLING	COMPANY	10 2000	1110111 2.	<u></u>	110111	701.00.	valio	SIGNATURE (OF INSPECTOR	
ONE WEL	L VOLUME	:			WELL TD:				PUMP I	INTAKE DEPTH:
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS			
Time	Water (ft)	_	Temp. (C)	Conduct. (ms/cm)	DO (mg/L)	рН	ORP	Turbidity (ntu)	1	REMARKS
9:35	(-,)	,	17.55		15.26		102.3		†	
-			<u> </u>	-			<u> </u>		†	
	<u> </u>	<u> </u>		<u> </u>			†	<u></u>	<u> </u>	
<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	ــــــ	↓	<u> </u>	 	
<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	—	<u> </u>	 	
<u> </u>	<u> </u>	<u> </u>	<u> </u>	 	<u> </u>		—	<u> </u>	 	
	 	 	<u> </u>	 			 	 	+	
	 	 		 			-	 	+	
	 	+		 	 	 		+	+	
							\vdash	+	+	
	<u> </u>	<u> </u>						<u> </u>	<u> </u>	
	<u> </u>	<u> </u>		<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	
	<u> </u>	<u> </u>	<u> </u> '	<u> </u>	<u> </u>	<u> </u>	↓	<u> </u>		
<u> </u>	<u> </u>	 	<u> </u>	 	 	<u> </u>	—	 	 	
<u> </u>	 	 	<u> </u>	 	 		 	 	+	
<u> </u>	-	 	-	 	 	\vdash	┼──	+	+	
	 	 	 	 	 	 	+		+	
		 			+ +		 	 	+	
			<u> </u>				<u> </u>		†	
							T	1	1	
	<u> </u>	<u> </u>	↓	<u> </u>	 					
<u> </u>		<u> </u>	<u> </u> '		ļ!	—	↓	<u> </u>	 	
<u> </u>	 	 	<u> </u>	 	 		 	 	+	
<u> </u>	<u> </u>	<u> </u>	<u> </u>	L			Ь			
Pump	Туре:	grab sam	nple							
Analyt	ical Par	rameters:		TAL Meta	als					

_		ernational Ltd.		PROJECT					PROJECT No.	SHEET SHEE
WELL	SAMP	LING FO	RM	MULTI S	ITE-G				87616 / 03	1 of 1
LOCATION Dzus F CLIENT	astene	ers, West	Islip, N	Y, #1-52-()33			6/21/06 NAME OF INSI	SPECTOR	DATE WELL COMPLETED 6/21/06
New Y	ork Sta	te Depart	ment of	Environn	nental (<u> Conserv</u>	/ation	Kevin Se	eise, Jason Kl of Inspector	lein
ONE WELI	L VOLUME				WELL TD:				PUMP	INTAKE DEPTH:
	Depth to	Purge			LD MEAS					
Time	Water (ft)	Rate (ml/min)	Temp.	Conduct. (ms/cm)	DO (mg/L)	pН	ORP	Turbidity (ntu)		REMARKS
10:20			23.34		14.52		72.2		<u> </u>	
	<u> </u>	 	<u> </u>	 	<u> </u> !	 '	 	 	 	
	 	 		 	 			+	+	
	 	<u> </u>		<u> </u>	<u> </u>	<u> </u>	 	<u> </u>	<u> </u>	
	<u> </u>	 		 	 	\vdash	 	<u> </u>	 	
		<u> </u>		<u> </u>			<u> </u>	 	 	
	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	 	 	
				<u> </u>				1	 	
		<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	 	 	
	<u> </u>	<u> </u>		<u> </u>	<u> </u>	 '	 			
	 	 	<u> </u>	 		\vdash	 	 	<u> </u>	
	\vdash	 		 	-	\vdash	 	+	<u> </u>	
		<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>	<u> </u>	
 '	<u> </u>	<u> </u>	<u> </u> '	<u> </u>	<u> </u>	<u> </u>	—	 	<u> </u>	
<u> </u>		 	 	 	 -	\vdash	├──	 	 	
	\vdash	 		 	 			+	+	
								†		
<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	—	 	<u> </u>	
<u> </u>	 	 	 	 	 	\vdash	 	 	 	
	\vdash	 		 	 			+	 	
	<u> </u>		<u> </u>				<u> </u>	<u> </u>	<u> </u>	
Pump	Туре:	grab sam	nple							
Analyti	cal Par	rameters:		TAL Meta	als					

		ernational Ltd.		PROJECT					PROJECT No.	SHEET	SHEETS
WELL	SAMP	LING FO	RM	MULTI S	ITE-G			I	87616 / 03	1 оғ	1
LOCATION Dzus F CLIENT		ers, West	Islip, N	Y, #1-52-0)33			6/21/06		6/21/06	
New Y	ork Sta	te Depart	ment of	f Environn	nental (Conser	vation	Kevin Se	ise, Jason K	lein	
DRILLING	COMPANY	•						SIGNATURE C	OF INSPECTOR		
ONE WELL	. VOLUME	:			WELL TD:				PUMP	INTAKE DEPTH:	
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water (ft)	Rate (ml/min)	Temp. (C)	Conduct. (ms/cm)	DO (mg/L)	рН	ORP	Turbidity (ntu)		REMARKS	
11:00			23.4	0.199	17.01	8.33	88.8		Duplicate		
									MS		
									MSDS		
				<u> </u>							
			-	 					ļ		
				 							
				 	\vdash				<u> </u>		
				 							
				<u> </u>							
			<u> </u>						<u> </u>		
Pump	Type:	grab sam	nple								
Analyti	cal Par	ameters:		TAL Meta	als						

ALG		ernational Ltd.		PROJECT					PROJECT No.	SHEET SHEETS
WELL	SAMP	LING FOR	RM	MULTI S	SITE-G				87616 / 03	1 OF 1
LOCATION	ī .			•				DATE WELL S	STARTED	DATE WELL COMPLETED
Dzus F	astene	rs, West	Islip, N	Y, #1-52-0)33			6/21/06 NAME OF INSI		6/21/06
New Y	ork Sta	ite Depart	ment o	f Environr	nental (Conser	vation		eise, Jason Kl	lein
DRILLING	COMPANY	10 20 20	11101111 1		1101116.	701100.	741.5	SIGNATURE (OF INSPECTOR	
								<u></u>		
ONE WELI	L VOLUME :	:			WELL TD:				PUMP!	INTAKE DEPTH:
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS			
Time	Water (ft)	_	Temp.	Conduct. (ms/cm)	DO (mg/L)	рН	ORP	Turbidity (ntu)	1	REMARKS
11:50	(,	(,	16.5	0.19	6.97	7.08	90.2		+	
			10.0	<u> </u>	 0.0.		00	+	+	
					 			 	+	-
								1	†	
								1	1	
									<u> </u>	
	Ĺ'				<u> </u>	Ĺ <u></u>		<u> </u>	Ι	
<u> </u> '	<u> </u>	 '	<u> </u>	 '	<u> </u> !	<u> </u>	<u> </u>			
<u> </u> '	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	 		
ļ!	<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ!	<u> </u>	 	 	 	
<u> </u>	<u> </u>	ļ'	<u> </u>	ļ'	 	<u> </u>	 	 	 	
	<u></u> '	<u> </u>	 	<u> </u>	 			+	+	
 		 	 	 			 	+	+	
	 	<u> </u>	 	<u> </u>	 			+	+	
		<u> </u>		<u> </u>	 		 	+	+	
	$\vdash \vdash \vdash$	 	 	 	+ +			+	+	
					 			 	+	-
								1	†	
						[T	1	
					[ſ <u></u> '			1	
'	Ĺ'				<u> </u>	Ĺ'		<u> </u>	Ι	
<u> </u>	<u> </u>	<u> </u> '	<u> </u>	<u> </u> '	<u> </u>					
 '	<u> </u>	 '	<u> </u>	 '	 !	<u> </u>	<u> </u>	 		
<u> </u>	<u> </u>	 	<u> </u>	 	<u> </u>	<u> </u>	ļ	 		
 	<u> </u>	<u> </u>	 	<u> </u>	 	<u> </u>	 	 	 	
 	 '	<u> </u>	 	<u> </u>	 	 '	 	+	+	
		 	 	 	 	 	 	+	+	
 	 		 		 	 	 	+	+	
 	<u> </u>	<u></u>	<u> </u>							
Pump	Type:	grab sam	nple							
Analyti	cal Par	rameters:		TAL Meta	als					

ALG		ernational Ltd.		PROJECT					PROJECT No.	SHEET SHEETS
WELL	SAMP	LING FOR	RM	MULTI S	ITE-G				87616 / 03	1 OF 1
LOCATION	1							DATE WELL S	STARTED	DATE WELL COMPLETED
Dzus F	astene	ers, West l	Islip, N	<u>/, #1-52-0</u>)33			6/21/06 NAME OF INSI		6/21/06
New Y	ork Sta	ite Depart	ment of	f Environr	nental (Conser	vation		eise, Jason Kl	lein
DRILLING	COMPANY	10 20 20	1110111 5.		TOTAL.	701100.	741.5	SIGNATURE (OF INSPECTOR	
								<u></u>		
ONE WELI	L VOLUME	:			WELL TD:				PUMP!	INTAKE DEPTH:
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS			
Time	Water (ft)	_	Temp.	Conduct. (ms/cm)	DO (mg/L)	рН	ORP	Turbidity (ntu)	1	REMARKS
13:10		(,	18.75		6.25	6.97	18.1	(11.27)	+	
10112			10	0.025	00	0.0.	10	+	+	
			 				 	 	+	
					 			1	†	
								1	1	
									<u> </u>	
	<u> </u>		'	'		<u> </u>		<u> </u>	Ι	
	<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ!	<u> </u>	<u> </u>	<u> </u>	<u> </u>	
<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	 		
		<u> </u>	<u>'</u>	 '		<u> </u>	 	 	 	
<u> </u>		ļ'	 '	 '	 	<u> </u>	 	 	 	
<u> </u>		 	<u> </u> '	 '	 			 	 	
 		 	 '	 '			 	+	+	
		<u> </u>	 	+	 			+	+	
		<u> </u>			\vdash		 	+	+	
	\vdash	 	 	 			 	+	+	
			 	 	 			 	+	
					 			1	†	
				<u> </u>					†	
				<u> </u>				<u> </u>		
									<u> </u>	
<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	
'	ــــــ	 '	<u> </u>	<u> </u>	<u> </u> '	<u> </u>	<u> </u>	<u> </u>	_	
<u> </u>	ــــــ	 '	<u> </u> '	<u> </u> '	<u> </u> '	<u> </u>	<u> </u>	 		
<u> </u>	ــــــ	 '	<u> </u>	 '	<u> </u> !	<u> </u>	↓	 		
<u> </u>	├──	 	<u> </u>	 '	 '	├──	 			
	 	<u> </u>	<u> </u>	 '	 	├──	 	 	+	
<u> </u>		 	 '	 '	 			+	+	
 	<u> </u>	<u> </u>								
Pump	Type:	grab sam	nple							
Analyti	cal Par	rameters:		TAL Meta	als					

,,		ernational Ltd.	company	PROJECT					PROJECT No.	SHEET	SHEETS
		LING FOR	RM	MULTI S	ITE-G				95900 - 30	1 оғ	1
LOCATION Dzus F		s, West Is	slip, NY	#1-52-03	3			8/22/07		8/22/07	
New Y	ork Sta	te Depart	ment of	f Environn	nental (Conserv	/ation	Mihir Cho	okshi, Saby C	hatterjee	
DRILLING	COMPANY							SIGNATURE (OF INSPECTOR		
ONE WELL	_ VOLUME	:	1	1	WELL TD:	15.3	ft		PUMP I	ntake depth: 16 ft	
	Depth to	Purge			LD MEAS	SUREME					
Time	Water (ft)	Rate (ml/min)	Temp. (C)	Conduct. (ms/cm)	DO (mg/L)	pН	ORP	Turbidity (ntu)		REMARKS	
8:50	8.62	, , ,	, ,		, , ,				Static water	level	
8:55	8.6		18.1	0	9.21	7.36	152	34.9	Pump on		
9:00	9		17.1	0	9.4	6.41	165	0			
									Purged appr	ox 3.5 gal	
9:00										mple DMW-1	
										uplicate (DMW-101)	
									also collecte	d	
	ļ	ļ.			<u> </u>		<u> </u>	L	!		
Pump	Type:	Centrifug	al pum	p with bla	ck poly	tubing					
Analyti	cal Par	ameters:		TAL Meta	als						

_				PROJECT					PROJECT No.	SHEET	SHEETS
WELL	SAMP	LING FOR	₹M	MULTI S	ITE-G			To a result of	95900 - 30	1 of	11
Dzus F	astner	s, West Is	slip, NY	#1-52-03	3			8/22/07	•	8/22/07	
New Y	ork Sta	ate Departi	ment of	f Environr	nental (<u> Conser</u>	vation	Mihir Cho	okshi, Saby C	Chatterjee	
DRILLING	COMPANY							SIGNATURE C	OF INSPECTOR		
ONE WEL	L VOLUME	:	2		WELL TD:	14.3	ft		PUMP	інтаке дертн: 15 ft	
	Depth to	Purge			LD MEAS	SUREME	ENTS				
Time	Water (ft)	Rate (ml/min)	Temp. (C)	Conduct. (ms/cm)	DO (mg/L)	рН	ORP	Turbidity (ntu)]	REMARKS	
9:25	8.5							1	Static water	level	
9:30	8.5		22.7	0	8.05	6.5	-5	> 1000	Pump on		
9:35	-		20.5	0.41	7.2	6.4	-40	475	<u> </u>		
9:40	9		20.8	8.42	5.31	6.37	-41	500			
	 			 	 	 	├──	+	Purged appr	rox 6 gal	
9:40				<u> </u>	 	<u> </u>	<u> </u>	 	Collected sa	ample DMW-2	
	<u> </u>		<u> </u>		<u> </u>		<u> </u>	<u> </u>	Γ		
	<u> </u>		<u> </u>		<u> </u> '	<u> </u>	<u> </u>	 	<u> </u>		
	<u> </u>			 	<u> </u> !	—	—	 	<u> </u>		
		 	 	 		 	 	+	1		
				 	 		\vdash	+	 		
	†			 				+	1		
	†				<u> </u>		<u> </u>	1	†		
	<u> </u>		<u> </u>		<u> </u> '	<u> </u>	<u> </u>				
	<u> </u>		<u> </u>	 	<u> </u> !	<u> </u>	<u> </u>	 	<u> </u>		
	 	-	 	 		 	 	+	 		
	 			 	<u> </u>	 	\vdash	+	1		
	†		 	 	 		 	+	†		
	†							†	1		
	<u> </u>			<u> </u>	<u> </u>			<u> </u>	†		
	<u> </u>		<u> </u>	<u> </u>	<u>[</u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		
	 		<u> </u>	 	<u> </u>	↓	↓	 	<u> </u>		
	 	<u> </u>	<u> </u>	 	<u> </u>	├ ──	 	 	1		
	 	-		 		├──	┼──	+	+		
	<u> </u>	!			<u> </u>	Ь			<u> </u>		
Pump	Туре:	Centrifug	al pum	p with bla	ck poly	tubing					
Analyti	ical Par	rameters:		TAL Meta	als						

_		ernational Ltd.		PROJECT					PROJECT No.	SHEET SHEE
WELL	SAMP	LING FOR	RM	MULTI S	ITE-G				95900 - 30	1 of 1
LOCATION Dzus F		s, West Is	lip, NY	#1-52-03	3			8/22/07		8/22/07
New Y	ork Sta	te Depart	ment of	Environn	nental C	Conserv	ation	Mihir Cho	okshi, Saby C	hatterjee
DRILLING	COMPANY	•						SIGNATURE C	OF INSPECTOR	•
ONE WELL	VOLUME	:	1	w	ELL TD:	15	ft		PUMP I	NTAKE DEPTH: 12 ft
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS			
Time	Water (ft)	Rate (ml/min)	Temp. (C)	Conduct. (ms/cm)	DO (mg/L)	рН	ORP	Turbidity (ntu)		REMARKS
	6.3	,	` ,	,	, <u>u</u> ,			, ,	Static water	level
10:55	6.3		23.8	0.29	8.3	6.16	76	118	Pump on	
11:00			20	0.26	8.6	6.3	120	240		
11:10										
11:15									Collected sa	mple DMW-3
11.13									Collected 3a	imple Divivv-3
									<u> </u>	
									<u> </u>	
Pump	Туре:	Centrifug	al pum	p with bla	ck poly	tubing				
Analyti	cal Par	ameters:		TAL Meta	als					

_		ernational Ltd. LING FOI		PROJECT MULTI S	HTE_C				PROJECT No.	SHEET 1 or	SHEETS 1
LOCATION Dzus F	astner	s, West Is	slip, NY	#1-52-03	3			8/22/07	•	1 of DATE WELL COMPLETED 8/22/07	1
CLIENT New Y	ork Sta	– ite Departi	ment of	_ f Environr	- nental (Conser	vation	Mihir Cho	_{РЕСТОК} okshi, Saby C	 Chatteriee	_
DRILLING	COMPANY	te Depart				,,,,,,		SIGNATURE C	OF INSPECTOR		
ONE WELI	L VOLUME	:	1		WELL TD:	11.5	ft		PUMP I	итаке дертн: 10 ft	
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water (ft)	Rate (ml/min)	Temp. (C)	Conduct. (ms/cm)	DO (mg/L)	рН	ORP	Turbidity (ntu)]	REMARKS	
	5.15								Static water	level	
10:35			21.9	0.259	8.55	5.98	109	285	Pump on		
10:40		ļ	23.6	0.261	8.5	6.09	53	16.6	 		
10:45	5.25		24.5	0.269	7.83	6.2	75	160	Durgod appr	roy 5 gal	
			 	 	 	 	 	1	Purged appr	OX 5 yai	
10:50				 	 	\vdash	 		Collected sa	mple DMW-9	
		 									
									<u> </u>		
	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ			
			<u> </u>	<u> </u>	<u> </u>	 '	<u> </u>		<u> </u>		
			<u> </u>	 	<u> </u>	 '	 	<u> </u>	 		
		 	 	 	 	 		1	+		
	<u> </u>	 	 		 	\vdash	\vdash				
		 						1	<u> </u>		
		<u> </u>						1 <u></u>	T		
	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ			
			 '	<u> </u>	<u> </u>	 	<u> </u>	<u> </u>	<u> </u>		
		ļ	<u> </u>	 	<u> </u> !	<u> </u>	 	 	 		
		 		├──	 	 	├──	<u> </u>	 		
			 	 	 	 	 	1	+		
			\vdash			<u> </u>	 		 		
						<u> </u>			†		
								<u> </u>			
			<u> </u>	<u> </u>	<u> </u> '	 '	<u> </u>	<u> </u>			
	<u> </u>			<u> </u>	<u> </u> !	 '		<u> </u>	<u> </u>		
			<u> </u>	<u> </u>		<u> </u>					
		Centrifug		p with bla		tubing					
raidiya	oui i ui	diffictors.		TAL WOL	JIO .						

A ty	CO Inte	ernational Ltd.	Company	PROJECT					PROJECT No.	SHEET	SHEETS		
		LING FO	RM	MULTI S	ITE-G			In	95900 - 30	1 оғ	1		
LOCATION Dzus F CLIENT		s, West Is	slip, NY	#1-52-03	3			8/22/07		8/22/07			
New Y	ork Sta	te Depart	ment of	f Environr	nental (Conser	<i>r</i> ation	Mihir Chokshi, Saby Chatterjee					
DRILLING	COMPANY							SIGNATURE	OF INSPECTOR				
ONE WELI	L VOLUME	:	6.9	,	WELL TD:	44.5	ft		PUMP I	итаке дертн: 10 ft			
	Depth to Purge			FIE	LD MEAS	SUREME	NTS						
Time	Water (ft)	Rate (ml/min)	Temp. (C)	Conduct. (ms/cm)	DO (mg/L)	pН	ORP	Turbidity (ntu)	REMARKS				
	5.05	,	(-,	,	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			(,	Static water	level			
10:15			21.1	0	8.43	6.7	49	93	Pump on				
10:20	5.26		15.2	0.2	10.4	6.3	112	40					
10:25	5.3		15	0.184	8.3	5.83	149	64					
									Purged appr	ox 21 gal			
10:30									Collected sa	mple DMW-9B			
10.50									Collected Sa	imple Divivi-9D			
									-				
		Centrifug	-	p with bla		tubing							

WELL NO. MW-13A

7 		ernational Ltd.	oumpany	PROJECT					PROJECT No.	SHEET	SHEETS	
WELL	SAMP	LING FO	RM	MULTI S	ITE-G				95900 - 30	1 of	1	
LOCATION Dzus F CLIENT		s, West Is	lip, NY	#1-52-03	3			8/22/07		8/22/07		
New Y	ork Sta	te Depart	ment of	f Environn	nental (Conserv	vation	Mihir Cho	okshi, Saby C	Chatterjee		
DRILLING	COMPANY	•						SIGNATURE (OF INSPECTOR			
ONE WELL	_ VOLUME	:	1	,	WELL TD:	10.72	ft		PUMP I	інтаке depth: 6 ft		
	Depth to Purge			FIE	LD MEAS	SUREME	NTS					
Time	Water (ft)		Temp. (C)	Conduct. (ms/cm)	DO (mg/L)	рН	ORP	Turbidity (ntu)	REMARKS			
	3.02	(,	(0)	((g, _,			(iiiu)	Static water	level		
	3.02		24	0.52	8.08	6.38	57	131	Pump on			
	3.02		22.3	0.555	8.28	6.25	59	81	·			
									Purged appr	rox 4 gal		
15:10									Collected sa	ample DMW-13A		
										· · ·		
]		<u> </u>	1	<u> </u>			
Pump	Туре:	Centrifug	al pum	p with bla	ck poly	tubing						
Analyti	cal Par	ameters:		TAL Meta	als							

WELL NO. MW-13B

A Ty	CO Inte	ernational Ltd.	Company	PROJECT					PROJECT No.	SHEET	SHEETS	
WELL		LING FO	RM	MULTI S	ITE-G			IDATE WELL	95900 - 30	1 OF	1	
		s, West Is	slip, NY	#1-52-03	3			8/22/07		8/22/07		
New Y	ork Sta	te Depart	ment of	f Environn	nental (Conserv	/ation	Mihir Cho	okshi. Sabv C	hatterjee		
DRILLING	COMPANY							SIGNATURE C	OF INSPECTOR			
ONE WELL	VOLUME	:	6.89	,	WELL TD:	44.25	ft		PUMP I	ntake depth: 6 ft		
	Depth to Purge			FIE	LD MEAS	SUREME	NTS					
Time	Water (ft)	Rate (ml/min)	Temp. (C)	Conduct. (ms/cm)	DO (mg/L)	рН	ORP	Turbidity (ntu)		REMARKS		
	2.85	(,	(0)	(,	(g, _/			(,	Static water	level		
14:25	2.85		16.8	0.123	9.4	6.52	147	80	Pump on			
14:30	2.9		17.2	0.123	9.1	5.72	191	481				
14:35	2.96		17.5	0.131	8.6	5.35	210	129				
14:40	2.98		17.6	0.13	9.94	5.3	224	134	Purged appr	ox 22 gal		
14:50									Collected sa	mple DMW-13B		
1 1.00												
Pump	Туре:	Centrifug	al pum	p with bla	ck poly	tubing						
Analyti	cal Par	ameters:		TAL Meta	als							

WELL NO. MW-15A

ALY	LU Inte	ernationai Ltd.							IDDO IFOT N	QUEET QUEETO		
WELL	SAMP	LING FOR		PROJECT MULTI S	ITF-G				PROJECT No. 95900 - 30	SHEET SHEETS 1 OF 1		
LOCATION			<u> </u>	MOLITO				DATE WELL S		DATE WELL COMPLETED		
Dzus F	astners	s, West Is	ilip, NY	#1-52-03	3			8/22/07 8/22/07				
CLIENT	ork Sta	to Donart	ment of	f Environr	nontal (oncon	vation	NAME OF INSPECTOR Mihir Chokshi, Saby Chatterjee				
DRILLING	COMPANY	te Departi	ment of	LIIVIIOIIII	ientai C	70113 61 V	ration	SIGNATURE C	OF INSPECTOR	natterjee		
								<u></u>				
ONE WELL	L VOLUME :	:	4	١	WELL TD:	28.8	ft	PUMP INTAKE DEPTH: 11 ft				
	Depth			FIE	LD MEAS	SUREME	.NTS					
T :	to	Purge						Translation	DEMARKS			
Time	Water (ft)	Rate (ml/min)	Temp. (C)	Conduct. (ms/cm)	DO (mg/L)	pН	ORP	Turbidity (ntu)		REMARKS		
	5.8	(1111/111111)	(0)	(IIIS/CIII)	(IIIg/L)		 	(IIIu)	Static water	level		
15:30			23	0.246	7.21	6.83	97	269	Pump on	icvei		
15:35	5.82		19.5	0.198	8.35	5.9	171	241	r ump on			
15:40			17.3	0.185	8.15	5.54	209	51.3				
15:45			17.2	0.186	6.25	5.27	260	260	Purged appr	ox 15 gal		
15:50			17.2	0.100	0.20	0.27	200	200	r digod appi	ox 10 gai		
10.00								 	 			
15:50									Collected sa	imple DMW-15		
									1			
								1				
			<u> </u>			<u> </u>						
	!		<u> </u>		'	<u> </u>						
	!	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>			
	<u> </u>	<u> </u> '	<u> </u>	<u> </u>	<u> </u> '	<u> </u>	<u> </u>	<u> </u>	<u> </u>			
	igsquare	<u> </u>	<u> </u>	 '	 '	<u> </u>	<u> </u>	<u> </u>				
	igsquare	<u> </u>	 '	 '	 '	<u> </u>	<u> </u>	<u> </u>				
		<u> </u>	 '	<u> </u>	 '	 '	<u> </u>	<u> </u>				
		<u> </u>	 '	<u> </u>	<u> </u> '	 '	├	<u> </u>				
	<u> </u>	<u> </u> !	 '	 '	 '	<u> </u>	Ь——	 '	.			
	$igwdsymbol{igwedsymbol{igw$	<u> </u> !	 '	<u> </u>	 '	 '	<u> </u>	<u> </u>	 			
	$igwdsymbol{\sqcup}$	<u> </u> '	 '	ļ'	 '	 '	├ ──	 	 			
	\vdash	<u> </u>	 '	<u> </u>	 -		 	 '	 			
	$\vdash\!\!\!-\!\!\!\!-\!\!\!\!-$	 	 '	<u> </u>	 			<u> </u>	 			
	$\vdash \vdash \vdash$	 	 '	 	+	$\vdash \vdash \vdash$	—	 	 			
	$\vdash \vdash \vdash$	 	 '	 	+	$\vdash \vdash \vdash$		 	 	_		
									<u> </u>			
Pump ¹	Type:	Centrifug	jal pum	p with bla	ck poly	tubing						
Analyti	cal Par	rameters:		TAL Meta	als							

WELL NO. MW-15B

LOCATION Dzus F	SAIVII	LING FOR	₹IVI		··(-			TOKONN - 20	I 1 of	1			
	astner	s. West Is	slip. NY	#1-52-03	SITE-G 3			95900 - 30					
CLIENT	- wie Oto	ta Danart		f Frankrone		2000	tion	NAME OF INSPECTOR Mihir Chokshi, Saby Chatterjee					
DRILLING	COMPANY	te Departi	merit oi	Environii	nentai c	Jonsen	/ation	SIGNATURE (OKSNI, SADY C OF INSPECTOR	natterjee			
ONE WEL	L VOLUME :	:	13		WELL TD:	84.7		PUMP INTAKE DEPTH: 9 ft					
	Depth to	Purge		FIE	LD MEAS	SUREME	:NTS						
Time	Water (ft)	Rate (ml/min)	Temp.	Conduct. (ms/cm)	DO (mg/L)	рН	ORP	Turbidity (ntu)					
	5.7					l	<u> </u>	<u> </u>	Static water	level			
12:20			28.6	0.37	7.6	6.4	113	69	Pump on				
12:30		<u> </u>	15.4	0.36	9.75	6.1	148	0					
12:40	6.9		16.5	0.37	9.75	5.6	154	0	Dad opp.	40 mal			
	\vdash		<u> </u>	 	+-+	 	 	 	ox 40 gal				
12:50	$\vdash \vdash \vdash$	 		 	\vdash			+	Collected sa	mple DMW-15B			
								<u> </u>	0000				
								<u> </u>					
		<u> </u>											
	<u> </u>	 !	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	 					
		 	<u> </u>	<u> </u>	 			 	<u> </u>				
	\vdash	 	 	 	 	 	 	+					
		 	\vdash	 				+					
		<u></u>						<u> </u>					
	<u> </u>	<u> '</u>	<u> </u>	 									
	<u> </u>	 	<u> </u>	 				 					
	\vdash	 	<u> </u>	 	 	 	 	┼──	<u> </u>				
	\vdash	 	 	 	 			+					
		 		 				+					
				<u> </u>				<u> </u>					
	<u> </u>	<u> '</u>	<u> </u>	 	<u> </u>								
	<u> </u>		<u> </u>	├ ──		<u> </u>	 	├	 				
	\vdash		 	 	 	 	 	┼──	 				
	\vdash	 	 	 	 		 	+	<u> </u>				
		 		 				+					
				<u> </u>				<u> </u>					
		Centrifug		p with bla		tubing							

A ty	CO Inte	ernational Ltd.	Company	PROJECT					PROJECT No.	SHEET	SHEETS		
		LING FO	RM	MULTI S	ITE-G				95900 - 30	1 оғ	1		
LOCATION Dzus F CLIENT		s, West Is	slip, NY	#1-52-03	3			8/23/07		8/23/07			
New Y	ork Sta	te Depart	ment of	f Environn	nental (Conser	/ation	Mihir Chokshi, Saby Chatterjee					
ONE WELI	L VOLUME	:	1.8	,	WELL TD:	13.45	ft	PUMP INTAKE DEPTH: 9 ft					
	Depth to Purge				LD MEAS								
Time	Water (ft)	Rate (ml/min)	Temp. (C)	Conduct. (ms/cm)	DO (mg/L)	pН	ORP	Turbidity (ntu)		REMARKS			
	5.05								Static water	level			
8:30	5.05		18.9	0.11	7.3	5.64	228	155	Pump on				
8:35	5.1		19.6	0.9	7.59	6.02	212	124					
8:40	5.31		18.3	0.103	6.02	6.08	186	220		4.5			
8:45									Purged appr	ox 4.5 gal			
8:45									Collected sa	mple DMW-18			
0.43									Collected 3a	imple Divivi-10			
		Centrifug	-	p with bla TAL Meta		tubing							
•													

WELL NO. MW-22A

ALY	GU Inte	ernational Ltd.		DDO IFOT					IDDO IDOT N	OUETT OUETTO		
WFII	SAMP	LING FOI		PROJECT MULTI S	ITF-G				PROJECT No. 95900 - 30	SHEET SHEETS 1 OF 1		
LOCATION			XIVI	IMOLITO	<u> </u>			DATE WELL S		DATE WELL COMPLETED		
Dzus F	astner	s, West Is	lip, NY	#1-52-03	3			8/22/07 8/22/07				
CLIENT							_	NAME OF INSPECTOR				
New Y	ork Sta	te Depart	ment of	f Environn	nental (Conser	/ation	Mihir Cho	okshi, Saby C	Chatterjee		
DRILLING	COMPANY					SIGNATURE	OF INSPECTOR					
ONE WELL VOLUME: 1 WELL TD: 14.4 ft							ft	PUMP INTAKE DEPTH: 11 ft				
	Depth to Purge			FIE	LD MEAS	SUREME	NTS					
Time	Water	Rate	Temp.	Conduct.	DO	pH O	ORP	Turbidity	†	REMARKS		
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)	•		(ntu)				
12:00	6.44		20.5	0.36	8.4	6.14	71	446	Static water	level		
12:00	6.45		19.8	0.41	9.1	6.3	21	110	Pump on			
12:05	6.56											
12:10												
									Purged appr	ox 5.5 gal		
12:10									Calleated as	mple DMW-22A		
12.10				 					Collected Sa	imple Divivi-22A		
				 								
				 								
				 								
				 								
				 								
				 								
				 								
				 								
												
												
				<u> </u>								
				<u> </u>								
				 								
		<u> </u>					l .	l	<u> </u>			
Pump	Туре:	Centrifug	jal pum	p with bla	ck poly	tubing						
Analvti	cal Par	ameters:		TAL Meta	als							
,												

WELL NO. MW-22B

		ernational Ltd.		PROJECT					PROJECT No.	SHEET	SHEETS
WELL		LING FOR	RM	MULTI S	ITE-G			DATE WELL S	95900 - 30	1 OF	1
		s, West Is	ilip, NY	#1-52-03	3			8/22/07	•	8/22/07	
New Y	ork Sta	te Depart	ment of	f Environn	nen <u>tal (</u>	Con <u>ser</u>	vati <u>on</u>	Mihir Cho	okshi, Saby C	Chatterjee	
DRILLING (COMPANY							SIGNATURE O	OF INSPECTOR		
ONE WELL	VOLUME :	:	6		WELL TD:	44.5			PUMP I	INTAKE DEPTH: 10 ft	
	Depth to	Purge		FIEI	LD MEAS	SUREME	NTS				
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity	†	REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)	" '		(ntu)			
11:35	6.3								Static water	level	
11:35	6.31		17.7	0.22	9.3	6.15	139	770	Pump on		
11:40	6.4		17	0.28	8.9	6.07	136	20			
11:45	6.41		18.3	0.282	9.33	6.04	123	15.3			
11:50	6.42		15.5	0.264	5.76	6	170	59.5	Purged appr	ox 21 gal	
11:55		 	 	 		\vdash	 	<u> </u>	Collected sa	ample DMW-22B	
			<u> </u>						†		
								<u></u>	<u> </u>		
								<u></u>	<u> </u>		
								<u> </u>			
						<u> </u>					
		'	'	'		<u> </u>					
		<u> </u>	'	<u> </u>		<u> </u>					
		<u> </u>	'	<u> </u>		<u> </u>					
	!	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>		<u> </u>		
	<u>, </u>	<u> </u> '	<u> </u> '	<u> </u> '	<u> </u>	<u> </u>		<u> </u>			
	لــــــا	 '	 '	 '		 '	<u> </u>	<u> </u>	ļ		
		<u> </u> '	<u> </u>	<u> </u> '		 '			<u> </u>		
		 '	<u> </u> '	 '	 	 '	↓	<u> </u>	 		
		 '	 '	 '	igwdown	 '	↓	 	<u> </u>		
		 '	 	 '	\longmapsto	 '	 	 	<u> </u>		
		 	<u> </u>	 		 '	 	<u> </u>	<u> </u>		
	,	 	 	 	 	 '	 	<u> </u>	 		
	,——— <u> </u>	 	 	 	 	 '	├──	 	 		
		 	 '	 	\vdash	 '	├──	 	 		
		 	 '	 	\vdash	 '	├──	 	 		
		 	 	 	\vdash		 	-	+		
		 	 	 	\vdash		 	-	 		
			<u> </u>				<u> </u>		<u> </u>		
Pump	Туре:	Centrifug	jal pum	p with blad	ck poly	tubing					
Analyti	cal Par	ameters:		TAL Meta	als						

WELL NO. MW-23A

		ernational Ltd.		PROJECT					PROJECT No.	SHEET	SHEETS
WELL	SAMP	LING FO	RM	MULTI S	ITE-G				95900 - 30	1 оғ	1
LOCATION Dzus F		s, West Is	slip, NY	#1-52-03	3			8/22/07		8/22/07	
New Y	ork Sta	te Depart	ment of	f Environn	nental (Conserv	vation	Mihir Cho	okshi, Saby C	Chatterjee	
DRILLING	COMPANY	•						SIGNATURE C	OF INSPECTOR		
ONE WELL	. VOLUME	:	2	V	WELL TD:	14.3	ft		PUMP I	ntake depth: 10 ft	
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water (ft)	Rate (ml/min)	Temp. (C)	Conduct. (ms/cm)	DO (mg/L)	pН	ORP	Turbidity (ntu)		REMARKS	
14:00	4.8	, ,	(-)	,,	\ J. /			(,	Static water	level	
14:00	4.8		23.8	0.39	6.12	5.88	30	445	Pump on		
14:10	4.99		23.6	0.502	5.64	6.24	27	534			
									Purged appr	ox 6 gal	
14:15									Collected sa	imple DMW-23A	
14.10									Conceted 3a	imple blilly 20A	
_											
Pump	Туре:	Centrifug	al pum	p with bla	ck poly	tubing					
Analyti	cal Par	ameters:		TAL Meta	als						

WELL NO. MW-23B

		ernational Ltd.		PROJECT					PROJECT No.	SHEET	SHEETS
WELL		LING FOR	RM	MULTI S	ITE-G			DATE WELL S	95900 - 30	1 OF	1
		s, West Is	ilip, NY	#1-52-03	3			8/22/07	•	8/22/07	
New Y	ork Sta	ite Departi	ment of	i Envir <u>onn</u>	nental C	Cons <u>er</u> v	vatio <u>n</u>	Mihir Cho	okshi, Saby C	Chatterjee	
DRILLING (COMPANY							SIGNATURE C	OF INSPECTOR		
ONE WELL	L VOLUME :	:	6.59	1	WELL TD:	44.5	ft		PUMP I	INTAKE DEPTH: 10 ft	
	Depth to	Purge		FIEI	LD MEAS	UREME	NTS				
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity	-	REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)			
	4.75								Static water	level	
13:25	4.75		16.4	0.06	9.7	5.85	160	261	Pump on		
13:35	4.8	<u> </u>	21.8	0.174	8.73	5.94	143	623			
13:40	4.82	<u> </u>	16	0.187	7.93	5.73	196	147			
13:50	4.91		16	0.178	4.48	5.46	217	219	Purged appr	rox 22 gal	
13:55									Collected sa	ample DMW-23B	
									1	_ '	
	i								1		
								<u></u>	<u> </u>		
	!	!	'	'							
			'								
			<u> </u>	<u> </u>							
	!		<u> </u>	<u> </u>							
	!		<u> </u>	<u> </u>			<u> </u>				
	!	!	<u> </u>	<u> </u>	<u> </u>	<u></u> '	<u> </u>		<u> </u>		
	!	<u> </u>	<u> </u>	<u> </u> '		<u> </u>	<u> </u>				
	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u>, </u> '	<u> </u>	<u> </u>			
		ļ!	<u> </u>	<u> </u>		<u> </u>	ــــــ	<u> </u>			
	لــــــا	 _	 '	 '		<u> </u>	↓	<u> </u>	_		
	لــــــا	 _	 '	 '		<u> </u>	↓	<u> </u>	_		
		ļ!	 '	<u> </u>		<u> </u>	├	<u> </u>	_		
	لــــــا	 _	 '	 '		<u> </u>	↓	<u> </u>			
		ļ!	 '	<u> </u>		<u> </u>	├	<u> </u>	_		
		<u> </u>	 '	<u> </u> '		<u></u> '	↓	<u> </u>	 		
	 _	 _	 '	<u> </u> !		 !	↓	<u> </u>	 		
	└─ ──	 !	 	 '		 '	├──	 	<u> </u>		
			<u> </u>						<u> </u>		
Pump	Type:	Centrifug	jal pum	p with bla	ck poly	tubing					
Analyti	cal Par	ameters:		TAL Meta	als						

_		LING FO		PROJECT	ITE C				PROJECT No.	SHEET SHEETS
LOCATION		LING FO	KIVI	MULTI S	IIE-G			DATE WELL S	95900 - 30 STARTED	1 of 1
Dzus F	astner	s, West Is	lip, NY	#1-52-03	3			8/23/07	•	8/23/07
CLIENT	ork Cto	ta Danart	mont of	Franciscon	nontal (20000	ration	NAME OF INS		Shottoriae
DRILLING	COMPANY	te Depart	ment of	Elivilolii	nemar	Jonsen	valion	SIGNATURE O	okshi, Saby C	mallerjee
ONE WELI	_ VOLUME	:			WELL TD:				PUMP I	NTAKE DEPTH:
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS			
Time	Water	Rate	Temp.	Conduct.		рН	ORP	Turbidity		REMARKS
	(ft) 5.2	(ml/min)	(C)	(ms/cm) 0.184	(mg/L) 14.35		246	(ntu) 5.9		
	5.2		17.0	0.104	14.33	0.01	240	5.9		
									40° 41.855 N	N
									73° 18.062 \	
10:45									Collected sa	imple SW-1
Pump	Туре:	None, di	oped bo	ottles into	the wat	er for c	ollectio	on		
Analyti	cal Par	ameters:		TAL Met	als					

		ernational Ltd.		PROJECT					PROJECT No.	SHEET SHEETS
WELL	SAMP	LING FO	<u>RM</u>	MULTI S	ITE-G			In arrange of	95900 - 30	1 of 1
DZUS F	i Fastner	e Weet Is	lin NY	#1-52-03	:3			8/23/07		8/23/07
CLIENT	dottion	<u>5, </u>	лр, тт	#1-52-03 f Environn				NAME OF INS		0/20/07
New Y	ork Sta	te Depart	ment of	f Environr	nental (<u> Jonser</u>	vation	Mihir Cho	okshi, Saby C	Chatterjee
DRILLING	COMPANY							SIGNATURE C	OF INSPECTOR	
ONE WELI	L VOLUME	:			WELL TD:				PUMP I	INTAKE DEPTH:
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS			
Time	Water (ft)	Rate (ml/min)	Temp. (C)	Conduct. (ms/cm)	DO (mg/L)	рН	ORP	Turbidity (ntu)	_	REMARKS
	4.6	(1111/111111)	17.3	0.184	14.31	6.89	244	5.2		
	7.0	 	17.5	0.104	14.01	0.00	277	J.2		
								+	40° 41.848 N	
	1	 	1				 	†	73° 18.043 V	
11:00									Collected sa	ample SW-2
		<u> </u>			<u> </u>	<u> </u> '	<u> </u>	<u> </u>	ļ	
			<u> </u>	<u> </u>	<u> </u>	 '	<u> </u>	<u> </u>	<u> </u>	
		<u> </u>			<u> </u> !	 '	<u> </u>	 	<u> </u>	
	├ ──	 	├ ──	 	<u> </u> '	 '	<u> </u>	 	<u> </u>	
		 		 	<u> </u>	 '	 	 	 	
	 	 	 	 	 _	+	├──	 	 	
	1	 	1	 	-	\vdash	<u> </u>	+	+	
	 	 	 	 	 !	+			 	
	 	 	 	 	 	 		+	+	
		 		 			 	+	†	
								†		
									1	
							<u> </u>	<u> </u>		
						<u> </u>				
								<u> </u>		
				<u> </u>	<u> </u>	 '		 	<u> </u>	
					<u> </u>	<u> </u>		 	<u> </u>	
	<u> </u>	<u> </u>	<u> </u>	<u> </u>		 	<u> </u>	 	 	
	 	 	 	 		 	<u> </u>	 	<u> </u>	
	<u> </u>		<u> </u>		<u> </u>					
Pump	Туре:	None, di	pped bo	ottles into	the wat	er for c	ollectio	on		
Analyti	ical Par	rameters:		TAL Meta	als					

_		ernational Ltd.		PROJECT	ITE O				PROJECT No.	SHEET SHEETS
LOCATION		LING FO	KIVI	MULTI S	IIE-G			DATE WELL S	95900 - 30	1 of 1
		s, West Is	lip, NY	#1-52-03	3			8/23/07		8/23/07
CLIENT						_		NAME OF INS	PECTOR	
New Y	ork Sta	te Depart	ment of	Environr	nental (Conser	/ation	Mihir Cho	okshi, Saby C	Chatterjee
DRILLING	COMPANY							SIGNATURE	OF INSPECTOR	
ONE WELL	. VOLUME	:			WELL TD:				PUMP I	NTAKE DEPTH:
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS			
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)		
	3.6		17.7	0.185	14.41	6.88	250	8.9		
									40° 41.756 N	
									73º 18.044 \	N
11:35									Collected sa	imple SW-3
								1		
								-		
								1		
								1		
								1		
								1		
Pump	Туре:	None, dip	oped bo	ottles into	the wat	er for c	ollectio	on		
Analyti	cal Par	ameters:		TAL Met	als					

_		ernational Ltd.		PROJECT					PROJECT No.	SHEET SHEETS
WELL	SAMP	LING FO	<u>RM</u>	MULTI S	ITE-G			·	95900 - 30	1 of 1
LOCATION	1 Fastner	e Westle	elin NY	#1-52-03	. 3			8/23/07		DATE WELL COMPLETED 8/23/07
CLIENT	astrici	3, 1103110	<u>лір, гат</u>	#1-02 00	<u> </u>			NAME OF INS		0/23/01
New Y	ork Sta	te Depart	ment of	#1-52-03 f Environn	nental (<u> Conserv</u>	vation	Mihir Cho	okshi, Saby C	Chatterjee
DRILLING	COMPANY							SIGNATURE (OF INSPECTOR	
ONE WEL	L VOLUME	:			WELL TD:				PUMP I	INTAKE DEPTH:
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS		T	
Time	Water	Rate	Temp.	Conduct.		рН	ORP	Turbidity	1	REMARKS
	(ft) 3.2	(ml/min)	(C)	(ms/cm)	(mg/L)		240	(ntu)		
	3.∠	<u> </u>	10.2	0.185	11.81	6.48	248	33		
		 	 					+	40° 41.744 N	NI .
				 	1		 	+	73° 17.999 \	
	 	 	 	 	 	 		+	70 17.000	7 4
11:50			 	 	†			+	Collected sa	ample SW-4
					†		<u> </u>	 		
			1		†			1		
			<u> </u>	<u> </u>	<u> </u>			1		
	<u> </u>		<u> </u>	<u> </u>	<u> </u> !	<u> </u>	<u> </u>	<u> </u>		
	ļ	ļ	↓		<u> </u> !	<u> </u>	<u> </u>	 		
	<u> </u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>			
	├ ──	 	—	 	<u> </u>	<u> </u>	<u> </u>	 		
	 	-	 	 	 	 	 	+		
	 	 	├──	 	 	 	├	+	-	
		 	 	 	 	 	 	+		
	 	 	 	 	 	 		+	-	
			 					+		
	1	†	<u> </u>				 	†		-
								<u> </u>		
			<u> </u>							
		-	<u> </u>		<u> </u>			 	4	
					<u> </u>	<u> </u>		+		
			Ь							
Pump	Туре:	None, di	pped bo	ottles into	the wat	er for c	ollectio	on		
Analyti	ical Par	ameters:		TAL Meta	als					

_		LING FO		PROJECT	ITE C				PROJECT No.	SHEET SHEETS
LOCATION	SAMP	LING FO	K IVI	MULTI S	IIE-G			DATE WELL S	95900 - 30 STARTED	1 of 1 DATE WELL COMPLETED
Dzus F	astner	s, West Is	lip, NY	#1-52-03	3			8/23/07		8/23/07
CLIENT	ork Sta	te Depart	ment of	f Environn	nontal (oncor	vation	NAME OF INS	_{РЕСТОК} okshi, Saby C	Shattorioo
DRILLING	COMPANY	пе Берап	ineni o	LIIVIIOIII	ileiliai C	JUIISEI	vation	SIGNATURE (OF INSPECTOR	onalierj ee
ONE WELI	L VOLUME	:			WELL TD:			1	PUMP I	INTAKE DEPTH:
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS			
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity	1	REMARKS
	(ft) 8	(ml/min)	(C)	(ms/cm) 0.232	(mg/L) 7.17	6.2	117	(ntu) 1.9		
	0		13.1	0.232	7.17	0.2	117	1.9		
									40° 42.080 N	V
									73° 18.042 \	
9:15									Collected sa	
									SED-5 colle	cted at 9:20
	1									
		 		 				1		
	•		•						•	
Pump	Type:	None, di	oped bo	ottles into	the wat	er for c	ollection	on		
Analyti	ical Par	ameters:		TAL Met	als					

_		LING FO		PROJECT MULTI S	ITF-G				PROJECT No. 95900 - 30	SHEET SHEETS 1 OF 1
LOCATION Dzus F				#1-52-03				8/23/07	STARTED	DATE WELL COMPLETED 8/23/07
CLIENT New Y	ork Sta	te Depart	ment o	f Environn	nental (Conser	vation	Mihir Cho	PECTOR OKShi, Saby C OF INSPECTOR	Chatterjee
ONE WELL	. VOLUME	:			WELL TD:				PUMP I	NTAKE DEPTH:
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS			
Time	Water (ft)	Rate (ml/min)	Temp. (C)	Conduct. (ms/cm)	DO (mg/L)	pН	ORP	Turbidity (ntu)		REMARKS
	0.6		16.9	0.349	6.57	6.6	78	6.7		
12:30									Collected sa	
										at 12:45 ample SW-106 (13:00)
									Bapiloate 30	100 (10.00)
									40° 42.462 N	
									73º 17.942 \	/V
			1							
				-						
		<u> </u>	<u> </u>	<u> </u>			<u> </u>		<u>I</u>	
Pump	Туре:	None, di	pped bo	ottles into	the wat	er for c	ollectio	on		
Analyti	cal Par	ameters:		TAL Met	als					

		171200	•••						WELL NO. WW- I		
WELL	SAMP	LING FOI	RM	PROJECT Multi Site	G				PROJECT No. 95900	SHEET 1 OF	SHEETS 1
LOCATION	· · · · · · · · · · · · · · · · · · ·	LING FOI	Latin Arr	•					DATE WELL STARTED	DATE WELL COMPL	
DZUS F	-astene	ers, West	Islip, N	Y #1-52-0	33				11/11/08 NAME OF INSPECTOR	11/11/08	
New Y	ork Sta	te Depart	ment o	f Environr	nental (Conserv	vation		MA / SC		
DRILLING	COMPANY								SIGNATURE OF INSPECTOR	1	
	ONE WE	ELL VOLUME :		Gallons	,	WELL TD:		ft	PUMP INTAKE DEPT	н: ft	
	Depth	Duran		FIE	LD MEA	SUREME	NTS				
Time	to Water (ft)	Purge Rate (gal/min)	Temp. (℃)	Conduct. (µs/cm)	DO (mg/L)	рН	ORP	Turbidity (ntu)	RE	MARKS	
									Static water level		
									Static water level		
									pump on		
									\\/ -		
									Well was destroye removal in Decem		
									Terrioval in Decem	DC1 2007	
				-							
				 							
		- 							- 		
Pump	ı ype:										
Analyti	cal Par	ameters:									

WELL NO. MW- 2

Laitii		1							WELL NO. MW- 2			
WELL	SAMP	LING FO		PROJECT Multi Site	ı G				PROJECT No. 95900	SHEET 1	OF	SHEE
OCATION	SAIVIF	LING I OI	ZIVI	Multi Site	, G				DATE WELL STARTED		LL COMPLE	
		rs, West	lelin NI	√ #1 - 52 - 0	33				11/11/08	11/11/		-1
CLIENT	asterie	13, 11631	ionp, iv	1 #1-32-0	55				NAME OF INSPECTOR	1 1/ 1 1/	00	
	ork Sta	te Depart	ment of	Environn	nental (Conserv	vation		MA / SC			
ORILLING (COMPANY	to Depart	inoni oi	LIIVIIOIII	iloritar c	2011301	valion		SIGNATURE OF INSPECTOR	<u> </u>		
	ONE WE	LL VOLUME :	1.0	Gallons	\	WELL TD:	14.3	ft	PUMP INTAKE DEPT	н: 13.	5 ft	
	Depth			FIE	LD MEAS	SUREME	NTS					
	to	Purge										
Time	Water	Rate	Temp.			pН	ORP	Turbidity	RE	MARKS		
	(ft)	(gal/min)	(℃)	(µs/cm)	(mg/L)			(ntu)				
44.50	0.00											
11:50	8.30		4= 00	222	0.50	0.04	2.0	0.10	Static water level			
12:30	8.30	0.3	15.89		9.52	6.81	-82	342	pump on			
12:35	8.40		14.89		7.5	6.8	-110	661				
12:40	8.42	2.5	15.9	348	7.9	6.7	-116	41				
12:45	8.42	0.3	16	325	7.62	6.7	-123	18				
10 = 5									0 "	NA / 6		
12:50									Collect sample DN	/IVV-2		
-												
+												
-+												
									<u></u>			

WELL NO. MW- 3

_u: :::	I CCII	AECO	IVI						WELL NO. MW- 3	3
\A/E-1 1	04440	LINIO FOI	244	PROJECT	_				PROJECT No.	SHEET SHEET
OCATION		LING FO	KIMI	Multi Site	e G				95900 Date well started	1 OF 1
		rs, West	Islip, N	Y #1-52-0	33				11/11/08	11/11/08
New Y	ork Sta	te Depart	ment of	Environr	nental (Conser	vation		NAME OF INSPECTOR MA / SC SIGNATURE OF INSPECTOR	3
		ELL VOLUME :	1.4	Gallons		WELL TD:	15.0	ft	PUMP INTAKE DEPT	н: 12.0 ft
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS			
Time	Water (ft)	Rate (gal/min)	Temp. (℃)	Conduct. (µs/cm)	DO (mg/L)	pН	ORP	Turbidity (ntu)	RE	EMARKS
14:45	6.25								Static water level	
14:55	6.25	0.4	20.1	199	9.58	6.12	93	16	Pump on	
15:00	6.25		22	238	8.98	6.07	82	24		
15:05	6.25		21.9	245	8.9	6.06	97	16	Purged 6 gal	
15:10	6.25	0.4	21.95	250	8.95	6.07	97	10		
15:15									Collect sample DN	MW-3
									Duplicate DMW-5	3

Pump Type: Centrifugal pump with black poly tubing

WELL NO. MW- 9

Eartn	recn	AECO	IVI			WELL NO. MW-9)				
WELL	SVMD	LING FOI		PROJECT Multi Site	. G				PROJECT No. 95900	SHEET 1 OF	SHEET 1
LOCATION		LING I OI	ZIVI	Multi Site	, G				DATE WELL STARTED	1 OF DATE WELL COMP	
Dzus F	astene	rs, West	Islip, N	Y #1-52-0	33				11/11/08	11/11/08	
CLIENT						_			NAME OF INSPECTOR	•	
New Y	ork Sta	te Depart	ment of	Environr	nental (Conser	vation		MA / SC SIGNATURE OF INSPECTOR		
DRILLING	COMPANY								SIGNATURE OF INSPECTOR	•	
	ONE WE	ELL VOLUME :	1.1	Gallons	,	WELL TD:	11.5	ft	PUMP INTAKE DEPT	н: 10.0 ft	
	Depth to	Purge		FIE	LD MEA						
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity	RE	MARKS	
Tille	(ft)	(gal/min)	(℃)	(µs/cm)	(mg/L)		OKI	(ntu)	, , ,	IWAKKO	
	(11)	(gai/iiii)	(0)	(рогопт)	(1119, 12)			(IIIu)			
13:40	5.01								Static water level		
13:50	5.08	0.3	19.42	287	9	6.66	-66	51	Pump on		
13:55			19.4	323	8.26	6.68	-92	525			
14:00	5.12		22.3	176	8.23	6.31	-70	191			
14:05	5.12	0.3	22.14	177	9.37	6.28	-60	42	Purged approx 5 g	gal	
14.10									Callest sample DA	4)4/ 0	
14:10									Collect sample DN	////	
					•		•	•			

Pump Type: Centrifugal pump with black poly tubing

	. 0011	AECO	141	DD0 150-		WELL NO. MW-						
WELL	SAMP	LING FOI	RM	PROJECT Multi Site	G G				PROJECT No. 95900	SHEET	OF	SHE 1
OCATION									DATE WELL STARTED	DATE W	ELL COMPL	
Dzus F	astene	rs, West	Islip, N`	Y #1-52-0	33				11/11/08 NAME OF INSPECTOR	11/1	1/08	
lew Y	ork Sta	te Depart	ment of	Environr	nental (Conserv	ation		MA / SC			
RILLING	COMPANY	•							SIGNATURE OF INSPECTO	DR		
	ONE WE	ELL VOLUME :	6.4	Gallons	١	WELL TD:	44.5	ft	PUMP INTAKE DEP	тн: 10	0.0 ft	
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS					
Time	Water (ft)	Rate (gal/min)	Temp. (℃)	Conduct. (µs/cm)	DO (mg/L)	pН	ORP	Turbidity (ntu)	R	EMARKS		
	4.93								Static water level			
14:20	5.05	1.7	22.28	285	8.96	6.46	10.6	37	Pump on			
14:25	5.08		16.8	141	10.1	6.19	32	6	i amp on			
14:30	5.12		15.28	139	8.93	6.03	74	5				
14:35	5.12	1.5	16.12	141	9.22	5.98	86	1	Purged approx 2	5 gal		
14:40									Collect sample D	MW-9B		
									1			

WELL NO. MW- 13A

		AECO	•••						WELL NO. MW-	IJA	
WELL	CVMD	LING FOR	ЭM	PROJECT Multi Site	. G				PROJECT No. 95900	SHEET 1	SHEE OF 1
OCATION		LING I OI	ZIVI	Multi Site	, G				DATE WELL STARTED	DATE WELL C	
Dzus F	astene	rs, West I	lslip, N	Y #1-52-0	33				11/12/08	11/12/08	
LIENT						`			NAME OF INSPECTOR		
VEW YO	ORK Sta	te Departi	ment of	Environr	nentai (onserر	ation		MA / SC SIGNATURE OF INSPECTO	NP .	
KILLING	COMPANI								SIGNATURE OF INSPECTO	,	
		LL VOLUME :	1.3	Gallons	\	WELL TD:	10.7	ft	PUMP INTAKE DEP	тн: 6.0 f	t
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water (ft)	Rate (gal/min)	Temp. (℃)	Conduct. (µs/cm)	DO (mg/L)	рН	ORP	Turbidity (ntu)	R	EMARKS	
11:40	2.00								Static water level		
11:40	2.90	0.3	19.58	310	8.7	6.99	21	42	Static water level		
	2.90	0.5	21.9	374	8.5	6.99	26	108	Pump on		
12:00	2.93		21.8	355	8.26	7	44	300			
12:05	2.93	0.3	21.9	348	7.82	7.02	48	310	Purged approx 5	nal	
.2.00	2.00	0.0	21.0	0.40	7.02	1.02	70	010	i argua approx o	941	
12:10									Collect sample D	MW-13A	
					 						
					 						
					 						
					1						
					1				ĺ		

Pump Type: Centrifugal pump with black poly tubing

Laitii	I CCII	AECO	IVI						WELL NO. MW-	13B		
A/ELI	CAMD	LING FO	284	PROJECT					PROJECT No.	SHEET		SHEE
OCATION		LING FO	K IVI	Multi Site	9 G				95900 DATE WELL STARTED	1 DATE WE	OF LL COMPL	1 ETED
zus F		rs, West	Islip, N	Y #1-52-0	33				11/12/08	11/12		
LIENT Jaw Y	ork Sta	te Depart	ment of	Environn	nental (Conserv	/ation		NAME OF INSPECTOR MA / SC			
RILLING	COMPANY	te Depart	inchi oi	LIIVIIOIII	nomar	J0113C1 \	ation		SIGNATURE OF INSPECTO	R		
		LL VOLUME :	6.8	Gallons		WELL TD:	44.3	ft	PUMP INTAKE DEP	тн: 6	.0 ft	
	Depth to	Purge		FIE	LD MEAS	SUREME	INTS					
Time	Water Rate Temp. Conduct. DO				рН	ORP	Turbidity	R	EMARKS			
	(ft)	(gal/min)	(℃)	(µs/cm)	(mg/L)	-		(ntu)				
11:40	2.73								Static water level			
12:20	2.73	1	20.71	224	8.67	6.74	76	13	Pump on			
12:25	2.80	'	18	176	9.28	5.98	106	5	i unip on			
12:30	2.80		17.9	177	9.2	5.8	127	9				
12:35	2.80		18.17	181	9.28	5.81	135	11	Purged approx 22	2 gal		
12:40	2.80	1	19	184	9.58	5.82	137	11	y angua approm	- g		
12:45									Collect sample D	MW-13B		
					-							
					<u> </u>				<u> </u>			

WELL NO. MW- 15A

											_	
WELL	SAMP	LING FO		PROJECT Multi Site	G				PROJECT No. 95900	SHEET 1	OF	SHEETS
LOCATION	OAIVII		ZIVI	Ivialii Site	, 0				DATE WELL STARTED		L COMPLE	
		rs, West	lelin NI	√ #1 ₋ 52 ₋ 0	33				11/12/08	11/12/		.120
CLIENT	asterio	13, 11631	ionp, iv	1 #1-32-0	55				NAME OF INSPECTOR	11/12/	50	
	ork Sta	te Depart	ment of	Environr	nantal (oncar	/ation		MA / SC			
DRILLING	COMPANY	te Depart	illelit O	LIIVIIOIII	nemai (2011361	allon		SIGNATURE OF INSPECTO	R		
J.KILLII (O									SIGNATORE OF INGLESTS			
	ONE WE	ELL VOLUME :	3.8	Gallons	,	WELL TD:	28.8	ft	PUMP INTAKE DEP	гн: 11.0	O ft	
	Depth			FIE	LD MEA	SUREME	NTS					
	to	Purge						_				
Time	Water	Rate	Temp.	Conduct.	DO	pН	ORP	Turbidity	R	EMARKS		
	(ft)	(gal/min)	(℃)	(µs/cm)	(mg/L)			(ntu)				
07:25	5.66								Static water level			
08:55	5.68	1.6	18.5	293	9.86	5.92	25	12	Pump on			
09:00	5.70		21.5	179	9.46	6.09	64	40	i i			
9:05	5.70		22	192	9.45	6.25	34	1	1			
9:10	5.70		21	186	9.81	6.16	100	1	Purged approx 12) nal		
9:15	5.70	1.6	20.8	185	9.35	6.08	108	3	i diged applox 12	- yai		
9.15	5.70	1.0	20.6	100	9.33	0.06	100	ა				
0.00									0 " () 5	111111111		
9:20									Collect sample D	WW-15A		
					ļ							
					t							
					<u> </u>				<u> </u>			
					 							
					 				 			
					-							
	i	Ī		Ī	I			Ī				

Pump Type: Centrifugal pump with black poly tubing

WELL NO. MW-15B

	1 0011	IALOO	141						WELL NO. MW- 1	
	0445	50		PROJECT	_				PROJECT No.	SHEET SHEET
		LING FO	RM	Multi Site	e G				95900	1 of 1
LOCATION		\\/ ()	1 - 12 K IX		00				DATE WELL STARTED	DATE WELL COMPLETED
DZUS F	-astene	ers, West	isiip, iv	Y #1-52-0	33				11/12/08 NAME OF INSPECTOR	11/12/08
	ant Ota	40 Danaut							MA / SC	
INEW 1	COMPANY	te Depart	ment of	EUMIOU	nentar (Jonsen	valion		SIGNATURE OF INSPECTOR	
DKILLING	COMPANT								SIGNATURE OF INSPECTOR	
			40.0	0 "			0.4.7	•	l.	
		ELL VOLUME :	12.9	Gallons		WELL TD:	84.7	ft	PUMP INTAKE DEPTH	9.0 ft
	Depth	Dimens		FIE	LD MEAS	SUREME	ENTS			
T:	to	Purge	T	Canalizat	D0	mII.	ODD	To only indicate	DE	MADIC
Time	Water	Rate	Temp.	Conduct.		рН	ORP	Turbidity	KE	MARKS
	(ft)	(gal/min)	(℃)	(µs/cm)	(mg/L)			(ntu)		
7:25	5.62								Static water level	
		0.0	44.04	207	44.0	7.0	40	20		
8:10	5.69	0.6	11.01	267	11.8	7.2	42	20	Pump on	
8:15	6.85		15.63	345	10.05	5.77	77	6		
8:20	7.10		15.92	356	9.67	5.59	102	5		
8:25	7.10		14.26	350	9.5	5.54	91	11	Purged approx 40	gal
8:30	7.08		15.35	347	9.31	5.61	94	9		
8:35	7.88	0.6	15.12	342	9.61	5.52	93	1		
8:40									Collect sample DM	W-15B
						_				
		1								
					<u> </u>					
	1	 			 		 			
					 					
	1				1					
		ļ			 					
									<u> </u>	
Pump	Type:	Centrifug	jal pum	p with bla	ck poly	tubing				

⊑arτn	recn	AECO	IVI						WELL NO. MW-	18	
WELL	SAMP	LING FO	P.M	PROJECT Multi Site	. G				PROJECT No. 95900	SHEET 1	SHE OF 1
OCATION		LING FO	N IVI	IVIUILI SILE	, G				DATE WELL STARTED	DATE WELL	
zus F	astene	ers, West	Islip, N`	Y #1-52-0	33				11/11/08	11/11/08	}
LIENT	ork Sta	te Depart	mont of	Environr	montal (Concor	otion		NAME OF INSPECTOR MA / SC		
RILLING	COMPANY	пе Берап	ment of	Elivilolii	nemai (JUNSEN	alion		SIGNATURE OF INSPECTO	DR .	
	ONE WE	ELL VOLUME :	1.4	Gallons	,	WELL TD:	13.5	ft	PUMP INTAKE DEP	тн: 9.0	ft
	Depth	_		FIE	LD MEA	SUREME	NTS				
Time	to Water	Purge Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		EMARKS	
IIIIE	(ft)	(gal/min)	(℃)	(µs/cm)	(mg/L)	Pin	UKF	(ntu)		LWANNS	
		,	(- /	()	, ,			(,			
5:55	4.98								Static water level		
6:00		0.3	20.9	250	9.22	6.64	33	29	Pump on		
16:05			22.5	214	9.42	6.55	58	86			
16:10			22.63		9.3	6.55	88	10			
16:15	5.03	0.3	23	209	8.28	6.6	91	7	Purged approx 5	gal	
16:20									Collect sample D	N/N/ 10	
10.20									Collect Sample D	10100-10	
											•
											· · · · · · · · · · · · · · · · · · ·
	<u> </u>	<u> </u>	<u> </u>						<u> </u>		
. '	T	Control	٠ ا ــ	الاعادات م	انجيام	Analestes s					
ump	ı ype:	Centrifug	gai pum	p with bla	ck poly	tubing					
				T 4.1							
nalytı	icai Par	ameters:		TAL met	ais						

Analytical Parameters:

TAL metals

		AECO		PROJECT					WELL NO. MW- 2 IPROJECT No.	SHEET	SHE
VEI I	SAMP	LING FOI	RМ	Multi Site	G				95900	1	of 1
OCATION		LING I OI	ZIVI	Maiti Oite	, 0				DATE WELL STARTED	DATE WELL (
zus F	astene	rs, West	Islip, N	Y #1-52-0	33				11/12/08	11/12/08	
LIENT							_		NAME OF INSPECTOR		
lew Yo	ork Sta	te Depart	ment of	Environr	nental (Conser	ation/		MA / SC		
RILLING	COMPANY								SIGNATURE OF INSPECTOR	₹	
	ONE WE	LL VOLUME :	1.3	Gallons	,	WELL TD:	14.4	ft	PUMP INTAKE DEPT	н: 11.0	ft
	Depth to	Duras		FIE	LD MEA	SUREME	NTS				
Time	Water	Purge Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity	, pr	MARKS	
IIIIe	(ft)	(gal/min)	(℃)	(µs/cm)	(mg/L)	ριι	OKI	(ntu)		INAKKO	
	(11)	(gai/iiiii)	(0)	(μο/οιτι)	(g, _,			(iita)			
09:50	6.4								Static water level		
10:10	6.4	0.3	18.93	374	10.04	6.53	27	210	Pump on		
10:15	6.48		21	481	9.24	6.55	-37	170			
10:20	6.6		22.2	483	9.08	6.67	-58	40			
10:25	6.58	0.3	21.87	504	8.84	6.65	-72	19	Purged approx 5 (nal	
						0.00			9	,	
10:30									Collect sample DN	/W-22A	
									MS/MSD		
									Duplicate DMW-7	2	
									Dapinoato Diviti		
					 						
					 						
					 						
					 						
					 						
					 						
					 						
					 						
					 						
					 						
					 						
\longrightarrow					<u> </u>						
				ı	I				1		

WELL NO. MW- 22B

Eartn	recn	AECO	IVI						WELL NO. MW-	22B	
WELL	SAMP	LING FO	RM	PROJECT Multi Site	e G				PROJECT №. 95900	SHEET 1	SHE
OCATION	ı								DATE WELL STARTED	DATE WELL	COMPLETED
Dzus F	astene	rs, West	Islip, N`	Y #1-52-0	33				11/12/08	11/12/08	3
LIENT	ork Sta	te Depart	ment of	f Environr	nental (Oncor	vation		NAME OF INSPECTOR MA / SC		
RILLING	COMPANY	пе Берап	ineni o	LIIVIIOIII	ileiliai (2011361	valion		SIGNATURE OF INSPECTO	DR .	
	ONE WE	ELL VOLUME :	6.2	Gallons	١	WELL TD:	44.5	ft	PUMP INTAKE DEP	тн: 10.0	ft
	Depth			FIE	LD MEA	SUREME	NTS				
T	to	Purge	—	0			LODD	T	_	EMARKO.	
Time	Water (ft)	Rate (gal/min)	Temp. (℃)	Conduct. (µs/cm)	DO (mg/L)	pН	ORP	Turbidity (ntu)	K	REMARKS	
	(11)	(gai/iiiii)	(0)	(µ5/СП)	(ilig/L)			(iitu)			
9:50	6.23								Static water level		
10:40		1	21.6	348	9.1	7.06	-105	49	Pump on		
10:45	6.31		18.25		9.63	7.01	-84	23			
10:50	6.31		16.7	251	8.5	6.36	23	10			
10:55	6.31		17	253	8.7	6.31	58	3	Purged approx 20	0 gal	
11:00	6.31	1	17.14	254	9.2	6.35	62	6			
44.05										1444 665	
11:05					<u> </u>				Collect sample D	MW-22B	
					<u> </u>						
					1						
									<u> </u>		
J	T	Contait.	- سند سامه	-لـا ـلفائنييس	اجعيام	د ما ما ده					
ump	ı ype:	Centrifug	jai pum	p with bla	ск poly	tubing					
الماميد	! 5	4 -		T A! :	-1-						
naiyti	cai Par	ameters:		TAL met	ais						

⊏arııı	recn	AECO	IVI						WELL NO. MW- 2	23A			
	04145			PROJECT	_				PROJECT No.	SHEET		SHEE	
VELL OCATION		LING FO	KIMI	Multi Site	e G				95900 DATE WELL STARTED	1 DATE WELL	OF COMPLET	1	
		rs, West	Islip. N	Y #1-52-0	33				11/12/08	11/12/0		בט	
LIENT	actorio	10, 11001	юпр, т	02 0					NAME OF INSPECTOR	1171270			
lew Y	ork Sta	te Depart	ment of	Environr	nental (Conserv	ation/		MA / SC				
RILLING	COMPANY								SIGNATURE OF INSPECTO	₹			
			1.0	Callana			440	4		40.0	£1		
		LL VOLUME :	1.6	Gallons	LD MEAS	WELL TD:	14.3	π	PUMP INTAKE DEPT	тн: 10.0	π		
	Depth to	Purge		FIE	LD WEA	SUKEIVIE	INIO						
Time	Water (ft)	Rate (gal/min)	Temp. (℃)	Conduct. (µs/cm)	DO (mg/L)	pН	ORP	Turbidity (ntu)	RI	EMARKS			
13:05	4.64								Static water level				
13:20	4.64	0.4	20.16		8.75	6.27	49	10	Pump on				
13:25	4.7		22	513	8.12	6.54	-43	27					
13:30	4.7		22.5	580	8.18	6.69	-70	40	Durged energy 6 gel				
13:35	4.7	0.4	23.4	618	8.02	6.72	-83	60	Purged approx 6	Purged approx 6 gal			
13:40									Collect sample DI	MM 22 A			
13.40									Collect Sample Di	VIVV-ZSA			
					_								
					<u> </u>				<u> </u>				

Pump Type: Centrifugal pump with black poly tubing

Laitii	I CCII	AECO	IAI			WELL NO. MW- 2	3B				
WELL	SVMD	LING FO	ЭM	PROJECT Multi Site	, G				PROJECT No. 95900	SHEET 1 OF	SHEE 1
OCATION		LING FOI	Z IVI	Multi Site	, G				DATE WELL STARTED	1 OF DATE WELL COM	-
Dzus F	astene	rs, West I	lslip, N	Y #1-52-0	33				11/12/08	11/12/08	
LIENT	ork Cto	ta Danart	mant of	Environn	nantal (20000	otion		NAME OF INSPECTOR		
RILLING	COMPANY	te Depart	ment of	EUMIOU	nemar	Jonsen	alion		MA / SC SIGNATURE OF INSPECTOR		
	ONE WE	LL VOLUME :	6.5	Gallons	,	WELL TD:	44.5	ft	PUMP INTAKE DEPTH	: 10.0 ft	
	Depth FIELD MEASUREMENTS to Purge										
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity	RF	MARKS	
	(ft)	(gal/min)	(℃)	·							
	` ,	,	` '					. ,			
13:05	4.58								Static water level		
13:50	4.58	1	21.86		8.23	6.74	-53	33	Pump on		
13:55	4.70		22.08		9	7.07	-85	24			
14:00	4.75		28.38		9.21	6.34	-29	23	-		
14:05	4.75		17.2	213	8.74	5.9	50	41	Purged approx 20	gal	
14:10	4.75	1	16.8	212	8.8	5.83	70	8			
1 1 1 5									Collect commis DA	W OOD	
14:15									Collect sample DM	W-23B	
								_			
					ļ						
					<u> </u>						

Pump Type: Centrifugal pump with black poly tubing

	10011	AECO	•••			SURFACE WATE		-E: 9W				
SURF	ACE W	ATER SA	MDI IN	G FORM		PROJECT Multi S	ito G		PROJECT No. 95900	SHEET 1	OF	SHEE 1
CATION		AILK SA	TAIL FIIA	G I OKW		iviuiti 3	ile G		DATE WELL STARTED		L COMPLE	
zus F	astene	rs, West I	Islip, N`	Y #1-52-0	33				11/14/08	11/14/	08	
IENT ew Y	ork Sta	te Denarti	ment of	Environr	nental (Conserv	/ation		NAME OF INSPECTOR MA / SC			
JBCONT	RACTOR C	te Depart	inoni o	LIIVIIOIII	ilontai c	20113011	ation		SIGNATURE OF INSPECTO	R		
		ı	1									
	Depth of	Purge		FIE	LD MEAS	SUREME	INTS					
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity	R	EMARKS		
	(ft)	(mL/min)	(℃)	(µs/cm)	(mg/L)			(ntu)				
	8		13.45	185	12.13	6.42	95	12				
									40° 41.851 N			
									73º 18.071 W			
									10.01.11			
4:40									Collect sample S\			
									Collected MS/MS			
									Duplicate SW-51	at 14:45		
14:30									Collected sedime	nt CED 1		
14.30									Collected Sealme	III SED-I		
	Ī								ĺ			

⊏arııı	recn	AECO	IVI						SURFACE WATE	ER SAMP	LE: SW	<i>I</i> -2
SURF	ACF W	ATER SA	MPI IN	G FORM		PROJECT Multi S			PROJECT No. 95900	SHEET 1	OF	SHEE 1
CATION	l					IVIGILI C			DATE WELL STARTED	DATE WI	ELL COMPL	
ZUS F	astene	ers, West I	Islip, N	Y #1-52-0	33				11/14/08 NAME OF INSPECTOR	11/14	/08	
	ork Sta	te Departi	ment of	Environr	nental (Conserv	ation		MA / SC			
JBCONT	RACTOR C	OMPANY							SIGNATURE OF INSPECTO	PR		
	Depth			FIE	LD MEA	SUREME	NTS					
Time	of Water	Purge Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity	_	EMARKS		
IIIIe	(ft)	(mL/min)	remp.	(µs/cm)	(mg/L)	рп	UKP	(ntu)	, K	LIVIARRS		
	8		13.89	196	11.44	6.59	89	9				
									40° 41.844 N			
									73° 18.049 W			
14:20									Collect surface w	ater sam	ole SW-	2
14:10									Collect sediment	sample S	FD-2	
									Concot Countries	oumpro c		
					-							
-		Dipped b	ottles ir	nto the wa		collection	on, use	d a ponar	dredge for sedime	ent collect	ion	

PROJECT No. SHEET OSCATION DOCATION DOCATION DOTE WALL STARTED DATE WALL	arth	R SAMPLE: SW-3				
Date well started Date well started 11/14/08 1	IRFΔ					
NAME OF INSPECTOR NAM	ATION	DATE WELL COMPLETE				
Depth of Water (ft)	us Fa	11/14/08				
Depth of Water (ft)						
Time Vater (ft) Vater (f	CONTR					
Time (ft) (mL/min) (C) (μs/cm) (mg/L) (mg/L) (ntu) (n						
(ft) (mL/min) (C) (μs/cm) (mg/L) (ntu) 8 13.75 189 11.59 6.13 100 25 40° 41.756 N 73° 18.044 W 15:00 Collect surface water sample	ime	MARKS				
40° 41.756 N 73° 18.044 W Collect surface water sample	0					
40° 41.756 N 73° 18.044 W	\rightarrow					
5:00 Collect surface water sample	\dashv	_				
5:00 Collect surface water sample	-					
	:.00	tor sample SW-3				
Collect sediment sample SED	7.00	ter sample 3vv-3				
	:10	ample SED-3				
	\rightarrow	_				
	\dashv					
	\Box					
	-+					
	-+					
	-					
	\dashv					
	\dashv					
	\dashv					
	\Box					
	\dashv					
	\dashv					
Pump Type: Dipped bottles into the water for collection, used a ponar dredge for sediment collection analytical Parameters: TAL metals		t collection				

SURFACE WATER SAMPLE: SW-4

	recn	AECO	IVI							ER SAMPLE: SW-4
SURF	ACF W	ATER SA	MPI IN	G FORM		PROJECT Multi S			PROJECT No. 95900	SHEET SHEE
OCATION	ı					India C			DATE WELL STARTED	DATE WELL COMPLETED
ZUS F	astene	rs, West	lslip, N	Y #1-52-0	33				11/14/08 NAME OF INSPECTOR	11/14/08
lew Y	ork Sta	te Depart	ment of	Environr	nental (Conserv	/ation		MA / SC	
JBCONT	RACTOR C	OMPANÝ							SIGNATURE OF INSPECTO	PR
	Depth			FIE	LD MEA	SUREME	NTS			
Time	of Water	Purge Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity	_	EMARKS
Time	(ft)	(mL/min)	remp.	(µs/cm)	(mg/L)	рп	UKP	(ntu)		LIVIARNO
	. ,	, ,	, ,	,,	, ,			` ,		
	8		13.25	197	11.71	6.29	89	35		
									40° 41.735 N	
									73º 17.985 W	
									73 17.303 VV	
15:20									Collect surface w	ater sample SW-4
5:30									Collect sediment	sample SED-/
3.30									Collect Sediment	Sample OLD-4
					 					
					 					

	ER SAMPLI	IG FORM		PROJECT			PROJECT No.	SHEET	
ers, West I		10 1 01111		Multi S	ite G		95900	1 of	SHEI 1
Purge			<u> </u>	iviaiti O	ile O		DATE WELL STARTED	DATE WELL COMPLET	
Purge Rate	, West Islip, N	Y #1-52-0	33				11/12/08 NAME OF INSPECTOR	11/12/08	
Purge Rate	Department of	f Environr	nental (Conserv	ation		MA / SC		
Purge Rate	PANY						SIGNATURE OF INSPECTOR	R	
Rate		FIE	LD MEAS	SUREME	NTS				
		Conduct.	DO	ьU	ORP	Turbidity	Di	EMADICE	
		(µs/cm)	DO (mg/L)	рН	UKP	(ntu)	Ki	EMARKS	
	10.91	196	9.41	6.88	11	1.6			
							40° 42.085 N		
							73º 18.036 W		
							Collect surface wa	otor comple SW F	
							Collect surface wa	ater sample 5vv-5)
							Collect sediment s	sample SED-5	
									Dipped bottles into the water for collection, used a ponar dredge for sediment collection meters: TAL metals

<u> </u>	recn	AECO	IVI						SURFACE WATE	ER SAM	PLE: SV	
URF	ACE W	ATER SA	MPLIN	G FORM		PROJECT Multi S			PROJECT No. 95900	SHEET 1		SHE 1
CATION	l				00	Water C			DATE WELL STARTED	DATE	WELL COMP	
ZUS F	astene	rs, West	isiip, iv	r #1-52-0	33				11/12/08 NAME OF INSPECTOR	[11/1	2/08	
ew Y	ork Sta	te Departi	ment of	Environr	nental (Conser	/ation		MA / SC			
JBCONT	RACTOR C	OMPANY							SIGNATURE OF INSPECTO	OK .		
	Depth	_		FIE	LD MEAS	SUREME	NTS					
Time	of Water	Purge Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity	R	EMARKS		
	(ft)	(mL/min)	(℃)	(µs/cm)	(mg/L)	•		(ntu)				
	1		11.97	316	5.2	6.5	-4	2.3				
	I		11.97	310	5.2	0.5	-4	2.3				
14:30									Collect surface w	ater san	nple SW	-6
14:20									Collect sediment	comple	SED 6	
14.20									MS & MSD	sample	3ED-0	
									SED-56 (Duplicat	te) at 14	:25	
									40° 42.458 N			
									73º 17.949 W			
	l											

WELL NO. MW- 2

AECC						WELL NO. MW- 2						
				PROJECT					PROJECT No.	SHEET SHEETS		
		LING FOI	RM	D004445	5-14.3, N	Ոսlti Si	te G		60135736.30	1 of 1		
LOCATION	-								DATE WELL STARTED	DATE WELL COMPLETED		
Dzus F	astene	rs, West	Islip, N`	Y 1-52-03	3				March 10, 2010	March 10, 2010		
CLIENT									NAME OF INSPECTOR			
New Y	ork Sta	te Depart	ment of	Environr	nental a	and Cor	nservati	ion	Celeste Foster & Staci Birnbaum			
DRILLING	COMPANY								SIGNATURE OF INSPECTOR			
	ONE WE	ELL VOLUME :	6.87	Gallons	\	WELL TD:	14.3	ft	PUMP INTAKE DEPTH	: 15 ft		
	Depth			FIE	LD MEAS	SUREME	NTS					
ļ	to	Purge							lity REMARKS			
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity				
•	(ft)	(mL/min)	(℃)	(µs/cm)	(mg/L)	-		(ntu)				
14:41	7.43					Static water level						
14:47	7.44								pump on			
14:53	7.51	1.38							Purged 5 gal			
14:57	7.58	1.38							Purged 10 gal			
14:59	7.58	1.38							Purged 15 gal			
15:02	7.58	1.38							Purged 20 gal Purged 25 gal Turned off			
15:05		1.38										
									1 911 1 911			
San	npled a	t 15:06										
	HOR	IBA BRO	KEN									
	1											
	1											

Pump Type: Grundfos Redi Flo 2 with poly tubing, Teflon bailer

Analytical Parameters: TAL m Metals & HG

				PROJECT					PROJECT No.	SHEET	SHEETS		
		LING FOR	RM	D004445	5-14.3, N	∕lulti Si	te G		60135736.30	1 оғ	1		
LOCATION					_				DATE WELL STARTED	DATE WELL COMP			
DZUS F	astene	rs, West I	slip, N	Y 1-52-03	3				March 10, 2010	March 10, 2	.010		
	ork Sta	te Departi	ment of	f Environr	nental a	and Co	nservati	ion	Celeste Foster & Sta	aci Birnhaum			
DRILLING	COMPANY	to Dopait			nontal c		100114		SIGNATURE OF INSPECTOR	201 21111044111			
	ONE WE	ELL VOLUME :	1.73	Gallons	V	VELL TD:	15	ft	PUMP INTAKE DEPTH: 12 ft				
	Depth to	Purge		FIE	LD MEAS	SUREME	ENTS						
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity	REM	IARKS			
	(ft)	(mL/min)	(%)	(µs/cm)	(mg/L)	P		(ntu)					
			` '	,				, ,					
14:25	5.36								Static water level				
14:31	5.42	1 gal/min							pump on				
14:34		1 gal/min											
14:36		1 gal/min							purged 5 gal				
14:38		1 gal/min											
14:41		1 gal/min							purged 10 gal				
14:44	Coll	ected Sar	nple										
		HODI											
		HORI	BA BR	OKEN									
								<u> </u>					
<u> </u>				<u> </u>	<u> </u>				<u> </u>				
Pumn .	Tyne:	Grundfos	: Redi F	Flo 2 with	noly tub	ina Ta	eflon ha	iler					
. wp	٠,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	S. a. iaio		*******	y tul	y, 10	.						

WELL NO. MW- 9

Depth Time Water Red Time Conduct Do (ms/m) Conduct Conduc					PROJECT					PROJECT No.	SHEET	SHEETS
DZUS Fasteners, West Islip, NY 1-52-033			LING FOR	RM	D004445	5-14.3, [Multi Si	te G		60135736.30		
New York State Department of Environmental and Conservation State Department of Environmental and Conservation State Department of Environmental and Conservation State Department of Environmental and Conservation State Department of Environmental and Conservation State Department of Environmental and Conservation Celeste Foster & State Birnbaum State Department of Environmental and Conservation Celeste Foster & State Birnbaum State Department of Environmental and Conservation Celeste Conservation Ce		-				_						
New York State Department of Environmental and Conservation Celeste Foster & State Birnbaum	Dzus F	astene	rs, West	Islip, N	Y 1-52-03	3					March 10, 20)10
Depth to Purge Rate (t) (mL/min) Tempor of 13:50 4.21 0.55		ork Sta	ta Danarti	ment o	f Environr	nental s	and Co	nearvat	ion		aci Rirnhaum	
NewEll volume: 1.19 Gallons Well TD: 11.5 ft Pump intake depth: 10 ft	DRILLING	COMPANY	пе Берапі	illelit U	LIIVIIOIII	ileiliai a	and Co	i ise i vai	1011		aci birribadiri	
Depth to Water Rate Rate Rate												
Depth to Water Rate Rate Rate										1		
Time Water Rate Rate (mL/min) Water (ONE WE	LL VOLUME :	1.19	Gallons	,	WELL TD:	11.5	ft	PUMP INTAKE DEPTH:	10 ft	
Time Water Rate Rate (mL/min) Water (Denth			FIF	I D MFA	SURFME	NTS				-
Time (t) Water (t) (mL/min) (C) (µs/cm) (mg/L) (p) (pH) (Nth)	-	Purge			,	00.12						
(ft) (mL/min) (°C) (µs/cm) (mg/L)	Time		_	Temp.	Conduct.	DO	рН	ORP	Turbidity	REM	IARKS	
13:50		(ft)		-			•		-			
13:50												
13:57	13:37	4.19								Static water level		
13:57 4.22 0.55	13:50	4.21	0.55							pump on		
13:58 4.28 0.55	13:57	4.22	0.55									
14:00	13:58	4.28	0.55									
14:01 Turned off 14:04 DMW-9-20100310 14:05 DMW-59-20100310 Dupl HORIBA BROKEN HORIBA BROKEN IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	14:00	4.3	0.55									
14:04 DMW-9-20100310	14:01	_	Turned off	f								-
14:05 PMW-59-20100310 Dupl HORIBA BROKEN HORIBA B		DMV	N-9-2010	0310								-
HORIBA BROKEN HORIBA					ol							
			HORI	BA BR	OKFN							-
			11011		I							
												-
					1					-		
					-	ļ		}	-			
					ļ							

Pump Type: Grundfos Redi Flo 2 with poly tubing, Teflon bailer

WELL NO. MW- 9B

	PROJECT	PROJECT No.	SHEET	SHEETS
WELL SAMPLING FORM	D004445-14.3, Multi Site G	60135736.30	1 оғ	1
LOCATION		DATE WELL STARTED	DATE WELL COMP	PLETED
Dzus Fasteners, West Islip, N'	Y 1-52-033	March 10, 2010	March 10, 2	010
CLIENT		NAME OF INSPECTOR		
New York State Department of	Environmental and Conservation	Celeste Foster & St	aci Birnbaum	
DRILLING COMPANY		SIGNATURE OF INSPECTOR		

ONE WELL VOLUME: 6.58 Gallons WELL TD: 44.5 ft PUMP INTAKE DEPTH: 10 ft

	Depth			FIE	LD MEAS	SUREME	NTS		
	to	Purge		T _				r	
Time	Water	Rate		Conduct.		рН	ORP	Turbidity	REMARKS
	(ft)	(mL/min)	(℃)	(µs/cm)	(mg/L)			(ntu)	
13:38	4.11	1.32							Static water level
13:49		1.32							pump on
13:55		1.32							5 gal purge
13:58		1.32							10 gal purge
14:01		1.32							15 gal purge
14:03		1.32							20 gal purge
14:07		1.32							25 gal purge
14:08									Turned off
14:10									collected sample
									·
		HORI	BA BR	OKEN					

Pump Type: Grundfos Redi Flo 2 with poly tubing, Teflon bailer

WELL NO. MW- 13A

									IDDO IECT NO. IVIVV- IJA			
WELL	SAMD	LING FOR		PROJECT D004445	-1/2 N	Aulti Ci	to G		PROJECT No. 60135736.30	SHEET 1 of	SHEETS 1	
LOCATION		LING FUI	/ IAI	D004440	ر ۱ ۱۱ .ی, ۱	viuiti 31	ie G		DATE WELL STARTED	1 OF DATE WELL COMP		
		ro \//oo+	lolio NI	V 1 50 00	2							
DZUS F	asiene	rs, West I	isiip, iv	1 1-02-03	J				March 10, 2010	March 10, 2	UIU	
	ork Sta	te Departi	ment of	f Environr	nental a	and Cor	nservati	on		aci Birnhaum		
DRILLING C	COMPANY	.o Doparti	ont O	LITVITOTII	ai c	001	iooi vali		Celeste Foster & Staci Birnbaum			
	ONE WE	LL VOLUME :	1.33	Gallons	V	VELL TD:	10.7	ft	PUMP INTAKE DEPTH: 8 ft			
	Depth			FIE	LD MEAS	SUREME	NTS					
	to	Purge										
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity	REN	IARKS		
	(ft)	(mL/min)	(℃)	(µs/cm)	(mg/L)	•		(ntu)				
		,	, ,	" /	, ,			, ,				
15:17	2.27								Static water level			
15:27	2.29	0.71										
15:28									pump on			
	2.36	0.71		ļ								
15:30	2.32	0.71										
15:32	2.39	0.71										
15:34	2.35	0.71										
15:37									Turned off 5 gal pur	ged and sam	pled	
\longrightarrow												
		HORI	BA BR	OKEN								
\longrightarrow												
\longrightarrow												
 												
	·					·					· · · · · · · · · · · · · · · · · · ·	
$\neg \neg$												
\longrightarrow												
												
											_	

WELL NO. MW-13B

									WELL NO. WW- 13	<u> В</u>				
				PROJECT					PROJECT No. SHEET SH					
		LING FOR	RM	D004445	5-14.3, N	∕lulti Sit	te G		60135736.30	1	OF	1		
LOCATION	-								DATE WELL STARTED	DATE WEL				
	astene	rs, West I	Islip, N`	Y 1-52-03	3				March 10, 2010	March	10, 20	10		
CLIENT									NAME OF INSPECTOR					
		te Depart	ment of	Environr	nental a	and Cor	nservat	ion	Celeste Foster & St	aci Birnb	aum			
DRILLING	COMPANY								SIGNATURE OF INSPECTOR					
	ONE WE	ELL VOLUME :	6.88	Gallons	V	VELL TD:	44.3	ft	PUMP INTAKE DEPTH:	8	3 ft			
	Depth			FIE	LD MEAS	SUREME	NTS							
	to	Purge												
Time	Water	Rate	Temp.	Conduct.	DO	pН	ORP	Turbidity	REMARKS					
	(ft)	(mL/min)	(℃)	(µs/cm)	(mg/L)			(ntu)	REWIARRS					
15:15	2.08								Static water level					
15:26	2.19	2.27							pump on					
15:29	2.3	2.27							5 gal purge					
15:31	2.31	2.27							10 gal purge					
15:33	2.31	2.27							15 gal purge					
15:35	2.3	2.27							20 gal purge					
15:37	2.05	2.27							25 gal purge pump	off				
15:41									collected sample					

HORIBA BROKEN

Pump Type: Grundfos Redi Flo 2 with poly tubing, Teflon bailer

WELL NO. MW- 15A

	PROJECT			PROJECT No.	SHEET		SHEETS
WELL SAMPLING FORM	D004445-14	1.3, Multi Sit	te G	60135736.30	1	OF	1
LOCATION				DATE WELL STARTED	DATE WE	LL COMPL	ETED
Dzus Fasteners, West Islip,	March 9, 2010	March	9, 201	0			
CLIENT				NAME OF INSPECTOR	-		
New York State Department	Celeste Foster & Staci Birnbaum						
DRILLING COMPANY	SIGNATURE OF INSPECTOR						
ONE WELL VOLUME: 3.9	6 Gallons	WELL TD:	28.81 ft	PUMP INTAKE DEPTI	ı: 1	0 ft	

	ONE WE	LL VOLUME :	5.90	Galloris	,	WELL ID:	20.01	11	PUMP INTAKE DEPTH: TO IL
	Depth FIELD MEASUREMENTS								
	to	Purge							
Time	Water	Rate	Temp.	Conduct.		рН	ORP	Turbidity	REMARKS
	(ft)	(mL/min)	(℃)	(µs/cm)	(mg/L)			(ntu)	
13:48	4.51								Static water level
14:03	4.93	0.94	13.13	0.211	9.58	5.86	145	0	pump on
14:08		0.94	13.72	0.241	9.11	5.41	156	0	
14:16		0.94	14.15	0.212	8.71	5.44	146	0	
14:19									15 gal purged- pump off
14:22									collected sample

Pump Type: Grundfos Redi Flo 2 with poly tubing, Teflon bailer

WELL NO. MW- 18

	PROJECT	PROJECT No.	SHEET		SHEETS
WELL SAMPLING FORM	D004445-14.3, Multi Site G	60135736.30	1	OF	1
LOCATION		DATE WELL STARTED	DATE WELL	COMPLE	TED
Dzus Fasteners, West Islip, N'	Y 1-52-033	March 9, 2010	March 9	9, 2010)
CLIENT		NAME OF INSPECTOR			
New York State Department of	f Environmental and Conservation	Celeste Foster & S	Staci Birnb	aum	
DRILLING COMPANY		SIGNATURE OF INSPECTOR			

ONE WELL VOLUME: 1.47 Gallons WELL TD: 13.5 ft PUMP INTAKE DEPTH: 10 ft

	Depth			FIE	LD MEAS	SUREME	NTS		
	to	Purge							
Time	Water	Rate	Temp.			рН	ORP	Turbidity	REMARKS
	(ft)	(mL/min)	(℃)	(µs/cm)	(mg/L)			(ntu)	
12:57									Static water level
13:02	4.55	0.7	11.9	0.234	10.39	6.22	134	67.7	pump on
13:04		0.7	11.1	0.217	10.76	5.95	140	114	
13:06	4.55	0.7	11.37	0.212	10.49	5.52	150	0	
13:07									7 gal purged turned off
13:09									sample collected
									·

Pump Type: Grundfos Redi Flo 2 with poly tubing, Teflon bailer

15:01

WELL NO. MW- 22A

sample collected

									WELL NO. WWW- 22	_		
				PROJECT					PROJECT No.	SHEET		SHEETS
WELL	SAMP	LING FOI	RM	D004445	5-14.3, I	Multi Si	te G		60135736.30	1	OF	1
LOCATION					,				DATE WELL STARTED	DATE WELL (COMPLE	TED
Dzus F	astene	rs, West	Islip, N	Y 1-52-03	3				March 9, 2010	March 9,	2010)
CLIENT		•							NAME OF INSPECTOR			
New Y	ork Sta	te Depart	ment of	Environn	nental a	and Cor	nservati	ion	Celeste Foster & St	aci Birnba	um	
DRILLING	COMPANY								SIGNATURE OF INSPECTOR			
i												
	ONE WE	LL VOLUME :	1 //1	Gallons		WELL TD:	14.4	ft	DUMP INTAKE DEPTH	10	f+	
	ONE WE	LL VOLUME :	1.41	Galloris	'	WELL ID:	14.4	11	PUMP INTAKE DEPTH:	10	ıı	
	Depth			FIE	LD MEA	SUREME	ENTS					
	to	Purge										
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity	REM	IARKS		
	(ft)	(mL/min)	(℃)	(µs/cm)	(mg/L)			(ntu)				
14:46	5.75								Static water level			
14:48	5.9	0.6	10.84	0.584	9.69	5.87	145	46	pump on			
14:51	5.98	0.6	10.42	0.999	9.383	6.26	148	68				
14:57	5.98	0.6	10.16	0.999	9.92	6.02	146	57				
14:58	5.98	0.6	10.28	0.668	9.78	5.83	142	7.9	6 gal purged turned	off		
							 	1	· · · · · · · · · · · · · · · · · · ·			

Pump Type: Grundfos Redi Flo 2 with poly tubing, Teflon bailer

WELL NO. MW- 22B

	PROJECT	PROJECT No.	SHEET		SHEETS
WELL SAMPLING FORM	D004445-14.3, Multi Site G	60135736.30	1	OF	1
LOCATION		DATE WELL STARTED	DATE WELL	COMPLE	ETED
Dzus Fasteners, West Islip, N'	Y 1-52-033	March 9, 2010	March 9	9, 2010	0
CLIENT		NAME OF INSPECTOR			
New York State Department of	f Environmental and Conservation	Celeste Foster & St	aci Birnb	aum	
DRILLING COMPANY		SIGNATURE OF INSPECTOR			

ONE WELL VOLUME: 6.35 Gallons WELL TD: 44.5 ft PUMP INTAKE DEPTH: 11 ft

	Depth			FIE	LD MEAS	SUREME	NTS		
	to	Purge							
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity	REMARKS
	(ft)	(mL/min)	(℃)	(µs/cm)	(mg/L)			(ntu)	
14:37									Static water level
14:40	5.8	2	11.89	0.245	10.03	5.23	169	0	pump on
14:42		2	12.83	0.268	9.36	5.6	175	0	5 gal purge
14:44	5.8	2	13.21	0.288	9.07	5.78	172	0	10 gal purge
14:46	5.79	2	13.62	0.269	8.76	5.66	170	0	15 gal purge
14:48	5.8	2	13.16	0.265	8.81	5.6	169	0	20 gal purge turned off
14:53									sample collected

Pump Type: Grundfos Redi Flo 2 with poly tubing, Teflon bailer

WELL NO. MW- 23A

AECC) IVI								WELL NO. MW- 2	3 A		
				PROJECT					PROJECT No.	SHEET		SHEETS
		LING FO	RM	D004445	5-14.3, I	Multi Si	te G		60135736.30	1	OF	1
LOCATION		\\/ ()	I - 12 N IN		•				DATE WELL STARTED	DATE WEL		
DZUS F	astene	ers, West	isiip, iv	Y 1-52-03	3				March 10, 2010	March	10, 20	10
	ork Sta	te Depart	mont of	Environn	nontal	and Co	oconyati	ion	Celeste Foster & S	taci Rirah	aum	
DRILLING	COMPANY	ile Depart	ment of	LIMIOIII	iieiilai a	ariu Coi	iservali	1011	SIGNATURE OF INSPECTOR		Jauiii	
DIVILLENIO	OOMI AITT								SIGNATORE OF INOT ESTOR			
	ONE WE	ELL VOLUME :	15.5	Gallons	,	WELL TD:	14.3	ft	PUMP INTAKE DEPTH	ı: 10) ft	
	Depth to	Duran		FIE	LD MEA	SUREME	NTS					
Time	Water	Purge Rate	Tomp	Conduct.	DO	рН	ORP	Turbidity	, DE	MARKS		
Time	(ft)	(mL/min)	Temp. (℃)	(µs/cm)	(mg/L)	рп	UKP	(ntu)	KE	WIAKKS		
	(11)	(,)	(0)	(μο/οπή	(g, _)			(iita)				
15:53	4.15								Static water level			
15:56		1										
16:01	4.16	1			-		 	 	pump on			
16:02	4.31	1			-		 	-				
16:03	4.31	1					1	-				
									tatal 40 mal avenue d			
16:06	4.1	1							total 10 gal purged			
16:10									sample collected			
		HORI	BA BR	OKEN								
		-			-		1	-				
							1					
					ļ		ļ					
					ļ							
		1					1	İ				
		 			-		 	†				
		 			-		-	 				

Pump Type: Grundfos Redi Flo 2 with poly tubing, Teflon bailer

AFCON

AECC	OM								WELL NO. MW- 23	
\A/E	04440		D14	PROJECT		4 10 00	. 0		PROJECT No.	SHEET SHEETS
LOCATION		LING FO	RM	D004445	5-14.3, ľ	Viulti Si	ie G		60135736.30 DATE WELL STARTED	1 OF 1
		rs, West	Islin N'	Y 1-52-03	3					March 10, 2010
CLIENT									March 10, 2010	10, 2010
New Y	ork Sta	te Depart	ment of	f Environr	nental a	and Cor	nservati	on	Celeste Foster & Sta	aci Birnbaum
DRILLING	COMPANY								SIGNATURE OF INSPECTOR	
	ONE WE	ELL VOLUME :	6.59	Gallons	١	WELL TD:	44.5	ft	PUMP INTAKE DEPTH:	10 ft
	Depth to	Purge		FIE	LD MEA	SUREME	NTS			
Time	Water (ft)	Rate (mL/min)	Temp. (℃)	Conduct. (µs/cm)	DO (mg/L)	рН	ORP	Turbidity (ntu)	REM	ARKS
15:47	4.09								Static water level	
15:55		1.64							pump on	
16:01	4.24	1.64							purged 5 gal	
16:03		1.64							purged 10 gal	
16:05		1.64							purged 15 gal	
16:07	4.39	1.64							purged 20 gal	
16:09	4.12	1.64							purged 25 gal and to	urned off
16:11									collected sample	
		HORI	BA BR	OKEN						
		1								

Pump Type: Grundfos Redi Flo 2 with poly tubing, Teflon bailer

WELL NO. MW- 02

		// /						WELL NO. MW-0	2		
WFII	SAMP	LING FO	R M	PROJECT	steners (1-52-033)		PROJECT №. 60135736	SHEET 1	OF	SHEETS 1
LOCATION	N			D203 1 03	steriers (1 02 000)		DATE		UF	
West I	slip, Su	ıffolk Coui	∩ty, NY					5/25/2011			
CLIENT NYSDI	EC							Celeste Foster/Ste	phen Wr	ight	
ONE WELI	L VOLUME	:	1.1	gallons	WELL TD:	14.4	ft	PUMP INTAKE DEPTH	: 10) ft	
	Depth		ı	FIELD MEAS	SUREMEN	ITS					
	to	Purge]				
Time	Water	Rate	Temp.	Conduct.	рН	Turbidity		REMARKS	;		
1125	(ft) 7.77	(gal/min)	(C)	(ms/cm)		(ntu)	ototio wotor	laval			
1135	8.02	1	14.95	0.360	6.32	4.78	static water	ievei			
1145	8.02	1	13.74	0.388	6.28	8.3	pump on				
1150	8.02	1	13.82	0.410	6.19	8.5	Turned off r	oump, 15 gallons pu	ıraed		
1155	0.02		10.02	0.410	0.10	0.0	Samples co	ollected:	ırgcu .		
1100								ample DMW-02U a	nd		
								sample DMW-02F			
							<u> </u>				
											-
							<u> </u>				
							<u> </u>				
	1						 				
	1						 				
	 						 				
	 						<u> </u>				
							<u> </u>				
	1						<u> </u>				
	1						<u> </u>				
	1						 				
	<u> </u>						<u> </u>				
Pump	Type:	Grundfos	s/hand ba	ailer for sa	ample co	llection					
		ameters:		TAL meta							
, a laiyti	ioui i di	anicicio.		TALING	مان						

A.							WELL NO. MW- 03
\A/E! !	0445		D.14	PROJECT		4 50 000)	PROJECT No. SHEET SHEETS
WELL LOCATION		LING FO	RIVI	Dzus Fas	steners (1-52-033)	60135736 1 of 1
		ıffolk Coui	nty, NY				5/25/2011
CLIENT			_				NAME OF INSPECTOR
NYSD	EC						Celeste Foster/Stephen Wright
ONE WELI	L VOLUME	:	1.5	gallons	WELL TD:		ft pump intake depth: 8 ft
	Depth		ı	FIELD MEAS	SUREMEN	ITS	
Time	to Water	Purge Rate	Temp.	Conduct.	рН	Turbidity	REMARKS
iiiie	(ft)	(gal/min)	(C)	(ms/cm)	рп	(ntu)	KEMAKKS
1315	5.62	(3)	(0)	(,		(*****)	static water level
1320	5.62	0.8	16.93	0.188	6.21	167	hand bailed 8 gallons for purge
1330	5.62	0.8	16.03	1.190	6.09	331	
1335							Samples collected:
							unfiltered sample DMW-03U and
							field filtered sample DMW-03F
		-					
		-					
		 					
		1					
	-	-		-			
² ump	Туре:	Hand bai	led				
. ! . !				T AL :	-1-		
analyti	ıcaı Par	ameters:		TAL meta	ais		

WELL NO. MW-09

		7 1 1						WELL NO. MW- 09		
WFII	SAMP	LING FO	RM	PROJECT	steners (*	1-52-033)		PROJECT №. 60135736	SHEET 1 OF	SHEETS = 1
LOCATION		<u> </u>	X I V I	1D203 1 00	teriera (1 02 000)		DATE	1 0	
West I	slip, Su	ffolk Cour	nty, NY					5/25/2011		
CLIENT	F0							NAME OF INSPECTOR	- \\/ -: -	
NYSD	EC							Celeste Foster/Step	onen vvrign	[
ONE WELI	L VOLUME	:	1.2	gallons	WELL TD:	12.0	ft	PUMP INTAKE DEPTH:	8 ft	
	Depth		I	FIELD MEAS	SUREMEN	ITS				
T	to	Purge	T	0		T		DEMARKO		
Time	Water (ft)	Rate (gal/min)	Temp. (C)	Conduct. (ms/cm)	рН	Turbidity (ntu)		REMARKS		
1215	4.45	(gai/iiiii)	(C)	(IIIS/CIII)		(ntu)	static water	· loval		
1225	7.70						pump on	ICVCI		
1230	4.60	1	15.84	0.545	6.30	57.9	раттр от			
1234	4.61	1	15.27	0.546	6.06	12.0				
1236	4.61	1	10.27	0.040	0.00	12.0	Turned off a	pump, 12 gallons pu	raed	
1240	7.01	'					Samples co		igou	
1240								ample DMW-09U ar		
								sample DMW-09F	<u> </u>	
1242								ates collected:		
								ample DMW-59U ar	nd	
								sample DMW-59F		
							mora microa	Comple Billi col		
	<u> </u>									
	1									
	1									
	1									
	1									
Pump	Туре:	Grundfos	/hand b	ailer for sa	ample co	llection				
-										
Analyti	ical Par	ameters:		TAL meta	als					

	CO			PROJECT			WELL NO. MW- 09B [PROJECT No. SHEET SHEET
WELL	SAMP	LING FO	RМ		steners (1-52-033)	
OCATION	N	LING I O	X I V I	DZus i as	steriers (1-32-033)	DATE
Vest I	slip, Su	ıffolk Cou	nty, NY				5/25/2011
LIENT							NAME OF INSPECTOR
IYSD	EC						Celeste Foster/Stephen Wright
NE WELI	L VOLUME	:	6.5	gallons	WELL TD:		ft pump intake depth: 8 ft
	Depth	_	I	FIELD MEAS	SUREMEN	ITS	
T:	to Water	Purge	T	Canalust		Touch i alite	DEMARKS
Time	(ft)	Rate (gal/min)	Temp. (C)	Conduct. (ms/cm)	рН	Turbidity (ntu)	REMARKS
1220	4.36	(gai/iiiii)	(0)	(IIIS/CIII)		(IIIu)	static water level
1230	4.50						
1232	4.51	2.5	15.10	0.151	6.14	15	pump on
1232	4.51	1	14.93	0.131	5.76	0	
1245	4.51	1	14.93	0.133	5.76	0	
1255	4.53	1	15.00	0.133	5.45	0	
1255	4.33	<u>'</u>	15.00	0.131	5.45	U	Turned off nump, 50 gollens nurged
1305							Turned off pump, 50 gallons purged
1303							Samples collected: unfiltered sample DMW-09BU and
							field filtered sample DMW-09BF
							neid ilitered sample Divivi-096F
			,				
	-	-	-	-	<u>. </u>		
qmu	Type:	Grundfos	s/hand ba	ailer for sa	ample co	llection	
r	71 2.			J. 30	,		
nalyti	ical Par	ameters:		TAL meta	als		
,					-		

Dzus Fasteners (1-52-033) 66	ımp, 10 gallons pur	4.5 ft	SHEET 1
Depth to Purge Rate (gal/min) C) Static water left E E E E E E E E E	TE 5/25/2011 AME OF INSPECTOR Celeste Foster/Step PUMP INTAKE DEPTH: REMARKS Evel Imp, 10 gallons purected: nple DMW-13AU a	then Wright 4.5 ft	
No. No.	PUMP INTAKE DEPTH: REMARKS Evel Imp, 10 gallons purected: nple DMW-13AU a	4.5 ft	
Company Comp	PUMP INTAKE DEPTH: REMARKS evel imp, 10 gallons purected: nple DMW-13AU a	4.5 ft	
Depth to Purge (ft) (gal/min) (C) (ms/cm) Purpo (ntu)	REMARKS evel imp, 10 gallons purected: nple DMW-13AU a	4.5 ft	
Depth to Purge Rate (ft) (gal/min) (C) (ms/cm)	REMARKS evel ump, 10 gallons purected: nple DMW-13AU a	ged	
to Water (ft) (gal/min) (C) (ms/cm) (ntu) 445 2.51	evel imp, 10 gallons pur ected: nple DMW-13AU a	nd	
ime Water (ft) Rate (gal/min) Temp. (C) Conduct. (ms/cm) pH Turbidity (ntu) 445 2.51 static water leader lea	evel imp, 10 gallons pur ected: nple DMW-13AU a	nd	
(ft) (gal/min) (C) (ms/cm) (ntu) 445 2.51 static water leader lea	evel imp, 10 gallons pur ected: nple DMW-13AU a	nd	
445 2.51 static water legation 458 pump on 500 2.59 0.7 16.32 0.622 7.05 153 505 2.60 0.7 15.67 0.540 6.79 30 Turned off pump on 510 Samples college unfiltered same	ımp, 10 gallons pur ected: nple DMW-13AU a	nd	
458	ımp, 10 gallons pur ected: nple DMW-13AU a	nd	
500 2.59 0.7 16.32 0.622 7.05 153 505 2.60 0.7 15.67 0.540 6.79 30 Turned off pure of	ected: mple DMW-13AU a	nd	
505 2.60 0.7 15.67 0.540 6.79 30 Turned off pu 510 Samples colle unfiltered san	ected: mple DMW-13AU a	nd	
510 Samples colle unfiltered san	ected: mple DMW-13AU a	nd	
field filtered s	sample DMW-13AF	•	
			
Tongs On in the Alexandra Harris Constitution			
ump Type: Grundfos/hand bailer for sample collection			
nalytical Parameters: TAL metals			

Depth Depth Top Depth Dept		CO	771		PROJECT			WELL NO. MW-13B [PROJECT No. SHEET SHEETS
Cartion Cast Statistic	WELL	SAMP	LING FOI	RM				
NAME or INSPECTOR NAME or INSPECTOR Celeste Foster/Stephen Wright Static value Fellow Static value Fellow Static value Fellow Static value Fellow Static value Fellow Static value Fellow Static value Fellow Fell	OCATION		offalls Cour	oty NIV		,	•	
Purp Purp FIELD MEASUREMENTS FIELD MEASUREMENTS REMARKS	LIENT	isiip, su	IIIOIK Coul	ity, iv i				
Depth Water Rate (tt) Gal/min Temp. Conduct. pH Turbidity (ntu) Static water level Purge (pgal/min) Purge (NYSD	EC						Celeste Foster/Stephen Wright
Time Water Purge Rate Temp. Conduct. pH Turbidity REMARKS	NE WEL	L VOLUME	:	7	gallons	WELL TD:	44.4	ft pump intake depth: 4.5 ft
Mater			D	ı	FIELD MEAS	SUREMEN	TS	
Static water level	Time	Water	Rate			рН		REMARKS
457 502 2.44 1 15.26 0.154 6.80 10 515 2.46 1 15.06 0.145 5.60 0 25 gallons 520 525 525 530 Samples collected: unfiltered sample DMW-13BU and field filtered sample DMW-13BF 610 610 610 610 610 610 610 610 610 61	1.450		(gal/min)	(C)	(ms/cm)		(ntu)	otatio water level
10		2.32						
15.00 2.44 1 15.26 0.151 5.76 0		2 44	1	15 26	0.154	6.80	10	
15.06								
520								
Turned off pump, 30 gallons purged Samples collected: unfiltered sample DMW-13BU and field filtered sample DMW-13BF		2.40	1	10.00	0.140	0.00	0	25 gallons
Samples collected: unfiltered sample DMW-13BU and field filtered sample DMW-13BF field filter								
unfiltered sample DMW-13BU and field filtered sample DMW-13BF								Samples collected:
In the sample DMW-13BF In the	1000							
ump Type: Grundfos/hand bailer for sample collection								field filtered sample DMW-13BF
								inoid intered edimple Birity 16Bi
					<u> </u>			
					1			
					1			
					1			
		1	<u>I</u>		1		I	ı
	oump	Type:	Grundfos	s/hand ba	ailer for sa	ample co	llection	
nalytical Parameters: TAL metals	·					•		
	nalyt	ical Par	ameters:		TAL meta	als		

_ 4	:CO			IPROJECT			WELL NO. MW-15B [PROJECT No. SHEET SHEETS
NELL	SAMP	LING FOI	RΜ		steners (1-52-033)	60135736 1 of 1
OCATION	N		X.171	D240140) 0101103	1 02 000)	DATE
Vest I	slip, Su	ıffolk Coui	∩ty, NY				5/25/2011
LIENT NYSDI	EC.						NAME OF INSPECTOR Celeste Foster/Stephen Wright
וטפווי							Celeste Fostel/Stephen Wright
NE WELI	L VOLUME	:		gallons	WELL TD:		ft PUMP INTAKE DEPTH: 8 ft
	Depth to	Purge	ı	FIELD MEAS	SUREMEN	ITS	
Time	Water	Rate	Temp.	Conduct.	рН	Turbidity	REMARKS
	(ft)	(gal/min)	(C)	(ms/cm)	μ	(ntu)	
930	5.15						static water level
1000	5.31	1.3	13.88	0.248	5.55	12	pump on
1010	5.31	1.3	13.89	0.242	5.59	10.0	
1015	5.31	1.3	13.86	0.243	5.56	8.0	Turned off pump, 20 gallons purged
1020							Samples collected:
							unfiltered sample DMW-15AU and
							field filtered sample DMW-15AF
		 		 			
		<u> </u>		<u> </u>			
Dumn	Type	Grundfoo	hand b	ailer for sa	ample co	llection	
ump	ı ype.	Granaios	mianu D	anti iui Sa	ample 60	ii c ction	
nalvti	ical Par	ameters:		TAL meta	ale		
naiyli	ıvaı Fal	ameters.		I VE IIIG	213		

A=C				PROJECT			WELL NO. MW-15B	SHEETS
NELL SA	мы	ING FOF	ВM		teners (1-52-033)	60135736 1 of	1
OCATION	******		X101	DZuo i uc	teriers (1 02 000)	DATE	-
Vest Islip	o, Suf	ffolk Cour	nty, NY				5/25/2011	
LIENT							NAME OF INSPECTOR	
NYSDEC							Celeste Foster/Stephen Wright	
NE WELL VO				gallons	WELL TD:	83.7	ft pump intake depth: 10 ft	
	epth	_	F	FIELD MEAS	SUREMEN	TS		
	to ater	Purge Rate	Temp.	Conduct.	рН	Turbidity	REMARKS	
	(ft)	(gal/min)	(C)	(ms/cm)	рп	(ntu)	REWARRS	
	5.1	(944,)	(-)	(,		()	static water level	
945	-						pump on	
	3.1	2.7	14.85	0.363	5.66	8.0	pamp on	
	3.1	2.7	13.91	0.358	5.43	8.0		
	3.1	2.7	13.97	0.358	5.40	8.0	Turned off pump, 40 gallons purged	
1005			. 5.51	0.000	0.10	5.5	Samples collected:	
1000							unfiltered sample DMW-15BU and	
							field filtered sample DMW-15BF	
	-						neid ilitered sample Divivi 10Bi	
	-							
	-							
-+								
ump Typ	pe:	Grundfos	/hand ba	ailer for sa	imple col	llection		

PROJECT Dzus Fasteners (1-52-033) 60135736 Station	SHEET 1 OF	SHEETS
Date S/25/2011 NAME OF INSPECTOR Celeste Foster/Stepher	1 OF	4
Substitute Sub		1
Name of Inspector Celeste Foster/Stepher		
Depth to Purge Time Water (ft) (gal/min) CO CO CO CO CO CO CO C		
Depth to Purge Water (ft) (gal/min) CO (ms/cm) PH Turbidity (ntu) Static water level	en Wright	
Time Water (ft) Purge (gal/min) Temp. (C) Conduct. (ms/cm) pH (ntu) Turbidity (ntu) REMARKS 1715 4.70 0.5 14.67 0.222 6.15 95 hand bailed 1730 4.70 0.5 14.55 0.220 6.03 40 1740 Samples collected: Samples collected: unfiltered sample DMW-18U and	4.7 ft	
Time Water (ft) Rate (gal/min) Temp. (C) Conduct. (ms/cm) pH (ntu) Turbidity (ntu) REMARKS 1715 4.70 0.5 14.67 0.222 6.15 95 hand bailed 1730 4.70 0.5 14.55 0.220 6.03 40 1740 Samples collected: Samples collected: unfiltered sample DMW-18U and		
(ft) (gal/min) (C) (ms/cm) (ntu) 1715 4.70 0.5 14.67 0.222 6.15 95 hand bailed 1730 4.70 0.5 14.55 0.220 6.03 40 1740 Samples collected: Samples collected: unfiltered sample DMW-18U and		
1715 4.70 static water level 1715 4.70 0.5 14.67 0.222 6.15 95 hand bailed 1730 4.70 0.5 14.55 0.220 6.03 40 1740 Samples collected: unfiltered sample DMW-18U and		
1715 4.70 0.5 14.67 0.222 6.15 95 hand bailed 1730 4.70 0.5 14.55 0.220 6.03 40 1740 10 gallons purged Samples collected: unfiltered sample DMW-18U and		-
1730 4.70 0.5 14.55 0.220 6.03 40 1740 10 gallons purged Samples collected: unfiltered sample DMW-18U and		
1740 10 gallons purged Samples collected: unfiltered sample DMW-18U and		
1740 Samples collected: unfiltered sample DMW-18U and		
unfiltered sample DMW-18U and		
Tield Tillered Sample Divivi-16F		
- 		
- 		
- 		
Dump Type: Hand hailed		
Pump Type: Hand bailed		
Applytical Parameters: TAL metals		
Analytical Parameters: TAL metals		

Depth to Water (ft) (gal/min) (C) (ms/cm) Depth to (gal/min) (C) (ms/cm) Depth to (gal/min) (C) (ms/cm) Depth to (gal/min) (C) (ms/cm) Depth to (gal/min) (C) (ms/cm) Depth to (gal/min) (C) (ms/cm) Depth to (gal/min) (C) (ms/cm) Depth to (gal/min) (C) (ms/cm) Depth to (gal/min) (C) (ms/cm) Depth to (gal/min) (C) (ms/cm) Depth to (gal/min) (C) (ms/cm) Depth to (gal/min) (C) (ms/cm) Depth to (gal/min) (C) (ms/cm) Depth to (ms/cm) (C) (ms/cm) Depth to (ms/cm) (C) (ms/cm) Depth to (ms/cm) (C) (ms/cm) Depth to (ms/cm) (C) (ms/cm) Depth to (ms/cm) (C) (ms/cm) (C) (ms/cm) Depth to (ms/cm) (C) (ms/cm) (C) (ms/cm) (C) (ms/cm) Depth to (ms/cm) (C) (ms/c		CO			IPROJECT			WELL NO. MW-22A [PROJECT No. SHEET SHEET
SATION SET ISIJP, Suffolk County, NY SDEC WELL VOLUME: 1.4 gallons Well To: Well Volume: 1.4 gallons Well To: Well Volume: 1.4 gallons Well To: Well Volume: Water (tt) Water (gal/min) 1.5 Jose 1 Water (gal/min) Wate	NFII	SAMP	I ING FOI	εм		steners (1-52-033)	
NAME of INSPECTOR Celeste Foster/Stephen Wright Celeste Foster/Stephen Wright Celeste Foster/Stephen Wright September Septembe	OCATION	1		X111	D240140) 0101103	1 02 000)	
Celeste Foster/Stephen Wright	Vest I	slip, Su	ıffolk Cou	∩ty, NY				
Depth to to (P) Purge Temp. Conduct PH Turbidity (ms/cm) Turned off pump. 12 gallons purged Samples collected: unfiltered sample DMW-22AF Samples DMW-22AF Turned off gallons purged Samples DMW-22AF Samples DMW-22AF Samples DMW-22AF Samples DMW-22AF Samples DMW-22AF Samples DMW-24AF Sa	LIENT	F0						
Depth to to to Water (nt) Purge (nt) FIELD MEASUREMENTS Temp. (C) (ms/cm) Field Measurements Purge (nt) (ms/cm) Field Measurements Purge (nt) (ms/cm) Field Measurements Purge (nt) (ms/cm) Field Measurements Purge (nt) (ms/cm) Field Measurements Purge (nt) (ms/cm) Field Measurements Purge (nt) (ms/cm) Field Measurements Purge (nt) (ms/cm) Purge (nt	112DI	EC						Celeste Foster/Stephen wright
To Purge Rate Rate Rate (t) (ms/cm) (r) (ms/cm) (mtu) (m	NE WELL	L VOLUME	:		_			ft pump intake depth: 8 ft
Mater				ı	FIELD MEAS	SUREMEN	TS	
(tt) (gal/min) (C) (ms/cm) (ntu) static water level	T !			T	0		Total Calle	DEMARKO
Static water level	rime					рн		REMARKS
### Annual Property of Strong of Str	1355		(gai/iiiii)	(0)	(IIIS/CIII)		(IIIu)	static water level
413 6.07 1.2 14.51 1.25 6.41 90.1 416 6.08 1.2 13.93 1.43 6.51 13.6 420		0.02						
416 6.08 1.2 13.93 1.43 6.51 13.6 Turned off pump, 12 gallons purged Samples collected: unfiltered sample DMW-22AU and field filtered sample DMW-22AF field filtered sample DMW-22AF unprocessor of the pump		6.07	12	14 51	1 25	6 41	90.1	
420 Turned off pump, 12 gallons purged 425 Samples collected: unfiltered sample DMW-22AU and field filtered sample DMW-22AF field filtered sample DMW-22AF where the provided in the pump of the pu								
A25 Samples collected: unfiltered sample DMW-22AU and field filtered sample DMW-22AF field fi	1420	0.00	1.2	10.00	1.10	0.01	10.0	Turned off nump 12 gallons purged
unfiltered sample DMW-22AF	1425							
inp Type: Grundfos/hand bailer for sample collection	0							unfiltered sample DMW-22AU and
ump Type: Grundfos/hand bailer for sample collection								
					•			
	ump	Type:	Grundfos	hand b	ailer for sa	ample co	llection	
nalytical Parameters: TAL metals	ľ	71 -				,	-	
	nalyti	ical Par	ameters:		TAL meta	als		

	CO	# V I		PROJECT			WELL NO. MW-22B IPROJECT No. SHEET SHEE
NELL	SAMP	LING FO	RM		steners (1-52-033)	
OCATION	N				,	,	DATE
Vest i	siip, Su	iffolk Cou	nty, INY				5/25/2011 NAME OF INSPECTOR
NYSD	EC						Celeste Foster/Stephen Wright
NE WELI	L VOLUME	:	6.3	gallons	WELL TD:	44.5	ft pump intake depth: 8 ft
	Depth	D	ı	FIELD MEA	SUREMEN	TS	
Time	to Water (ft)	Purge Rate (gal/min)	Temp.	Conduct. (ms/cm)	рН	Turbidity (ntu)	REMARKS
1400	5.74	(9,)	(0)	(,		()	static water level
1410							pump on
1412	5.91	1	14.73	0.238	6.11	10	
1417	5.91	1	14.15	0.288	6.43	10	
1421	5.91	1	14.07	0.250	5.95	10	
1422							Turned off pump, 20 gallons purged
1430							Samples collected:
							unfiltered sample DMW-22BU and
							field filtered sample DMW-22BF
ump	Type:	Grundfos	s/hand b	ailer for sa	ample co	llection	
•					•		
nalyti	ical Par	ameters:		TAL meta	als		
-							

PROJECT Dzus Fasteners (1-52-033)	SHEET
Date Suffolk County, NY	
Suffolk County, NY	of 1
Name of Inspector Celeste Foster/Stephen Wright Celeste	
Depth to Purge Time Water (ft) (gal/min) CO CO (ms/cm) Turbidity (ntu) Pump on	
Depth to Purge Rate (ft) (gal/min) CO CO (ms/cm) PH Turbidity (ntu) REMARKS	ht
Time Water (ft) Purge (gal/min) Conduct. (ms/cm) pH (ms/cm) Turbidity (ntu) REMARKS 1545 4.38 5 5 static water level 1602 9 9 15.87 0.589 6.66 30 1608 4.61 2 15.72 0.604 6.67 15 Turned off pump, 10 gallons purged 1615 5 5 5 5 5 5 5 5 5 4 6 6 30 6 6 30 6 6 30 6 6 30 6 6 30 6 6 30 6 6 30 6 6 30 6 6 30 6 6 30 6 6 30 6 6 30 6 6 30 6 6 30 6 6 30 6 6 30 6 6 30 6 6 30 6 6 <t< td=""><td>t</td></t<>	t
Time Water (ft) Rate (gal/min) Temp. (C) Conduct. (ms/cm) pH Turbidity (ntu) REMARKS 1545 4.38 Static water level pump on 1602 pump on pump on 1605 4.61 2 15.87 0.589 6.66 30 1608 4.61 2 15.72 0.604 6.67 15 Turned off pump, 10 gallons purged 1615 Samples collected: unfiltered sample DMW-23AU and field filtered sample DMW-23AF	
(ft) (gal/min) (C) (ms/cm) (ntu) 1545 4.38 Static water level 1602 pump on 1605 4.61 2 15.87 0.589 6.66 30 1608 4.61 2 15.72 0.604 6.67 15 Turned off pump, 10 gallons purged 1615 Samples collected: unfiltered sample DMW-23AU and field filtered sample DMW-23AF	
1545 4.38 static water level 1602 pump on 1605 4.61 2 15.87 0.589 6.66 30 1608 4.61 2 15.72 0.604 6.67 15 Turned off pump, 10 gallons purged 1615 Samples collected: unfiltered sample DMW-23AU and field filtered sample DMW-23AF	
1602	
1605 4.61 2 15.87 0.589 6.66 30 1608 4.61 2 15.72 0.604 6.67 15 Turned off pump, 10 gallons purged 1615 Samples collected: unfiltered sample DMW-23AU and field filtered sample DMW-23AF	
1608 4.61 2 15.72 0.604 6.67 15 Turned off pump, 10 gallons purged 1615 Samples collected: unfiltered sample DMW-23AU and field filtered sample DMW-23AF	
1615 Samples collected: unfiltered sample DMW-23AU and field filtered sample DMW-23AF	
unfiltered sample DMW-23AU and field filtered sample DMW-23AF	
field filtered sample DMW-23AF	
Collected MS and MSD samples for both	
- 	
- 	
Pump Type: Grundfos/hand bailer for sample collection	
- 1 71	
Analytical Parameters: TAL metals	

	CO	//		PROJECT			WELL NO. MW-23B IPROJECT No. SHEET SHEETS
NELL	SAMP	LING FOI	RM		steners (1-52-033)	60135736 1 of 1
OCATIO	N				,	,	DATE 5/05/0044
LIENT	siip, Su	iffolk Cou	nty, iv r				5/25/2011 NAME OF INSPECTOR
NYSD	EC						Celeste Foster/Stephen Wright
NE WEL	L VOLUME	:	6.5	gallons	WELL TD:		ft Pump intake depth: 7 ft
	Depth	D		FIELD MEA	SUREMEN	ITS	
Time	to Water (ft)	Purge Rate (gal/min)	Temp. (C)	Conduct. (ms/cm)	рН	Turbidity (ntu)	REMARKS
1550	4.31	(9	(0)	(,		(*****)	static water level
1600							pump on
1607	4.54	2.3	15.08	0.183	5.99	26.6	
1610	4.54	2.3	14.91	0.176	5.75	2.6	
1613	4.54	2.3	14.62	0.173	5.61	0	Turned off pump, 30 gallons purged
1620							Samples collected:
							unfiltered sample DMW-23BU and
							field filtered sample DMW-23BF
	 						
	 						
	 						
	 						
	 						
	 						
	 						
	1		<u> </u>				
	T ·	0	. /	-: (· ·		II = =4! · ·	
ump	ı ype:	Grundtos	s/nand b	ailer for sa	ampie co	ilection	
nalyt	ıcal Par	ameters:		TAL met	als		