Prepared by: AECOM Chestnut Ridge, NY 60277021 September 2015

Groundwater Sampling Report (March 2015 Sampling Event) Dzus Fasteners Site Site #1-52-033 Work Assignment No. D007626-17.1

Final

Prepared by: **AECOM** Chestnut Ridge, NY 60277021 September 2015

Groundwater Sampling Report (March 2015 Sampling Event) **Dzus Fasteners Site** Site #1-52-033 Work Assignment No. D007626-17.1

Final

Prepared By: Paul Kareth

Paul Kaveth

Reviewed By: Scott Underhill

Contents

1.0	Introd	uction	1-1
2.0	Backo	ground Information	2-1
3.0	Field	Activities	3-1
	3.1	Groundwater Level Survey	3-1
	3.2	Groundwater Sampling	3-1
	3.3	Surface Water / Sediment Sampling	3-2
4.0	Samp	ling Results	4-1
	4.1	Groundwater Data	4-1
	4.2	Filtered versus Unfiltered Metals Groundwater Samples	4-3
	4.3	Surface Water Samples	4-3
	4.4	Sediment Samples	4-5
		4.4.1 Lake Capri Sediment Samples	
		4.4.2 Northern Cove Sediment Samples	
	4.5	4.4.3 Willetts Creek Sediment Samples	
5.0	Sumn	nary and Recommendations for Future Site Remediation Activities	5-1
	5.1	Groundwater	5-1
	5.2	Surface Water	5-1
	5.3	Sediments	5-1
	5.4	Pacammandations	5-2

List of Tables

Γable 1	Well Construction Data
Γable 2	Groundwater Elevations
Γable 3	June 2006 through November 2013 Sampling Events, Summary of TAL Metals in Groundwater
Γable 4	March 2015 Sampling Event, Total versus Dissolved Metals Concentrations in Groundwater
Γable 5	June 2006 through April 2015 Sampling Events, Summary of TAL Metals in Willetts Creek and Lake Capri Surface Water Samples
Γable 6	June 2006 through April 2015 Sampling Events, Summary of TAL Metals in Willetts Creek and Lake Capri Sediment Samples
Γable 7	March 2015 (Round 8) Sampling Event, Groundwater Field Duplicate Data Summary
Γable 8	March 2015 (Round 8) Sampling Event, Surface Water Field Duplicate Data Summary
Гable 9	March 2015 (Round 8) Sampling Event, Sediment Field Duplicate Data Summary

List of Figures

Figure 1	Site Location
Figure 2	Site Plan
Figure 2A	Lake Capri Cove Sample Locations
Figure 3	Groundwater Contour Map, March November 5, 2013
Figure 3A	Groundwater Hydrograph
Figure 4	Summary of TAL Metals in Groundwater
Figure 4 Figure 5	Summary of TAL Metals in Groundwater Cadmium Concentrations in Long Term Monitoring Wells
J	,
Figure 5	Cadmium Concentrations in Long Term Monitoring Wells

Figure 6B	Filtered Cadmium Isoconcentration Map, March 2015
Figure 7	Summary of TAL Metals in Surface Water
Figure 8	Summary of TAL Metals in Sediment
Figure 9	Cadmium Concentrations in Lake Capri and Willetts Creek Sediment Samples
Figure 10	Lead Concentrations in Lake Capri and Willetts Creek Sediment Samples
Figure 11	Arsenic Concentrations in Lake Capri and Willetts Creek Sediment Samples
Figure 12	Copper Concentrations in Lake Capri and Willetts Creek Sediment Samples
Figure 13	Zinc Concentrations in Lake Capri and Willetts Creek Sediment Samples
Figure 14 –	Proposed Geoprobe Boring Locations

List of Appendices

Appendix A NYSDEC Monitoring Well Field Inspection Logs

Appendix B Well and Surface Water Sampling Forms

Appendix C Laboratory Data Packages

1.0 Introduction

AECOM Technical Services Northeast, Inc., (AECOM) has prepared this Groundwater Monitoring Report for the Dzus Fasteners facility (Site) in West Islip, New York (Site No. 1-52-033). This work was performed for the New York State Department of Environmental Conservation (NYSDEC) under Work Assignment D007626-17.1. This groundwater monitoring report provides the results of the groundwater sampling data collected in March 2015 and the surface water/sediment samples collected in April 2015.

AECOM collects groundwater samples from selected monitoring wells and surface water/sediment samples from Willetts Creek and Lake Capri at five-quarter (15 month) intervals as part of the Site's long-term monitoring plan. Four rounds of fish tissue samples were also collected from Lake Capri in July 2006, May 2007, October 2010 and September 2012. Fish tissue data results were documented in separate reports, the most recent of which was submitted in January 2013 for the September 2012 sampling event. Previous groundwater sampling was conducted in June 2006, August 2007, November 2008, March 2010, May 2011, August 2012, and November 2013. This report presents the results from the latest round of sampling conducted in March and April 2015.

2.0 Background Information

The Dzus Fasteners Superfund site is located at 425 Union Boulevard, West Islip, Suffolk County, New York (Figure 1). The Site is bounded to the north by railroad tracks and Union Boulevard to the south and east. The Site is bounded to the west by Beach Street and commercial properties. On the southeast side of Union Boulevard is a shopping plaza and southeast of the shopping plaza is Willetts Creek (a Class A surface water body). Willetts Creek flows south, paralleling Everdell Avenue past the Beach Street Middle School and West Islip Senior High School, eventually discharging into Lake Capri approximately 4,500 ft south of the Site.

The Dzus Fastener facility, a manufacturer of fastener and springs from 1932 to the present, was responsible for the release of oils, heavy metals, and salts via onsite leaching pools used for the disposal of hazardous waste and formal discharge into Upper Willetts Creek. These operations led to soil and groundwater contamination at the Dzus facility and downstream groundwater, sediment, and surface water contamination of nearby Willetts Creek and Lake Capri, an 8-acre man-made lake.

An initial site inspection took place in August 1983. Contamination was discovered and a preliminary site assessment was completed in September 1984. A phase I investigation was completed and a phase II investigation was submitted by Dzus in August of 1990. Dzus then completed an Interim Remedial Measure (IRM) in October 1990. During the IRM, a leach field on the eastern side of the site was removed. A remedial investigation / feasibility study (RI/FS) was initiated at the site in 1992. The site was then broken up into the two Operable Units (OU), OU1, the Dzus facility; and OU2, the offsite localities including Willetts Creek and Lake Capri. A Record of Decision (ROD) for OU1 was issued for the site in March 1995, and a ROD for OU2 was issued for the site in October 1997.

In response to the ROD for OU1, the remedy for contaminated groundwater in the vicinity of the Dzus facility consisted of source removal and ongoing natural attenuation.

The eastern parking lot at the Dzus facility was paved with asphalt to eliminate the potential for direct human contact with the underlying contaminated soils at the site, and to eliminate or reduce the mobility of soil contaminants that would cause further groundwater degradation. The selected remedy consisted of the following:

- In-situ stabilization/solidification for soils containing cadmium at concentrations greater than 10 parts per million (ppm). Three areas on the western portion of the facility were excavated and mixed with the soils to be treated on the eastern portion of the Site;
- Design and installation of a final topsoil/asphalt cover at the eastern portion of the Site, which would protect the treatment cells from erosion;
- Implementation of institutional controls, such as deed restrictions at the Site.

The second operable unit, Operable Unit 2 (OU2) consisted of offsite contamination, including sediment and water contamination of Willetts Creek and Lake Capri. A ROD for OU2 was issued for the Site by NYSDEC in October 1997.

The selected remedy consisted of the following:

- The fish population of Lake Capri was eradicated using Rotenone, a NYSDEC approved fish eradicant, in July 1999 prior to dredging operations;
- Dredging, dewatering and off-site disposal of contaminated sediments from Lake Capri;
- Excavation and off-site disposal of approximately 100 cubic yards of sediment from Willetts
 Creek, corresponding to levels of cadmium exceeding 9 ppm (currently, the highest effects
 guidance value);
- Riprap was used to cover portions identified as having deeper zones of contamination in order to prevent future erosion;
- A long-term monitoring program to evaluate the effectiveness of the on-site remedy and to verify that existing groundwater plume does not impact public health or environment; and,
- The lake was restocked with silversides, bluegill (*Lepomis macrochirus*), and largemouth bass (*Microptera salmoides*) after completion of the remedial activities in 2000.

Activities at the Site are being conducted in accordance with the Site Management Plan (SMP) dated May 2014. As part of the OM&M, a long-term monitoring plan (LTMP) was developed for OU1 and OU2 with regard to monitoring of groundwater, surface water, sediment, and the asphalt cover (engineering control) in the manufacturing facility's eastern parking lot.

The ROD for OU1 (on-site soils) lists the metals contaminants of concern as cadmium, chromium and nickel. The ROD for OU2 (groundwater, and surface water and sediment in Willetts Creek and Lake Capri) lists the metals contaminants of concern for groundwater as cadmium and chromium, surface water as cadmium, and sediment as cadmium and lead. Several other metals, including antimony, arsenic, chromium, iron, lead, manganese, sodium, thallium and zinc, have been found in exceedance of published standards in groundwater at the Site and in the surface water and sediments of nearby Willetts Creek and Lake Capri.

A total of 14 wells and six surface water/sediment sample locations were identified for long term monitoring at the Site (Figure 2). Additional sediment samples and a surface water sample were collected in the small cove at the northern end of the Lake (Figure 2A).

3.0 Field Activities

Groundwater sampling activities occurred on March 17 and 18, 2015. Surface water and sediment sampling occurred on April 11, 2015. Sampling was conducted in accordance with the SMP (May 2014). Groundwater samples were collected using low flow techniques starting with the August 2012 sampling event; previous samples were collected using the volumetric method. All field work was performed in Level D personal protection.

NYSDEC Monitoring Well Field Inspection Logs were prepared for each well and are presented in Appendix A. Monitoring well MW-1 could not be located and according to personnel at the Site was destroyed in December 2007 during snow removal.

3.1 Groundwater Level Survey

A summary of well construction data is presented in Table 1. Prior to the start of sampling, a synoptic round of water levels was collected from the 14 monitoring wells selected for sampling. Groundwater elevation readings were recorded on the Well Sampling Forms. Well Sampling Forms are provided in Appendix B. Groundwater elevation data are presented on Table 2. A groundwater contour map was prepared for the March 17, 2015 synoptic event and is presented on Figure 3. As shown on the figure, the general direction of groundwater flow at the Site is to the south. A low hydraulic gradient of 0.0022 ft/ft was calculated. Groundwater hydrographs for the monitoring wells are presented in Figure 3A.

3.2 Groundwater Sampling

The 14 wells identified for long term monitoring at the Dzus Site are: MW-1, MW-2, MW-3, MW-9, MW-9B, MW-13A, MW-13B, MW-15A, MW-15B, MW-18, MW-22A, MW-22B, MW-23A and MW-23B. MW-1 was destroyed in 2008 and can no longer be sampled. As a result, 13 of the 14 existing long-term monitoring wells were sampled in March 2015. MW-17, northeast of the Dzus facility (Figure 2), was located in 2014 and included in this sampling event.

Groundwater sampling occurred on March 17 and 18, 2015. A peristaltic pump with poly tubing was used to purge each monitoring well. The flow rate was set between 200 and 400 mL per minute. At approximately five-minute intervals, drawdown was measured. A flow cell was used to collect measurements of pH, dissolved oxygen (DO), specific conductance, oxygen reduction potential (ORP), temperature and turbidity. These readings were recorded on the Well Sampling Forms. Once the parameters had stabilized, a sample was collected directly from the discharge line. The sample was placed into laboratory supplied containers and packed in an ice-filled cooler. During this round, filtered metals samples were also collected. Groundwater samples were filtered in the field immediately upon collection using dedicated, disposable 0.45 micron Nalgene filters. Filtered

groundwater was then poured into a laboratory supplied container and placed in an ice filled cooler. The samples were then transported to Hampton Clarke Veritech via the laboratory's courier. Proper chain-of-custody procedures and requirements were maintained throughout the sampling event in accordance with the QAPP.

3.3 Surface Water / Sediment Sampling

Six paired surface water/sediment samples (plus a field duplicate for each matrix) were collected from Lake Capri and Willetts Creek on April 11, 2015. A small boat was used to gain access to the lake. Each surface water sample was collected by dipping laboratory-supplied bottles into the lake and then transferring the water to the laboratory supplied preserved bottles. At each surface water location, a co-located sediment sample was also collected. Sediment samples were collected using an Eckman dredge to reach the lake bottom sediments. Excess water was decanted from the sediment sample prior to placement in the sample jars. Sample forms are included in Appendix A.

Samples were also collected in the small cove at the northern end of Lake Capri (Figure 2A). Five sediment samples were collected. One was analyzed for TAL Metals and four were analyzed for cadmium only. A co-located surface water sample was collected at SC-4 and analyzed for TAL metals.

4.0 Sampling Results

Groundwater, surface water, and sediment samples were analyzed for target analyte list (TAL) metals using USEPA Method 6010/7401/7471. The analyses were performed by Hampton Clarke Veritech, Fairfield, New Jersey, a NYSDOH ELAP certified laboratory (ELAP certification number 11408). As specified in the work plan, formal data validation was not performed; however, an AECOM chemist provided a limited review of the data packages. The data quality evaluation for this sampling event is presented in Section 4.4.

4.1 Groundwater Data

Groundwater samples were collected from 14 monitoring wells during the March 2015 sampling event (as noted earlier, well MW-1 has been destroyed). During the first four sampling events, only total metals analyses were performed on the monitoring well samples. During the May 2011, August 2012, November 2013, and March 2015 sampling events, samples for both total and dissolved metals analyses were collected from each monitoring well. The laboratory data summary packages are included in Appendix C. A summary of the detections from all seven long-term sampling events is presented in Table 3. A summary of the exceedances from this groundwater sampling event is presented on Figure 4.

Ten metals have been detected at concentrations above their Class GA criteria at least once during the eight rounds of groundwater sampling at the Site. These metals include cadmium and chromium (COCs listed in the OU1 ROD), and antimony, arsenic, lead, manganese, selenium, sodium, and thallium. Out of these metals, only cadmium, chromium, iron, manganese, and sodium were detected at concentrations above Class GA criteria in March 2015.

Cadmium was detected in seven of 14 Round 8 unfiltered samples, six of which exceeded the Class GA criterion of 5 µg/L; maximum concentration of 27 µg/L in monitoring well MW-23B. Cadmium was detected in eight of 14 filtered samples; three of which exceeded the criterion; maximum concentration of 31 µg/L in MW-23B. Historically, cadmium has been detected in all 15 monitoring wells sampled at the Site (Figure 5). Exceedances of the criterion have been noted in 12 monitoring wells. Of the 106 unfiltered samples collected to date, cadmium was detected in 84; 59 (70%) of these exceeded the criterion. Of the 53 filtered samples collected to date, cadmium was detected in 28 samples; 18 (64%) of these exceeded the criterion. Cadmium concentrations have exceeded the criterion in all eight events at monitoring wells MW-3, MW-13A, MW-15A and MW-23B, both unfiltered and filtered samples (Figure 5A). Three cadmium isoconcentration maps have been prepared: August 2012 (Figure 6), November 2013 (Figure 6A) and March 2015 (Figure 6B). In August 2012, the leading edge of the cadmium plume appeared to extend under Willetts Creek and possibly as far as Everdell Avenue (Figure 6). Conditions were similar in November 2013 (Figure 6A). As shown on Figure 6B,

the extent of the plume in March 2015, as indicated by the 5 μ g/L isoconcentration line, was similar to November 2013 but the higher concentrations appear to have separated the plume into two lobes as indicated by the 10 μ g/L isoconcentration line.

Chromium was not detected in any of the 14 unfiltered or filtered samples collected during March 2015. Historically, chromium has been detected in most of the unfiltered samples but at concentrations below the Class GA criterion of 50 μ g/L; of the 106 unfiltered samples collected to date, only seven exceeded the criterion. Chromium was detected in 13 of the 53 filtered samples collected to date, none of which exceeded the criterion. Chromium concentrations do not appear to be an issue at the Site.

Antimony was not detected in any of the 14 unfiltered or filtered metals sampled collected during March 2015. Historically, antimony concentrations and exceedances have been noted sporadically in seven wells (Table 3). Antimony does not appear to be a contaminant of concern at the Site.

Iron was detected in 12 of 14 unfiltered samples, all 12 of which exceeded the 300 μ g/L criterion; maximum concentration of 98,000 μ g/L in MW-2. Iron was also detected in four of 14 filtered samples, three of which exceeded the criterion; maximum concentration of 6,400 μ g/L in MW-23A. Historically, iron has been detected in a majority of both unfiltered and filtered samples collected at the site. Iron is a naturally occurring metal in Long Island groundwater and does not appear to be site related.

Lead was detected in five of 14 unfiltered samples, one of which exceeded the 25 μ g/L criterion; 29 μ g/L at MW-2. One filtered sample, MW-13A, equaled the criterion. Historically, lead has been detected in most of the wells at the Site; however, only three monitoring wells have reported sporadic exceedances during the eight sampling rounds: MW-2, MW-13A and MW-23B. Lead does not appear to be a contaminant of concern at the Site.

Manganese was detected in 12 of 14 unfiltered samples, eight of which exceeded the 300 μ g/L criterion; maximum concentration of 780 μ g/L in MW-23A. Manganese was also detected in five of 14 filtered samples, three of which exceeded the criterion; maximum concentration of 820 μ g/L in MW-23A. Historically, manganese has been detected in a majority of the unfiltered and filtered samples collected at the Site. Manganese is a naturally occurring metal in Long Island groundwater and does not appear to be site related.

Sodium was detected in all 14 unfiltered samples, six of which equaled or exceeded the 20,000 μ g/L criterion; maximum concentration of 91,000 μ g/L in MW-23S. Sodium was also detected in all 14 filtered samples, nine of which equaled or exceeded the criterion. Historically, sodium has been detected in most of the samples collected at the Site. Sodium is a naturally occurring metal in Long Island groundwater and does not appear to be site related.

4.2 Filtered versus Unfiltered Metals Groundwater Samples

Concentrations of total metals in groundwater samples at the Site tended to be highly variable between sampling events, as did field measurements of turbidity at time of sample collection. Turbidity is typically correlated with the presence of suspended matter (e.g., entrained soil particles in the sample). Therefore, both total metals (unfiltered) and dissolved metals (field filtered) groundwater samples were collected during this sampling event to evaluate the effect of turbidity on the metals concentrations.

The NYSDEC criterion for filtering groundwater samples is provided in DER-10 Section 2.1(g). At the Dzus Fasteners Site, the turbidity was below 50 nephelometric units (NTU) at the time of sampling in 13 of 14 samples (Table 4). The turbidity ranged from 0.2 to 71 (MW-13A).

Table 4 presents a comparison of the total metals and the dissolved metals data for the 14 filtered/ unfiltered sample pairs collected at the Dzus Fasteners Site. The "percent dissolved" shown on the table is the ratio of the filtered sample concentration to the total (unfiltered) sample concentration. Where a metal was not detected in the filtered sample, no calculation was made.

As expected, concentrations of metals that typically exist primarily in the dissolved phase (sodium, potassium, and calcium) were generally similar in the filtered and unfiltered samples, regardless of the sample turbidity.

Metals highly associated with particles (e.g., aluminum) would tend to be higher in the more turbid samples; however, no clear relationship between turbidity (ranging from 0.2 to 71 NTUs) and total metals concentrations was established, likely due to the relatively low turbidities (i.e., 13 of 14 samples were less than 50 NTUs). Aluminum, which is strongly associated with particles, was not detected in any of the filtered samples, while it was detected in six of the unfiltered samples. Iron and cadmium, which can be found as either dissolved or bound to particles, were to varying degrees found to be either about equal in filtered/unfiltered pairs, or lower in the filtered samples.

4.3 Surface Water Samples

Six surface water samples were collected from Lake Capri and Willetts Creek at the locations shown on Figure 2. Sample SC-4 was collected from the small cove at the northern end of the Lake (Figure 2A) to document the conditions in this part of the Lake (typically not included the long term monitoring). A summary of the detections is presented in Table 5. The results were compared to the NYSDEC Class A surface water criteria. The laboratory data package for the April 2015 sampling event is included in Appendix C. A summary of the exceedances is presented on Figure 7.

The OU2 ROD lists cadmium as the only metal COC for surface water in Lake Capri and Willetts Creek. Six other metals include antimony, iron, manganese, selenium, sodium and thallium have been detected at concentrations above the surface water criteria. Of these, only five (cadmium, iron,

manganese, sodium and thallium) were detected at concentrations above the Class A criteria in April 2015.

Cadmium was not detected above the criterion in any of the five lake samples collected during the April 2015 event. Historically, cadmium has been detected in the majority of the lake samples but none have exceeded the criterion. Cadmium was detected in one of the two creek samples collected during the April 2015 sampling event at a concentration that exceeded the criterion. Historically, cadmium concentrations at location SW-5 have exceeded the criterion in six of eight samples collected at this location.

Antimony was not detected in any of the seven surface water samples collected in April 2015. Historically, antimony concentrations and exceedances have been sporadically detected the creek and lake waters. Antimony does not appear to be a contaminant of concern at the Site.

Iron was detected above the criterion in three of five lake samples and both creek samples during the April 2015 sampling event. Historically, iron concentrations have exceeded the criterion in a majority of samples collected from the lake and creek. Iron is a naturally occurring metal in Long Island surface water is not considered to be Site related.

Manganese was detected above the criterion in all five lake samples and one of the creek samples during the April 2015 sampling event. Historically, manganese concentrations have exceeded the criterion in a majority of the samples collected at the site. Manganese is a naturally occurring metal in Long Island surface water is not considered to be Site related.

Sodium was detected above the criterion in six of seven surface water samples collected during the April 2015 sampling event. Historically, sodium concentrations have exceeded the criterion in a majority of samples collected at the site. Sodium is a naturally occurring metal in Long Island surface water is not considered to be Site related.

Selenium was not detected in any of the seven surface water samples collected I April 2015. Historically, selenium has only been detected twice in surface water samples at the site and only one of these, SW-6, exceeded the criterion. Selenium does not appear to be a contaminant of concern at the Site.

Thallium was detected above the criterion in one surface water sample collected from the lake during the April 2015 sampling event. Historically, thallium has been detected sporadically in samples collected at the Site. Only four samples collected during the eight rounds of sampling have exceeded the thallium criterion, all of which were in lake samples. Thallium does not appear to be a contaminant of concern at the Site.

During the April 2015 sampling event, additional samples were collected from the small cove at the northern end of Lake Capri. Sample SC-4 was collected from the middle of the cove (Figure 2A).

Manganese and sodium were detected above their respective criterion. No other exceedances were noted.

In summary, cadmium was only detected above criterion at SW-5. Iron, manganese and sodium were above the respective criterion at all locations with the exception of iron being below criterion at SW-3.

4.4 Sediment Samples

Six co-located sediment samples were collected at the same locations as the surface water samples as shown on Figure 2. Additional sediment samples were collected in the small cove at the northern end of the Lake (Figure 2A). The data presented in Table 6 were compared to the NYSDEC Technical Guidance for Sediment Criteria lowest effects values. The laboratory data summary package is included in Appendix C. A summary of the exceedances is presented on Figure 8. The OU2 ROD lists cadmium and lead as COCs for sediments at the Site.

4.4.1 Lake Capri Sediment Samples

Four samples were collected from Lake Capri, two from the northern end of the Lake and two from the southern end of the Lake.

Cadmium concentrations have exceeded the lowest effects criterion in all 32 lake sediment samples with concentrations ranging from 1.5 mg/kg to 150 mg/kg (Figure 10). Of these, 30 samples also exceeded the highest effects level of 9 mg/kg. A separate investigation of Lake Capri sediment conducted in 2013 found elevated concentrations of cadmium in Willetts Creek sediment that is migrating into the Lake.

Lead has been detected in all 32 lake sediment samples collected from Lake Capri at concentrations ranging from 7.2 mg/kg to 108 mg/kg. 28 of these samples exceeded the lowest effects level of 31 mg/kg and of these, 19 equaled or exceeded the highest effects level of 110 mg/kg (Figure 12).

Antimony has only exceeded the lowest effects criterion in two samples from the lake during the eight rounds of sampling. Antimony does not appear to be a contaminant of concern in Lake Capri.

Arsenic has been detected in 28 of 32 lake sediment samples, ten of which exceeded the lowest effects criterion. Of these, nine were from the two samples at the northern end of the Lake (Figure 9). None of the samples have exceeded the highest effects criterion of 33 mg/kg. Arsenic does not appear to be a contaminant of concern in lake sediment.

Chromium has been detected in 28 of 32 lake sediment samples at concentrations ranging from 1.5 mg/kg to 57 mg/kg, 12 of which have exceeded the lowest effects level of 26 mg/kg. None of the samples have exceeded the highest effects criterion of 110 mg/kg. Chromium does not appear to be a contaminant of concern in lake sediment.

Copper has been detected in all 32 lake sediment samples at concentrations ranging from 2.7 mg/kg to 144 mg/kg. 28 samples exceeded the lowest effects level of 16 mg/kg, and of these, 11 exceeded the highest effects level of 110 mg/kg (Figure 11). Copper was not found during on-site investigations and its presence is not considered site-related. The source of copper may be from residential pesticides use.

Iron has been detected in all 32 sediment samples collected during the eight rounds of lake sampling. However, only seven samples have exceeded the 20,000 mg/kg criterion. These seven exceedances were from the northern end of the lake. Iron is a naturally occurring metal in Long Island soils and is not considered to be site related.

Manganese has been detected in all 32 lake sediment samples at concentrations ranging from 89.8 mg/kg to 22,600 mg/kg. 28 samples have exceeded the lowest effects criterion of 460 mg/kg and 18 of these also equaled or exceeded the highest effects level of 1,100 mg/kg. Manganese is a naturally occurring metal in Long Island soils and is not considered to be site related.

Mercury has been detected in 25 of 32 lake sediment samples at concentrations ranging from 0.0071 mg/kg to 0.52 mg/kg. Of these, 13 exceeded the lowest effect level of 0.15 mg/kg. Ten of these exceedances were noted in northern lake samples. None of the samples exceeded the highest effects criterion of 1.3 mg//kg. Mercury was not found during on-site investigations and is not considered to be site-related.

Nickel has been detected in 24 of 32 Lake Capri sediment samples at concentrations ranging from 3 mg/kg to 27.3 mg/kg. Nine samples exceeded the lowest effects level of 16 mg/kg. Eight of these exceedances were noted in the two northern samples. None of the samples exceeded the highest effects criterion of 50 mg/kg. Nickel was not found during on-site investigations and is not considered to be site related.

Silver has only been detected in three Lake Capri sediment samples at concentrations ranging from 0.33 mg/kg to 2.7 mg/kg. One samples exceeded the lowest effects level of 1 mg/kg and one exceeded the highest effects level of 2.2 mg/kg. Silver was not found during on-site investigations and is not considered to be a contaminant of concern in lake sediments.

Zinc was detected in all 32 Lake Capri sediment samples at concentrations ranging from 10 mg/kg to 642 mg/kg (Figure 13). Of these, 22 samples exceeded the lowest effect level of 120 mg/kg and 12 exceeded the highest effects level of 270 mg/kg. Ten of the highest effects level exceedances were noted in the two samples form the northern end of the lake. Zinc is a naturally occurring metal in Long Island sediments and is not considered to be site related.

4.4.2 Northern Cove Sediment Samples

During the April 2015 sampling event, five sediment samples were also collected from the small cove at the northern end of Lake Capri. The sampling locations are shown on Figure 2A. The analytical results are shown on Table 6. All five samples were analyzed for cadmium and sample SC-4 was analyzed for TAL metals. As shown on Table 6, cadmium was detected in three of five samples at concentrations ranging from 0.82 mg/kg to 12 mg/kg, all of which exceed the lowest effects level of 0.6 mg/kg; one sample also exceeded the highest effects level of 9 mg/kg, the ROD specified cleanup criterion for the lake sediments. No other TAL metals were detected at concentrations above their respective lowest effects level in sample SC-4. Contaminated sediment transport in Willetts Creek does not appear to have impacted the sediments in the Cove.

4.4.3 Willetts Creek Sediment Samples

Sample SED-5 was collected near the Burling Lane footbridge and SED-6 was collected behind the Ace Hardware store on Union Boulevard. The sample locations are shown on Figure 2. As noted above, the OU2 ROD listed cadmium and lead as contaminants of concern for creek sediments.

During the eight rounds of sediment sampling in Willetts Creek, 11 TAL metals have been detected at concentrations that exceed the lowest effects level including antimony, arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel and zinc.

Cadmium was detected in 13 of 16 creek sediment samples with concentrations ranging from 0.23 mg/kg to 110 mg/kg (Figure 5). Eight samples exceeded the lowest effects level of 0.6 mg/kg and five also exceed the highest effects level of 9 mg/kg. A separate sediment investigation conducted in Willetts Creek in 2013 and 2014 identified several hot spot areas of elevated cadmium concentrations.

Lead has been detected in all 16 creek sediment samples at concentrations ranging from 4.9 mg/kg to 229 mg/kg. Eight of these samples exceeded the lowest effects level of 31 mg/kg and of these, three also exceeded the highest effects level of 110 mg/kg (Figure 12).

Antimony has only exceeded the lowest effects criterion in one sample from the creek. Antimony is not a contaminant of concern in creek sediments.

Arsenic has been detected in 14 of 16 creek sediment samples at concentrations ranging from 0.56 mg/kg to 11 mg/kg. Five of these exceeded the lowest effects criterion of 6 mg/kg. None exceeded the highest effects level (Figure 9). Arsenic is not a contaminant of concern in creek sediment.

Chromium has been detected in 13 of 16 creek sediment samples at concentrations ranging from 2.4 mg/kg to 44 mg/kg. Four samples exceeded the lowest effects level of 26 mg/kg. None of the samples exceeded the highest effects criterion of 110 mg/kg. Chromium is not a contaminant of concern for creek sediments.

Copper has been detected in 15 of 16 creek sediment samples at concentrations ranging from 4.7 mg/kg to 166 mg/kg. Eight samples exceeded the lowest effects level of 16 mg/kg, and of these, two also exceeded the highest effects level of 110 mg/kg (Figure 11). As noted above in te discussion of lake sediments, coper was not found during on-site investigations and is not considered to be site related. The presence of copper in creek sediments may be a result of residential pesticide use.

Iron has been detected in all 16 creek sediment samples. Seven samples exceeded the 20,000 mg/kg criterion. Iron is a naturally occurring metal in Long Island soils and is not considered to be site-related.

Manganese has been detected in all 16 creek sediment samples at concentrations ranging from 162 mg/kg to 3,750 mg/kg. Seven samples have exceeded the lowest effects criterion of 460 mg/kg and four of these also exceeded the highest effects level of 1,100 mg/kg. Manganese is a naturally occurring metal in Long Island soils and is not considered to be site-related.

Mercury has been detected in 11 of 16 creek sediment samples at concentrations ranging from 0.0055 mg/kg to 1.2 mg/kg. Of these, five exceeded the lowest effect level of 0.15 mg/kg. None exceeded the highest effects criterion of 1.3 mg/kg. Mercury is not considered to be a contaminant of concern in creek sediment.

Nickel has been detected in 12 of 16 creek sediment samples at concentrations ranging from 1 mg/kg to 22.5 mg/kg. Three samples exceeded the lowest effects level of 16 mg/kg. None exceeded the highest effects criterion of 50 mg/kg. Nickel is not considered to be a contaminant of concern in creek sediment.

Zinc was detected in all 16 creek sediment samples at concentrations ranging from 24.2 mg/kg to 440 mg/kg (Figure 13). Five samples exceeded the lowest effect level of 120 mg/kg and four of these also exceeded the highest effects level of 270 mg/kg. Zinc is a naturally occurring metal in Long Island soil and is not considered to be site related.

4.5 March and April 2015 Data Quality Review

In accordance with the project plans, data generated for this investigation were not subject to formal validation. However, AECOM's quality assurance officer (QAO) reviewed the data for reasonableness and the presence of any anomalies, including issues identified by the laboratory in the case narrative, and other items noted in review of shipping and handling documentation, inconsistencies with previous data, and review of the laboratory QA forms. The QAO also reviewed the field duplicate data.

Groundwater

Filtered and unfiltered groundwater samples were collected from 14 monitoring wells on March 17 and 18, 2015 and received in good condition by the laboratory (Hampton Clarke Veritech, Fairfield, NJ) on March 18, 2015.

Samples were analyzed for target analyte list (TAL) metals as sample delivery group AC83807. Samples DMW-15B (filtered and unfiltered) were designated as the QC samples (spike and duplicate analysis). Laboratory QC limits were met for holding times, initial and continuing calibrations, blanks, laboratory control sample (LCS) recovery, laboratory spike recovery, and laboratory duplicate recovery. The serial dilutions were outside of QC limits for barium, magnesium, and zinc, suggesting matrix inference for those metals.

One filtered/unfiltered site-specific field duplicate groundwater sample pair (MW-15BU and 15BF/MW-65BU and 65BF) was collected from the Dzus site in March 2015. Precision for the field duplicates is presented in Table 7. In the unfiltered sample pair (15U/65U), relative percent difference (RPD) ranged from 3.1 to 10.5 percent for calcium, iron , and sodium, but was 39.5 percent for manganese. Precision for the filtered duplicate pair (15F/65F) had a RPD for sodium of 2.8 percent, and 0.0 percent for calcium,.

The filtered/unfiltered data pairs (see Table 4) were reviewed for anomalies, using the USEPA Region II metals validation criteria (USEPA HW-2, revision 13; USEPA, 2006). Based on these criteria, if the dissolved (filtered sample) result exceeds the total (unfiltered) sample by more than 20 percent, the accuracy of the quantitation is suspect (i.e., the data would be flagged "J", for estimated), and if the filtered sample result exceeds the unfiltered sample result by more than 50 percent, the data may be unusable (flagged "R", rejected). There was single slight exceedance of 21.4% of the 20 percent threshold for sodium in sample MW-22A.

Surface Water

Surface water samples were collected from seven locations (co-located with sediment samples, discussed below) on April 10-11, 2015 and received in good condition by the laboratory (Hampton Clarke Veritech, Fairfield, NJ) on April 13, 2015.

Surface water samples were analyzed for TAL metals as sample delivery group AC84282. Sample SW-4 was designated as the QC sample (spike and duplicate analysis samples labeled RC-1 and RC2). Laboratory QC limits were met for holding times, initial and continuing calibrations, blanks, LCS recovery, laboratory spike recovery, and replicates. The matrix spike recovery for manganese was outside of QC limits, and may suggest matrix interference for that parameter. The serial dilutions for barium and zinc were outside the QC limits suggesting matrix interference.

One site-specific field duplicate pair (SC-4 and RC-1 SW) was collected in November 2013. Precision for the field duplicate (see Table 8) had RPDs ranging from 9 to 24.4 percent for the 3 metals detected in both samples.

Sediment

Sediment samples were collected from 11 locations (most co-located with surface water samples, discussed above) on April 10-11, 2015 and received in good condition by the laboratory (Hampton Clarke Veritech, Fairfield, NJ) on April 13, 2015.

Sediment samples were analyzed for TAL metals as sample delivery group AC84282. Sample SC-4 was designated as the QC sample (spike and duplicate analysis samples labeled FQ-1 and FQ-2). Laboratory QC limits were met for holding times, initial and continuing calibrations, blanks, and LCS recovery. The matrix spike/ matrix spike duplicate had recoveries outside limits for antimony, barium, cadmium, copper, lea, and zinc, although other spikes (e.g., LCS) were within limits. The RPD between the MS/MSD for aluminum, arsenic, cadmium, iron, lead, manganese, vanadium, and zinc were outside of limits. Serial dilution for aluminum, lead, manganese, and zinc, were outside of limits.

One site-specific field duplicate pair (SED-4 and FQ-1) was collected in April 2015. Precision for that sample pair (see Table 9) had RPDs ranging from 41.1 to 65.2 percent. All four metals detected in both samples were above 20 percent RPD.

Overall Round 8 Data Quality Assessment

Field and laboratory-reported QC associated with the two Dzus sample delivery groups (SDGs) (AC84282 for surface water/sediment, and AC83807 for groundwater) was acceptable for the groundwater and surface water samples. Laboratory QC was acceptable for the sediment samples. The laboratory reported that the data quality was acceptable. The data are considered usable for their intended purpose.

5.0 Summary and Recommendations for Future Site Remediation Activities

5.1 Groundwater

Cadmium has been detected in every monitoring well sampled at the Site at least once during the eight sampling events. The majority of the exceedances of the 5 μ g/L Class GA criterion are concentrated in six wells along the eastern side of the Site: MW-3, MW-9, MW-13, MW-15A, MW-23A and MW-23B as shown on Figure 5A. As shown on Figures 6, 6A and 6B, the cadmium concentrations in deep monitoring well MW-23B are above 30 μ g/L (screened at a depth of 35 – 45 ft bgs). It is unlikely that Willetts Creek is capturing groundwater in the deep monitoring well. As shown on these three isoconcentration maps, the cadmium plume most likely extends east of the creek towards Everdell Avenue.

Chromium has been detected in the more than half of the groundwater samples collected at the Site during the eight sampling rounds but has only exceeded the 50 μ g/L criterion in two wells, MW-9 (four of eight samples) and MW-23B (three of eight samples).

Concentrations of iron, manganese, and sodium have exceeded the criterion in numerous wells but these compounds are typically found in groundwater on Long Island and are most likely representative of background conditions and not Site-related. There have been sporadic exceedances of antimony, arsenic, lead, selenium and thallium but the concentrations and locations of the exceedances have not been replicated during the eight sampling events and are most likely a result of entrained sediment in the samples and are not representative of the dissolved groundwater concentrations.

5.2 Surface Water

Cadmium has been detected in almost every surface water sample collected from Lake Capri during the eight sampling events; however, none have exceeded the 5 μ g/L criterion. Cadmium was also detected in Willetts Creek surface water sample SW-5 and exceeded the criterion in six of eight samples. There was only one anomalous exceedance in Willetts Creek sample SW-5 during the eight sampling events.

A majority of samples from Lake Capri and Willetts Creek had exceedances of iron, manganese and sodium. These most likely represent natural conditions in the creek and lake and are not Site related.

5.3 Sediments

The sediment sample data indicate that the surficial sediments in Lake Capri and Willetts Creek remain contaminated with metals concentrations above the applicable NYSDEC Technical Guidance

for Sediment Criteria. Cadmium has been detected above the lowest effects criterion in 40 of 48 samples collected during the eight rounds of sampling and above the highest effects level in 35 of 48 samples as shown on Figure 5. The four lake samples indicate that cadmium is still a contaminant of concern for the lake bottom sediments. The lower Willetts Creek sample (SED-5) indicates that cadmium contamination is still present in the lower reach of the creek. The sediment sample nearest the Site, SED-6, has mostly been below the guidance values.

Lead has been detected above the lowest effects criterion in 36 of 48 samples collected as shown on Figure 12. Of these, 22 were above the highest effects level. The highest concentrations appear to be along the southern end of the lake (SED-1 and SED-2).

Several other metals including antimony, arsenic, chromium, copper, iron, manganese, mercury, nickel, and zinc, have been detected sporadically at concentrations exceeding the criteria during the eight sampling events.

Sediment sampling in Willetts Creek and Lake Capri indicated the presence of elevated levels of cadmium in sediment. In order to establish whether previous remedial dredging operations were successful, the creek and lake were re-sampled in April 2013. The entire length of Willetts Creek from Union Boulevard to Lake Capri was surveyed. Sediment samples were collected approximately every 100 ft to assess cadmium concentrations in the creek. Five east-west transects were established in Lake Capri to collect samples to assess cadmium concentrations in the lake sediment. The transects were positioned evenly between the weir on Sunset Boulevard and the mouth of Willetts Creek. Five samples were collected along each transect.

Based on the April 2013 sediment results, additional samples were collected in Willetts Creek in November 2013. Sixteen transects were sampled adjacent to the high school athletics fields. The results of the sediment sampling in Willetts Creek were summarized in a letter report dated July 2014.

5.4 Recommendations

The collection of filtered metals samples can be discontinued for the next sampling round.

As mentioned above, it appears that the cadmium plume extends beneath Everdell Avenue, east of Willetts Creek. Geoprobe borings should be advanced along Everdell Avenue to collect groundwater samples to verify the concentrations downgradient of the MW-23S/MW-23D well cluster. Proposed geoprobe boring locations are shown on Figure 14. Hydropunch samples will be collected from two borings at the water table (approximately 5 ft bgs) 20, ft bgs 30 ft bgs, 40 ft bgs, and 50 ft bgs.

Incorporate the findings of the Willetts Creek sediment sampling into the long term monitoring program. Select new sampling locations in Willetts Creek and Lake Capri for long term monitoring.

The next five-quarter sampling event is scheduled for May 2016.

Tables

TABLE 1
DZUS FASTENERS SITE (1-52-033)
WELL CONSTRUCTION DATA

Well Number	Latitude	Longitude	Ground Elevation	Top of Riser Elevation	Top of Casing Elevation	Total Depth of Well
MW-1 MW-2 MW-9 MW-9B MW-13A MW-13B MW-15A MW-15B MW-17 MW-18 MW-22A MW-22A MW-22B MW-23A	40° 42.49 40° 42.45 40° 42.49 40° 42.50 40° 42.49 40° 42.43 40° 42.49 40° 42.50 40° 42.491 40° 42.491 40° 42.402 40° 42.402 40° 42.403	73° 18.10 73° 18.10 73° 18.02 73° 18.02 73° 18.01 73° 17.100 73° 17.99 73° 17.97 73° 17.96 73° 17.941 73° 17.941 73° 17.991 73° 17.987	22.44 22.16 20.23 19.14 19.08 16.34 16.14 19.45 19.35 14.69 20.49 20.35 17.57 17.54	22.03 21.42 19.71 18.83 18.75 16.02 15.82 19.09 19.06 14.31 20.09 19.95 17.34 17.29	22.44 22.16 20.23 19.14 19.08 16.34 16.14 19.45 19.35 14.66 20.49 20.35 17.57 17.54	15.3 14.3 15.0 11.5 44.5 10.7 44.3 28.8 84.7 13.5 14.4 44.5 14.3 44.5

Notes:

All elevations and depths are in feet

Vertical datum: on-site benchmark from previous survey.

Latitude / Longitude taken from a previous report Survey performed by YEC, Inc., on April 18, 2007

TABLE 2
DZUS FASTENERS SITE (1-52-033)
GROUNDWATER ELEVATIONS

Well #	Reference Elevation	Date	Depth To Water	Water Table Elevation	Comments
MW-1	22.03	6/8/06 8/22/07 11/11/08 3/10/10 5/25/11 8/22/12 11/5/13 3/18/15	8.00 8.62 NC NC NC NC NC	14.03 13.41	could not be located, damaged during snow removal
MW-2	21.42	6/8/06 8/22/07 11/11/08 3/10/10 5/25/11 8/22/12 11/5/13 3/18/15	8.15 8.50 8.30 7.43 7.77 8.33 9.66 7.43	13.27 12.92 13.12 13.99 13.65 13.09 11.76 13.99	
MW-3	19.71	6/8/06 8/22/07 11/11/08 3/10/10 5/25/11 8/22/12 11/5/13 3/18/15	5.77 6.30 6.25 5.36 5.62 6.23 7.53 5.34	13.94 13.41 13.46 14.35 14.09 13.48 12.18 14.37	
MW-9	18.83	6/8/06 8/22/07 11/11/08 3/10/10 5/25/11 8/22/12 11/5/13 3/18/15	4.59 5.15 5.01 4.19 4.45 5.05 6.50 4.20	14.24 13.68 13.82 14.64 14.38 13.78 12.33 14.63	
MW-9B	18.75	6/8/06 8/22/07 11/11/08 3/10/10 5/25/11 8/22/12 11/5/13 3/18/15	4.50 5.05 4.93 4.11 4.36 5.00 5.52 4.09	14.25 13.70 13.82 14.64 14.39 13.75 13.23 14.66	

TABLE 2
DZUS FASTENERS SITE (1-52-033)
GROUNDWATER ELEVATIONS

Well#	Reference	Date	Depth	Water Table	Comments
	Elevation		To Water	Elevation	
MW-13A	16.02	6/8/06	2.59	13.43	
		8/22/07	3.02	13.00	
		11/11/08	2.90	13.12	
		3/10/10	2.27	13.75	
		5/25/11	2.51	13.51	
		8/22/12	2.93	13.09	
		11/5/13	4.41	11.61	
		3/17/15	2.22	13.80	
MW-13B	15.82	6/8/06	2.39	13.43	
		8/22/07	2.85	12.97	
		11/11/08	2.69	13.13	
		3/10/10	2.08	13.74	
		5/25/11	2.32	13.50	
		8/22/12	2.77	13.05	
		11/5/13	4.35	11.47	
		3/17/15	2.15	13.67	
MW-15A	19.09	6/7/06	5.48	13.61	
		8/22/07	5.80	13.29	
		11/11/08	5.64	13.45	
		3/10/10	4.95	14.14	
		5/25/11	5.15	13.94	
		8/22/12	5.69	13.40	
		11/5/13	5.34	13.75	
		3/17/15	4.86	14.23	
MW-15B	19.06	6/7/06	5.35	13.71	
		8/22/07	5.70	13.36	
		11/11/08	5.58	13.48	
		3/10/10	NC		unable to access, ACE Hardware
		5/25/11	5.10	13.96	
		8/22/12	5.65	13.41	
		11/5/13	5.21	13.85	
		3/17/15	4.60	14.46	
MW-17		5/25/11			Could not be located
		11/5/13			
		3/17/15	6.14		

TABLE 2
DZUS FASTENERS SITE (1-52-033)
GROUNDWATER ELEVATIONS

Well#	Reference Elevation	Date	Depth To Water	Water Table Elevation	Comments
MW-18	14.31	6/8/06 8/23/07 11/11/08 3/10/10 5/25/11 8/22/12 11/5/13 3/17/15	7.93 5.05 4.98 4.52 4.70 4.92 5.41 4.35	6.38 9.26 9.33 9.79 9.61 9.39 8.90 9.96	
MW-22A	20.09	6/7/06 8/22/07 11/11/08 3/10/10 5/25/11 8/22/12 11/5/13 3/17/15	6.00 6.44 6.38 5.78 5.92 6.45 7.70 5.72	14.09 13.65 13.71 14.31 14.17 13.64 12.39 14.37	
MW-22B	19.95	6/7/06 8/22/07 11/11/08 3/10/10 5/25/11 8/22/12 11/5/13 3/17/15	5.82 6.30 6.20 5.61 5.74 6.28 5.65 5.00	14.13 13.65 13.75 14.34 14.21 13.67 14.30 14.95	
MW-23A	17.34	6/7/06 8/22/07 11/11/08 3/10/10 5/25/11 8/22/12 11/5/13 3/17/15	4.59 4.80 4.62 4.16 4.38 5.30 5.72 4.21	12.75 12.54 12.72 13.18 12.96 12.04 11.62 13.13	
MW-23B	17.29	6/7/06 8/22/07 11/11/08 3/10/10 5/25/11 8/22/12 11/5/13 3/17/15	4.51 5.05 4.59 4.06 4.31 4.62 6.51 4.10	12.78 12.24 12.70 13.23 12.98 12.67 10.78 13.19	

Notes:

All measurements in feet from top of casing Veritcal data NGVD

TABLE 3
DZUS FASTENERS SITE (1-52-033)
JUNE 2006 THROUGH MARCH 2015 SAMPLING EVENTS
SUMMARY OF TAL METALS IN GROUNDWATER

Sample Location Sample ID Laboratory ID Sample Date Filtered/Unfiltered	NYSDEC Class GA Ground Water Criteria	MW-17 DMW-17 AC83807-021 3/17/15 Unfiltered conc. Q	MW-17 DMW-17F AC83807-022 3/17/15 Filtered conc. Q
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium	NC 3 25 1,000 3 5 NC 50 NC 200 300 25 35,000 300 0.7 100 NC 10 50 20,000 0.5	ND ND ND ND 37,000 ND ND ND ND 880 6.5 11,000 520 ND ND ND ND	ND ND ND ND 4.1 41,000 ND ND ND ND ND ND ND ND ND ND ND ND ND
Vanadium Zinc	NC 2,000	ND ND	ND ND

BOLD/Italics - exceeds criterion

B - Estimated value (greater than MDL but less than RL)

N - Matrix spike recovery falls outside of the control limit

NC - No Criteria

NA - Not analyzed

E - Estimated due to matrix interference

* - Replicate RPDs were not within QC limits

ND - Not Detected

TABLE 3
DZUS FASTENERS SITE (1-52-033)
JUNE 2006 THROUGH MARCH 2015 SAMPLING EVENTS
SUMMARY OF TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-1	MW-1	MW-1	MW-1	MW-1
Sample ID	Class GA	MW-1	DMW-1	DMW-1	DMW-1	DMW-1
Laboratory ID	Ground	E0773-05A	F1193-01A	destroyed	destroyed	destroyed
Sample Date	Water	6/8/06	8/22/07	11/11/08	3/10/10	5/25/11
Filtered/Unfiltered	Criteria	Unfiltered	Unfiltered			
		conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Aluminum	NC	4,180	3,160	NA	NA	NA
Antimony	3	ND	ND	NA	NA	NA
Arsenic	25	4.3 B	3.8 B	NA	NA	NA
Barium	1,000	80.2 B	73.3 B	NA	NA	NA
Beryllium	3	0.42 B	0.25 B	NA	NA	NA
Cadmium	5	23.9	5.1	NA	NA	NA
Calcium	NC	8,790	7,150	NA	NA	NA
Chromium	50	8.0 B	5.0 B	NA	NA	NA
Cobalt	NC	5.1 B	6.9 BE	NA	NA	NA
Copper	200	18.3 B	16.0 B	NA	NA	NA
Iron	300	13,200	12,600	NA	NA	NA
Lead	25	3.9 B	9.8 B	NA	NA	NA
Magnesium	35,000	3,010	2,420	NA	NA	NA
Manganese	300	210	158	NA	NA	NA
Mercury	0.7	ND	ND	NA	NA	NA
Nickel	100	8.7 B	8.7 B	NA	NA	NA
Potassium	NC	1,760	1,680	NA	NA	NA
Selenium	10	ND	5.4 B	NA	NA	NA
Silver	50	ND	ND	NA	NA	NA
Sodium	20,000	22,500	23,100	NA	NA	NA
Thallium	0.5	1.9 B	5.5 B	NA	NA	NA
Vanadium	NC	7.8 B	8.2 B	NA	NA	NA
Zinc	2,000	244	196	NA	NA	NA

Notes:

All values in µg/L

BOLD/Italics - exceeds criterion

- B Estimated value (greater than MDL but less than RL)
- N Matrix spike recovery falls outside of the control limit
- NC No Criteria
- NA Not analyzed
- E Estimated due to matrix interference
- * Replicate RPDs were not within QC limits
- ND Not Detected

TABLE 3
DZUS FASTENERS SITE (1-52-033)
JUNE 2006 THROUGH MARCH 2015 SAMPLING EVENTS
SUMMARY OF TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-1	MW-1	MW-1	
Sample ID	Class GA	DMW-1	DMW-1	DMW-1	
Laboratory ID	Ground	destroyed	destroyed	destroyed	
Sample Date	Water	8/22/12	11/5/13	3/18/15	
Filtered/Unfiltered	Criteria				
		conc. Q	conc. Q	conc. Q	
Aluminum	NC	NA	NA	NA	
Antimony	3	NA	NA	NA	
Arsenic	25	NA	NA	NA	
Barium	1,000	NA	NA	NA	
Beryllium	3	NA	NA	NA	
Cadmium	5	NA	NA	NA	
Calcium	NC	NA	NA	NA	
Chromium	50	NA	NA	NA	
Cobalt	NC	NA	NA	NA	
Copper	200	NA	NA	NA	
Iron	300	NA	NA	NA	
Lead	25	NA	NA	NA	
Magnesium	35,000	NA	NA	NA	
Manganese	300	NA	NA	NA	
Mercury	0.7	NA	NA	NA	
Nickel	100	NA	NA	NA	
Potassium	NC	NA	NA	NA	
Selenium	10	NA	NA	NA	
Silver	50	NA	NA	NA	
Sodium	20,000	NA	NA	NA	
Thallium	0.5	NA	NA	NA	
Vanadium	NC	NA	NA	NA	
Zinc	2,000	NA	NA	NA	

BOLD/Italics - exceeds criterion

B - Estimated value (greater than MDL but less than RL)

N - Matrix spike recovery falls outside of the control limit

NC - No Criteria

NA - Not analyzed

E - Estimated due to matrix interference

* - Replicate RPDs were not within QC limits

ND - Not Detected

TABLE 3
DZUS FASTENERS SITE (1-52-033)
JUNE 2006 THROUGH MARCH 2015 SAMPLING EVENTS
SUMMARY OF TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2
Sample ID	Class GA	MW-2	DMW-2	DMW-2	DMW-2	DMW-2	DMW-2
Laboratory ID	Ground	E0773-10A	F1193-04A	G2114-01	J0429-10A	K0942-01	K0942-02
Sample Date	Water	6/7/06	8/22/07	11/11/08	3/10/10	5/25/11	5/25/11
Filtered/Unfiltered	Criteria	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Filtered
		conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Aluminum	NC	7,090	1,580	242	3,880 E	1,500	ND
Antimony	3	ND	7.3 B	ND	9.4 B	ND	ND
Arsenic	25	3.9 B	6.3 B	ND	7.7 B	12.4 B	5.0 B
Barium	1,000	96.5 B	212	38.7 B	47.9 B	51.1 B	34.2 B
Beryllium	3	0.4 B	0.71 B	0.27 B	0.51 B	0.33 B	ND
Cadmium	5	4.2 B	8.6	2.7 B	10.4	ND	ND
Calcium	NC	15,500	28,200	14,500	11,100	38,700	34,500
Chromium	50	8.8 B	3.1 B	ND	6.8 B	2.2 B	ND
Cobalt	NC	18.3 B	27 BE	13.8 B	9.3 B	11.4 B	7.6 B
Copper	200	19.3 B	8.3 B	12.6 B	34.9	7.9 B	ND
Iron	300	14,900	25,200	23,300	12,000 N	88,900	17,600
Lead	25	14.7	4.2 B	5.2 B	6.9 B	7.5 B	ND
Magnesium	35,000	3,740	4,690	2,700	2,810	3,690	3,510
Manganese	300	518	989	2,150	768	882	655
Mercury	0.7	ND	ND	ND	0.084 B	ND	ND
Nickel	100	13.3 B	9.0 B	4.7 B	13.5 B	6.5 B	2.8 B
Potassium	NC	2,140	2,780	1,880	1,450	2,470	2,410
Selenium	10	1.4 B	ND	ND	ND	ND	ND
Silver	50	ND	ND	ND	ND	ND	ND
Sodium	20,000	21,500	66,200	18,600	18,200	25,200	24,100
Thallium	0.5	2.3 B	6.3 B	ND	ND	ND	ND
Vanadium	NC	11.9 B	4.0 B	ND	16.2 B	2.5 B	ND
Zinc	2,000	138	82.8	64.3	109	111	30.5 B

Notes:

All values in µg/L

BOLD/Italics - exceeds criterion

B - Estimated value (greater than MDL but less than RL)

N - Matrix spike recovery falls outside of the control limit

NC - No Criteria

NA - Not analyzed

E - Estimated due to matrix interference

* - Replicate RPDs were not within QC limits

ND - Not Detected

TABLE 3
DZUS FASTENERS SITE (1-52-033)
JUNE 2006 THROUGH MARCH 2015 SAMPLING EVENTS
SUMMARY OF TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2
Sample ID	Class GA	DMW-2	DMW-2F	DMW-2	DMW-2F	DMW-2	DMW-2F
Laboratory ID	Ground	L1807-19	L1808-15	AC75646-005	AC75646-006	AC83807-027	AC83807-028
Sample Date	Water	8/22/12	8/22/12	11/6/13	11/6/13	3/18/15	3/18/15
Filtered/Unfiltered	Criteria	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered
		conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Aluminum	NC	328	ND	300	ND	7,200	ND
Antimony	3	ND	ND	ND	ND	ND	ND
Arsenic	25	ND	ND	3	ND	21.0	ND
Barium	1,000	20.4 B	18.4 B	ND	ND	65.0	ND
Beryllium	3	ND	ND	ND	ND	ND	ND
Cadmium	5	ND	ND	ND	ND	15.0	2.6
Calcium	NC	12,500 E	12,300	15,000	14,000	21,000	20,000
Chromium	50	0.73 B	ND	ND	ND	ND	ND
Cobalt	NC	1.2 B	1.0 B	2.6	ND	13.0	3.8
Copper	200	ND	ND	ND	ND	ND	ND
Iron	300	1,590 E	1,060	9,200	3,300	98,000	4,200
Lead	25	ND	ND	ND	ND	29.0	ND
Magnesium	35,000	1,850	1,790	ND	ND	ND	ND
Manganese	300	124	115	170	150	410	240
Mercury	0.7	ND	ND	ND	ND	ND	ND
Nickel	100	1.7 B	1.3 B	ND	ND	ND	ND
Potassium	NC	1,440	1,430	ND	ND	ND	ND
Selenium	10	ND	ND	ND	ND	ND	ND
Silver	50	ND	ND	ND	ND	ND	ND
Sodium	20,000	24,400 E	23,500	25,000	22,000	19,000	20,000
Thallium	0.5	ND	ND	ND	ND	ND	ND
Vanadium	NC	ND	ND	ND	ND	ND	ND
Zinc	2,000	18.4 B	5.2 B	ND	ND	210	ND

Notes: All va

All values in μg/L

BOLD/Italics - exceeds criterion

B - Estimated value (greater than MDL but less than RL)

N - Matrix spike recovery falls outside of the control limit

NC - No Criteria

NA - Not analyzed

E - Estimated due to matrix interference

* - Replicate RPDs were not within QC limits

ND - Not Detected

TABLE 3
DZUS FASTENERS SITE (1-52-033)
JUNE 2006 THROUGH MARCH 2015 SAMPLING EVENTS
SUMMARY OF TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3
Sample ID	Class GA	MW-3	DMW-3	DMW-3	DMW-3	DMW-3	DMW-3
Laboratory ID	Ground	E0773-07A	F1193-07A	G2114-04	J0429-11A	K0942-03	K0942-04
Sample Date	Water	6/8/06	8/22/07	11/11/08	3/10/10	5/25/11	5/25/11
Filtered/Unfiltered	Criteria	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Filtered
		conc. Q	conc. Q				
Aluminum	NC	5,650	620	314	2,890 E	8,520	ND
Antimony	3	ND	ND	ND	7.2 B	ND	ND
Arsenic	25	2.9 B	ND	ND	3.2 B	7.1 B	6.3 B
Barium	1,000	90.9 B	37.2 B	28.3 B	35.3 B	59.7 B	20.3 B
Beryllium	3	0.26 B	ND	ND	0.25 B	0.7 B	ND
Cadmium	5	77.4	74.4	70.8	98.4	73.5	13.1
Calcium	NC	17,800	17,200	11,800	10,600	11,000	9,750
Chromium	50	9.2 B	1.6 B	ND	6.4 B	11.4 B	ND
Cobalt	NC	4.4 B	1.6 BE	ND	2.2 B	4.7 B	ND
Copper	200	16.1 B	5.4 B	ND	6.8 B	9.7 B	ND
Iron	300	4,430	649	253	3,680 N	7,430	ND
Lead	25	ND	3.8 B	2.7 B	3.9 B	7.5 B	ND
Magnesium	35,000	4,160	3,820	2,650	2,670	2,890	1,970
Manganese	300	423	301	262	553	980	ND
Mercury	0.7	ND	ND	ND	0.067 B	0.057 B	ND
Nickel	100	6.8 B	2.1 B	1.6 B	7.4 B	5.0 B	ND
Potassium	NC	2,630	2,050	1,420	1,500	2,170	1,790
Selenium	10	ND	8.4 B	ND	10.6 B	ND	ND
Silver	50	ND	3.5 B	ND	ND	ND	ND
Sodium	20,000	27,700	31,000	25,000	20,700	20,400	19,400
Thallium	0.5	2.5 B	ND	ND	ND	ND	ND
Vanadium	NC	8.1 B	1.1 B	ND	4 B	9.6 B	ND
Zinc	2,000	87.0	29.4 B	26.2 B	29.0 B	34.0 B	18.9 B

BOLD/Italics - exceeds criterion

B - Estimated value (greater than MDL but less than RL)

N - Matrix spike recovery falls outside of the control limit

NC - No Criteria

NA - Not analyzed

E - Estimated due to matrix interference

* - Replicate RPDs were not within QC limits

ND - Not Detected

TABLE 3
DZUS FASTENERS SITE (1-52-033)
JUNE 2006 THROUGH MARCH 2015 SAMPLING EVENTS
SUMMARY OF TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3
Sample ID	Class GA	DMW-3	DMW-3F	DMW-3	DMW-3F	DMW-3	DMW-3F
Laboratory ID	Ground	L1807-20	L1808-17	AC75646-011	AC75646-012	AC83807-031	AC83807-032
Sample Date	Water	8/22/12	8/22/12	11/6/13	11/6/13	3/18/15	3/18/15
Filtered/Unfiltered	Criteria	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered
		conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Aluminum	NC	ND	ND	330	ND	490	ND
Antimony	3	10.7 B	ND	ND	ND	ND	ND
Arsenic	25	ND	ND	ND	ND	ND	ND
Barium	1,000	29.0 B	28.0 B	ND	ND	ND	ND
Beryllium	3	ND	ND	ND	ND	ND	ND
Cadmium	5	16.3	15.1	12.0	13.0	20.0	14.0
Calcium	NC	11,100 E	10,700	9,000	9,700	9,300	9,300
Chromium	50	ND	0.90 B	ND	ND	ND	ND
Cobalt	NC	ND	ND	ND	ND	ND	ND
Copper	200	ND	ND	ND	ND	ND	ND
Iron	300	50.5 B	ND	ND	ND	510	ND
Lead	25	ND	ND	ND	ND	ND	ND
Magnesium	35,000	2,220	2,180	ND	ND	ND	ND
Manganese	300	ND	ND	ND	ND	64	ND
Mercury	0.7	ND	ND	ND	ND	ND	ND
Nickel	100	0.92 B	ND	ND	ND	ND	ND
Potassium	NC	2,420	2,400	ND	ND	ND	ND
Selenium	10	ND	ND	ND	ND	ND	ND
Silver	50	ND	ND	ND	ND	ND	ND
Sodium	20,000	23,400 E	23,000	43,000	45,000	18,000	18,000
Thallium	0.5	ND	ND	ND	ND	ND	ND
Vanadium	NC	ND	ND	ND	ND	ND	ND
Zinc	2,000	ND	7.1 B	ND	ND	ND	ND

BOLD/Italics - exceeds criterion

B - Estimated value (greater than MDL but less than RL)

N - Matrix spike recovery falls outside of the control limit

NC - No Criteria

NA - Not analyzed

E - Estimated due to matrix interference

* - Replicate RPDs were not within QC limits

ND - Not Detected

TABLE 3
DZUS FASTENERS SITE (1-52-033)
JUNE 2006 THROUGH MARCH 2015 SAMPLING EVENTS
SUMMARY OF TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-9	MW-9	MW-9	MW-9	MW-9	MW-9
Sample ID	Class GA	MW-9	DMW-9	DMW-9	DMW-9	DMW-9	DMW-9
Laboratory ID	Ground	E0773-09A	F1193-06A	G2114-02	J0429-12A	K0942-05	K0942-06
Sample Date	Water	6/8/06	8/22/07	11/11/08	3/10/10	5/25/11	5/25/11
Filtered/Unfiltered	Criteria	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Filtered
		conc. Q	conc. Q				
Aluminum	NC	16,800	3,520	611	2,300 E	2,850	ND
Antimony	3	ND	ND	ND	ND	ND	ND
Arsenic	25	32.6	16.2 B	ND	11.4 B	11.5 B	4.9 B
Barium	1,000	102 B	44.7 B	30.2 B	39.2 B	71.0 B	49.2 B
Beryllium	3	0.63 B	ND	0.21 B	0.29 B	0.42 B	ND
Cadmium	5	32.8	22.4	15.5	17.5	18.7	9.5
Calcium	NC	16,000	15,100	10,800	21,900	29,000	25,600
Chromium	50	125	62.2	35.3	62.7	85.5	2.9 B
Cobalt	NC	5.2 B	4.9 BE	1.5 B	2.0 B	2.5 B	ND
Copper	200	62.3	41.4	17.3 B	32.5	41.1	ND
Iron	300	21,600	12,400	3,670	11,300 N	11,600	1,760
Lead	25	11.6	10.6	5.9 B	8.1 B	9.9 B	ND
Magnesium	35,000	3,170	1,550	2,690	4,210	4,110	3,900
Manganese	300	151	117	62.6	124	149	15.3 B
Mercury	0.7	ND	ND	ND	0.088 B	ND	ND
Nickel	100	18.3 B	7.3 B	3.3 B	8.0 B	6.5 B	2.4 B
Potassium	NC	3,270	4,830	1,720	3,950	6,310	5,210
Selenium	10	2.7 B	ND	ND	ND	ND	ND
Silver	50	ND	ND	ND	ND	ND	ND
Sodium	20,000	25,500	52,100	16,100	29,100	72,800	68,700
Thallium	0.5	ND	ND	ND	ND	ND	ND
Vanadium	NC	33.1 B	13.4 B	5.5 B	10.4 B	12.8 B	ND
Zinc	2,000	170	73.1	55.9	82.8	90.9	36.6 B

BOLD/Italics - exceeds criterion

B - Estimated value (greater than MDL but less than RL)

N - Matrix spike recovery falls outside of the control limit

NC - No Criteria

NA - Not analyzed

E - Estimated due to matrix interference

* - Replicate RPDs were not within QC limits

ND - Not Detected

TABLE 3
DZUS FASTENERS SITE (1-52-033)
JUNE 2006 THROUGH MARCH 2015 SAMPLING EVENTS
SUMMARY OF TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-9	MW-9	MW-9	MW-9	MW-9	MW-9
Sample ID	Class GA	DMW-9	DMW-9F	DMW-9	DMW-9F	DMW-9	DMW-9F
Laboratory ID	Ground	L1807-21	L1808-19	AC75646-031	AC75646-032	AC83807-029	AC83807-030
Sample Date	Water	8/22/12	8/22/12	11/7/13	11/7/13	3/18/15	3/18/15
Filtered/Unfiltered	Criteria	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered
		conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Aluminum	NC	163 B	ND	ND	ND	ND	ND
Antimony	3	9.5 B	ND	ND	ND	ND	ND
Arsenic	25	ND	ND	ND	ND	ND	ND
Barium	1,000	17.8 B	17.0 B	ND	ND	ND	ND
Beryllium	3	ND	ND	ND	ND	ND	ND
Cadmium	5	4.9 B	4.4 B	3.4	3.0	ND	2.4
Calcium	NC	13,900 E	13,700	12,000	12,000	13,000	14,000
Chromium	50	8.3 B	4.0 B	ND	ND	ND	ND
Cobalt	NC	ND	ND	ND	ND	ND	ND
Copper	200	ND	ND	ND	ND	ND	ND
Iron	300	556 E	ND	ND	ND	550	ND
Lead	25	ND	ND	ND	ND	ND	ND
Magnesium	35,000	3,300	3,220	ND	ND	ND	ND
Manganese	300	ND	ND	ND	ND	ND	ND
Mercury	0.7	ND	ND	ND	ND	ND	ND
Nickel	100	1.4 B	2.3 B	ND	ND	ND	ND
Potassium	NC	1,420	1,390	ND	ND	ND	ND
Selenium	10	ND	ND	ND	ND	ND	ND
Silver	50	ND	ND	ND	ND	ND	ND
Sodium	20,000	26,300 E	25,900	11,000	11,000	18,000	21,000
Thallium	0.5	ND	ND	ND	ND	ND	ND
Vanadium	NC	ND	ND	ND	ND	ND	ND
Zinc	2,000	12.9 B	11.8 B	ND	ND	ND	ND

BOLD/Italics - exceeds criterion

B - Estimated value (greater than MDL but less than RL)

N - Matrix spike recovery falls outside of the control limit

NC - No Criteria

NA - Not analyzed

E - Estimated due to matrix interference

* - Replicate RPDs were not within QC limits

ND - Not Detected

TABLE 3
DZUS FASTENERS SITE (1-52-033)
JUNE 2006 THROUGH MARCH 2015 SAMPLING EVENTS
SUMMARY OF TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-9B	MW-9B	MW-9B	MW-9B	MW-9B	MW-9B
Sample ID	Class GA	MW-9B	DMW-9B	DMW-9B	DMW-9B	DMW-9B	DMW-9B
Laboratory ID	Ground	E0773-08A	F1193-05A	G2114-03	J0429-14A	K0942-07	K0942-08
Sample Date	Water	6/8/06	8/22/07	11/11/08	3/10/10	5/25/11	5/25/11
Filtered/Unfiltered	Criteria	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Filtered
		conc. Q	conc. Q				
Aluminum	NC	213	177 B	ND	49.5 BE	99.1 B	ND
Antimony	3	1.8 B	4.6 B	ND	ND	ND	ND
Arsenic	25	ND	ND	ND	ND	ND	6.2 B
Barium	1,000	45.5 B	25.5 B	27.1 B	17.1 B	14.4 B	12.8 B
Beryllium	3	ND	ND	ND	0.051 B	ND	ND
Cadmium	5	2.9 B	1.2 B	0.23 B	3.6 B	ND	ND
Calcium	NC	10,800	11,900	8,180	6,950	8,580	8,480
Chromium	50	2.2 B	3.4 B	ND	2.4 B	1.4 B	ND
Cobalt	NC	2.6 B	1.5 BE	ND	ND	ND	ND
Copper	200	28.8 B	14.8 B	ND	ND	ND	ND
Iron	300	561	429	134 B	286 N	528	31.8 B
Lead	25	ND	6.0 B	ND	ND	ND	ND
Magnesium	35,000	1,640	1,630	1,330	1,380	1,490	1,430
Manganese	300	211	306	171	69.5	92.4	ND
Mercury	0.7	ND	ND	ND	ND	ND	ND
Nickel	100	8.6 B	2.9 B	ND	1.9 B	1.8 B	0.88 B
Potassium	NC	2,140	2,050	1,940	1,950	1,910	1,670
Selenium	10	ND	ND	ND	12.7 B	ND	ND
Silver	50	ND	2.2 B	ND	ND	ND	ND
Sodium	20,000	8,070	10,100	11,800	7,660	6,730	6,650
Thallium	0.5	ND	ND	ND	ND	ND	ND
Vanadium	NC	ND	0.83 B	ND	ND	ND	ND
Zinc	2,000	83.7	36.0 B	35.3 B	23.3 B	27.1 B	25.4 B

Notes: A

All values in µg/L

BOLD/Italics - exceeds criterion

B - Estimated value (greater than MDL but less than RL)

N - Matrix spike recovery falls outside of the control limit

NC - No Criteria

NA - Not analyzed

E - Estimated due to matrix interference

* - Replicate RPDs were not within QC limits

ND - Not Detected

TABLE 3
DZUS FASTENERS SITE (1-52-033)
JUNE 2006 THROUGH MARCH 2015 SAMPLING EVENTS
SUMMARY OF TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-9B	MW-9B	MW-9B	MW-9B	MW-9B	MW-9B
Sample ID	Class GA	DMW-9B	DMW-9BF	DMW-9B	DMW-9BF	DMW-9B	DMW-9BF
Laboratory ID	Ground	L1807-22	L1808-18	AC75646-013	AC75646-014	AC83807-023	AC83807-024
Sample Date	Water	8/22/12	8/22/12	11/6/13	11/6/13	3/18/15	3/18/15
Filtered/Unfiltered	Criteria	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered
		conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Aluminum	NC	ND	ND	ND	ND	ND	ND
Antimony	3	ND	ND	ND	ND	ND	ND
Arsenic	25	ND	ND	ND	ND	ND	ND
Barium	1,000	22.2 B	21.1 B	ND	ND	ND	ND
Beryllium	3	ND	ND	ND	ND	ND	ND
Cadmium	5	ND	ND	ND	ND	ND	2.5
Calcium	NC	9,300 E	8,330	11,000	10,000	6,400	6,700
Chromium	50	0.82 B	ND	ND	ND	ND	ND
Cobalt	NC	ND	ND	ND	ND	ND	ND
Copper	200	ND	ND	ND	ND	ND	ND
Iron	300	39.5 B	ND	ND	ND	ND	ND
Lead	25	ND	ND	ND	ND	ND	ND
Magnesium	35,000	1,680	1,480	ND	ND	ND	ND
Manganese	300	ND	ND	ND	ND	44	ND
Mercury	0.7	ND	ND	ND	ND	ND	ND
Nickel	100	ND	ND	ND	ND	ND	ND
Potassium	NC	1,800	1,790	ND	ND	ND	ND
Selenium	10	ND	ND	ND	ND	ND	ND
Silver	50	ND	ND	ND	ND	ND	ND
Sodium	20,000	21,400 E	19,700	10,000	9,000	13,000	14,000
Thallium	0.5	ND	ND	ND	ND	ND	ND
Vanadium	NC	ND	ND	ND	ND	ND	ND
Zinc	2,000	ND	ND	ND	ND	ND	ND

Notes: All

All values in µg/L

BOLD/Italics - exceeds criterion

B - Estimated value (greater than MDL but less than RL)

N - Matrix spike recovery falls outside of the control limit

NC - No Criteria

NA - Not analyzed

E - Estimated due to matrix interference

* - Replicate RPDs were not within QC limits

ND - Not Detected

TABLE 3
DZUS FASTENERS SITE (1-52-033)
JUNE 2006 THROUGH MARCH 2015 SAMPLING EVENTS
SUMMARY OF TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-13A	MW-13A	MW-13A	MW-13A	MW-13A	MW-13A
Sample ID	Class GA	MW-13A	DMW-13A	DMW-13A	DMW-13A	DMW-13A	DMW-13A
Laboratory ID	Ground	E0773-13A	F1193-14A	F1193-14A	J0429-15A	K0942-17	K0942-18
Sample Date	Water	6/8/06	8/22/07	11/12/08	3/10/10	5/25/11	5/25/11
Filtered/Unfiltered	Criteria	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Filtered
		conc. Q	conc.	conc.	conc.	conc.	conc.
Aluminum	NC	15,000	2,560	258	529 E	2,100	ND
Antimony	3	ND	ND	ND	ND	ND	ND
Arsenic	25	5.7 B	ND	ND	ND	13.1 B	ND
Barium	1,000	176 B	94.0 B	185 B	605	886	20.5 B
Beryllium	3	0.53 B	ND	ND	0.073 B	ND	ND
Cadmium	5	174	94.1	67.7	267	373	10.3
Calcium	NC	37,900	23,300	19,900	43,700	27,500	24,900
Chromium	50	12.9 B	2.7 B	ND	3.9 B	22.1	ND
Cobalt	NC	55.8	45.4 BE	35.4 B	144	268	1.1 B
Copper	200	34.3	ND	ND	17.9 B	20.8 B	ND
Iron	300	12,700	3,490	300	749 N	2,310	ND
Lead	25	5.7 B	2.5 B	ND	5.3 B	ND	ND
Magnesium	35,000	5,580	3,640	2,630	4,570	3,820	3,340
Manganese	300	9,560	8,040	16,400	33,900	61,600	1,720
Mercury	0.7	ND	ND	ND	0.063 B	ND	ND
Nickel	100	9.4 B	2.1 B	ND	2.6 B	3.3 B	ND
Potassium	NC	7,430	6,390	3,680	7,510	6,700 E	5,990 E
Selenium	10	ND	ND	ND	ND	ND	ND
Silver	50	ND	3.5 B	ND	ND	12.1 B	ND
Sodium	20,000	94,500	77,500	21,700	247,000	38,400	37,500
Thallium	0.5	44	ND	11.7 B	88.2	ND	ND
Vanadium	NC	17.6 B	3.7 B	ND	2.7 B	6.4 B	ND
Zinc	2,000	53.3	16.8 B	20.8 B	27.4 B	36.1 B	18.0 B

BOLD/Italics - exceeds criterion

B - Estimated value (greater than MDL but less than RL)

N - Matrix spike recovery falls outside of the control limit

NC - No Criteria

NA - Not analyzed

E - Estimated due to matrix interference

* - Replicate RPDs were not within QC limits

ND - Not Detected

TABLE 3
DZUS FASTENERS SITE (1-52-033)
JUNE 2006 THROUGH MARCH 2015 SAMPLING EVENTS
SUMMARY OF TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-13A	MW-13A	MW-13A	MW-13A	MW-13A	MW-13A
Sample ID	Class GA	DMW-13A	DMW-13AF	DMW-13A	DMW-13AF	DMW-13A	DMW-13AF
Laboratory ID	Ground	L1807-15	L1808-25	AC75646-021	AC75646-022	AC83807-011	AC83807-012
Sample Date	Water	8/22/12	8/22/12	11/7/13	11/7/13	3/17/15	3/17/15
Filtered/Unfiltered	Criteria	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered
		conc.	conc.	conc.	conc.	conc.	conc.
Aluminum	NC	204	ND	ND	ND	420	ND
Antimony	3	ND	ND	ND	ND	ND	ND
Arsenic	25	ND	ND	ND	ND	ND	ND
Barium	1,000	77.9 B	31.4 B	ND	ND	ND	ND
Beryllium	3	ND	ND	ND	ND	ND	ND
Cadmium	5	93.5	64.4	120	120	9.6	9.1
Calcium	NC	7,850	7,800	14,000	13,000	20,000	21,000
Chromium	50	2.8 B	1.9 B	ND	ND	ND	ND
Cobalt	NC	33.7 B	15.1 B	16.0	17.0	17.0	18.0
Copper	200	6.7 B	ND	ND	ND	ND	ND
Iron	300	3,690	1,580	7,300	6,400	8,600	6,200
Lead	25	ND	ND	ND	ND	ND	25.0
Magnesium	35,000	936	960	ND	ND	ND	ND
Manganese	300	6,190	3,430	1,700	1,700	1,100	1,200
Mercury	0.7	ND	ND	ND	ND	ND	ND
Nickel	100	1.1 B	2.7 B	ND	ND	ND	ND
Potassium	NC	2,250 E	2,140	ND	ND	ND	ND
Selenium	10	ND	ND	ND	ND	ND	ND
Silver	50	ND	ND	ND	ND	ND	ND
Sodium	20,000	47,000	46,900	31,000	31,000	43,000	47,000
Thallium	0.5	9.2 B	ND	ND	ND	ND	ND
Vanadium	NC	ND	ND	ND	ND	ND	ND
Zinc	2,000	9.5 B	ND	ND	ND	ND	ND

BOLD/Italics - exceeds criterion

B - Estimated value (greater than MDL but less than RL)

N - Matrix spike recovery falls outside of the control limit

NC - No Criteria

NA - Not analyzed

E - Estimated due to matrix interference

* - Replicate RPDs were not within QC limits

ND - Not Detected

TABLE 3
DZUS FASTENERS SITE (1-52-033)
JUNE 2006 THROUGH MARCH 2015 SAMPLING EVENTS
SUMMARY OF TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-13B	MW-13B	MW-13B	MW-13B	MW-13B	MW-13B
Sample ID	Class GA	MW-13B	DMW-13B	DMW-13B	DMW-13B	DMW-13B	DMW-13B
Laboratory ID	Ground	E0773-14A	F1193-13A	G2114-13	J0429-16A	K0942-19	K0942-20
Sample Date	Water	6/8/06	8/22/07	11/12/08	3/10/10	5/25/11	5/25/11
Filtered/Unfiltered	Criteria	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Filtered
		conc. Q	conc. Q				
Aluminum	NC	330	133 B	ND	114 BE	106 B	ND
Antimony	3	ND	ND	ND	ND	ND	ND
Arsenic	25	ND	ND	ND	ND	ND	ND
Barium	1,000	54.3 B	29.0 B	33.4 B	21.5 B	14.4 B	12.6 B
Beryllium	3	ND	ND	ND	ND	ND	ND
Cadmium	5	15	9.8	2.3 B	4.2 B	2.2 B	ND
Calcium	NC	10,700	9,840	11,700	8,880	10,900	10,900
Chromium	50	27.8	27.2	22.3	17.8 B	11.7 B	10.7 B
Cobalt	NC	3.9 B	1.9 BE	ND	ND	ND	ND
Copper	200	19.3 B	13.8 B	ND	ND	6.5 B	ND
Iron	300	614	404	106 B	286 N	469	ND
Lead	25	ND	7.7 B	3.1 B	ND	ND	ND
Magnesium	35,000	1,710	1,600	1,910	1,350	1,560	1,530
Manganese	300	621	426	153	243	148	ND
Mercury	0.7	ND	ND	ND	ND	ND	ND
Nickel	100	9.8 B	4.2 B	ND	1.3 B	1.5 B	ND
Potassium	NC	2,410	1,820	2,100	1,570	1,910 E	1,680 E
Selenium	10	ND	6.2 B	ND	ND	ND	ND
Silver	50	ND	2.3 B	ND	ND	ND	ND
Sodium	20,000	7,880	6,710	9,280	8,060	6,720	6,880
Thallium	0.5	ND	ND	ND	ND	ND	ND
Vanadium	NC	1.3 B	0.96 B	ND	0.54 B	ND	ND
Zinc	2,000	45.9 B	33.2 B	24.3 B	24.3 B	32.7 B	32.5 B

BOLD/Italics - exceeds criterion

B - Estimated value (greater than MDL but less than RL)

N - Matrix spike recovery falls outside of the control limit

NC - No Criteria

NA - Not analyzed

E - Estimated due to matrix interference

* - Replicate RPDs were not within QC limits

ND - Not Detected

TABLE 3
DZUS FASTENERS SITE (1-52-033)
JUNE 2006 THROUGH MARCH 2015 SAMPLING EVENTS
SUMMARY OF TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-13B	MW-13B	MW-13B	MW-13B	MW-13B	MW-13B
Sample ID	Class GA	DMW-13B	DMW-13BF	DMW-13B	DMW-13BF	DMW-13B	DMW-13BF
Laboratory ID	Ground	L1807-27	L1808-23	AC75646-023	AC75646-024	AC83807-013	AC83807-014
Sample Date	Water	8/22/12	8/22/12	11/7/13	11/7/13	3/17/15	3/17/15
Filtered/Unfiltered	Criteria	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered
		conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Aluminum	NC	ND	ND	1,800	ND	1,000	ND
Antimony	3	ND	ND	2.9	ND	ND	ND
Arsenic	25	ND	ND	ND	ND	ND	ND
Barium	1,000	23.1 B	22.4 B	ND	ND	ND	ND
Beryllium	3	ND	ND	ND	ND	ND	ND
Cadmium	5	1.5 B	1.1 B	10.0	2.3	4.0	ND
Calcium	NC	11,300 E	10,600	29,000	12,000	12,000	13,000
Chromium	50	21.2	21.4	ND	ND	ND	ND
Cobalt	NC	ND	ND	3.1	ND	3.0	ND
Copper	200	ND	ND	57.0	ND	ND	ND
Iron	300	ND	ND	4,900	ND	2100	ND
Lead	25	ND	ND	13.0	ND	6.3	ND
Magnesium	35,000	1,630	1,550	9,000	ND	ND	ND
Manganese	300	54.3	19.7 B	240	57.0	780	ND
Mercury	0.7	ND	ND	ND	ND	ND	ND
Nickel	100	ND	ND	ND	ND	ND	ND
Potassium	NC	1,340	1,360	9,400	ND	ND	ND
Selenium	10	ND	ND	ND	ND	ND	ND
Silver	50	ND	ND	ND	ND	ND	ND
Sodium	20,000	9,260 E	8,950	22,000	13,000	12,000	13,000
Thallium	0.5	ND	ND	ND	ND	ND	ND
Vanadium	NC	ND	ND	ND	ND	ND	ND
Zinc	2,000	ND	ND	350	ND	ND	ND

BOLD/Italics - exceeds criterion

B - Estimated value (greater than MDL but less than RL)

N - Matrix spike recovery falls outside of the control limit

NC - No Criteria

NA - Not analyzed

E - Estimated due to matrix interference

* - Replicate RPDs were not within QC limits

ND - Not Detected

TABLE 3
DZUS FASTENERS SITE (1-52-033)
JUNE 2006 THROUGH MARCH 2015 SAMPLING EVENTS
SUMMARY OF TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-15A	MW-15A	MW-15A	MW-15A	MW-15A	MW-15A
Sample ID	Class GA	MW-15A	DMW-15A	DMW-15A	DMW-15A	DMW-15A	DMW-15A
Laboratory ID	Ground	E0773-03A	F1193-15A	G2114-08	J0429-17A	K0942-21	K0942-22
Sample Date	Water	6/7/06	8/22/07	11/12/08	3/9/10	5/25/11	5/25/11
Filtered/Unfiltered	Criteria	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Filtered
		conc. Q	conc. Q				
Aluminum	NC	773	ND	ND	335 E	ND	ND
Antimony	3	ND	ND	ND	ND	ND	ND
Arsenic	25	ND	ND	ND	ND	ND	ND
Barium	1,000	53.7 B	15.5 B	20.1 B	30.8 B	23.1 B	16.4 B
Beryllium	3	ND	ND	ND	0.074 B	ND	ND
Cadmium	5	28.8	29.1	33.9	62.3	63.0	12.2
Calcium	NC	18,900	13,700	12,100	14,800	16,300	16,600
Chromium	50	3.0 B	0.45 B	ND	4.6 B	1.3 B	ND
Cobalt	NC	3.2 B	1.3 BE	ND	0.9 B	ND	ND
Copper	200	38.0	4.8 B	ND	8.4 B	9.8 B	ND
Iron	300	2,320	158 B	ND	1,000 N	164 B	ND
Lead	25	9.9 B	1.7 B	ND	5.2 B	ND	ND
Magnesium	35,000	3,170	2,240	1,890	2,780	2,410	2,380
Manganese	300	370	929	895	2,850	1,510	55.7
Mercury	0.7	ND	ND	ND	ND	ND	ND
Nickel	100	7.1 B	0.85 B	ND	3.6 B	1.7 B	ND
Potassium	NC	2,090	1,960	1,610	2,140	2,290 E	2,290 E
Selenium	10	ND	ND	ND	ND	ND	ND
Silver	50	ND	3.4 B	ND	ND	ND	ND
Sodium	20,000	18,000	13,300	9,040	17,100	19,500	19,800
Thallium	0.5	1.9 B	ND	ND	7.3 B	ND	ND
Vanadium	NC	2.6 B	ND	ND	0.69 B	ND	ND
Zinc	2,000	155	18.8 B	24.3 B	33.5 B	31.7 B	25.9 B

BOLD/Italics - exceeds criterion

B - Estimated value (greater than MDL but less than RL)

N - Matrix spike recovery falls outside of the control limit

NC - No Criteria

NA - Not analyzed

E - Estimated due to matrix interference

* - Replicate RPDs were not within QC limits

ND - Not Detected

TABLE 3
DZUS FASTENERS SITE (1-52-033)
JUNE 2006 THROUGH MARCH 2015 SAMPLING EVENTS
SUMMARY OF TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-15A	MW-15A	MW-15A	MW-15A	MW-15A	MW-15A
Sample ID	Class GA	DMW-15A	DMW-15AF	DMW-15A	DMW-15AF	DMW-15A	DMW-15AF
Laboratory ID	Ground	L1807-25	L1808-21	AC75646-009	AC75646-010	AC83807-001	AC83807-002
Sample Date	Water	8/22/12	8/22/12	11/6/13	11/6/13	3/17/15	3/17/15
Filtered/Unfiltered	Criteria	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered
		conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Aluminum	NC	ND	ND	810	ND	820	ND
Antimony	3	ND	ND	ND	ND	ND	ND
Arsenic	25	ND	ND	ND	ND	ND	ND
Barium	1,000	15.9 B	15.0 B	ND	ND	ND	ND
Beryllium	3	ND	ND	ND	ND	ND	ND
Cadmium	5	16.8	9.7	<i>73.0</i>	8.9	17.0	8.2
Calcium	NC	13,500 E	13,400	14,000	14,000	12,000	14,000
Chromium	50	ND	1.2 B	ND	ND	ND	ND
Cobalt	NC	ND	ND	ND	ND	ND	ND
Copper	200	ND	ND	ND	ND	ND	ND
Iron	300	ND	ND	1,200	ND	1,100	ND
Lead	25	ND	ND	7.9	ND	6.3	ND
Magnesium	35,000	2,460	2,440	ND	ND	ND	ND
Manganese	300	238	41.1 B	2,100	59.0	150	ND
Mercury	0.7	ND	ND	ND	ND	ND	ND
Nickel	100	ND	1.1 B	ND	ND	ND	ND
Potassium	NC	2,110	2,230	ND	ND	ND	ND
Selenium	10	ND	ND	ND	ND	ND	ND
Silver	50	ND	ND	ND	ND	ND	ND
Sodium	20,000	20,400 E	20,400	21,000	21,000	20,000	23,000
Thallium	0.5	ND	ND	ND	ND	ND	ND
Vanadium	NC	ND	ND	ND	ND	ND	ND
Zinc	2,000	ND	ND	ND	ND	ND	ND

BOLD/Italics - exceeds criterion

B - Estimated value (greater than MDL but less than RL)

N - Matrix spike recovery falls outside of the control limit

NC - No Criteria

NA - Not analyzed

E - Estimated due to matrix interference

* - Replicate RPDs were not within QC limits

ND - Not Detected

TABLE 3
DZUS FASTENERS SITE (1-52-033)
JUNE 2006 THROUGH MARCH 2015 SAMPLING EVENTS
SUMMARY OF TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-15B	MW-15B	MW-15B	MW-15B	MW-15B	MW-15B
Sample ID	Class GA	MW-15B	DMW-15B	DMW-15B	DMW-15B	DMW-15B	DMW-15B
Laboratory ID		E0773-04A	F1193-10A	G2114-07	Inaccessible	K0942-23	K0942-24
Sample Date	Water	6/7/06	8/22/07	11/12/08	3/10/10	5/25/11	5/25/11
Filtered/Unfiltered	Criteria	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Filtered
		conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Aluminum	NC	224	58.6 B	ND	NA	ND	ND
Antimony	3	ND	ND	ND	NA	ND	ND
Arsenic	25	1.7 B	ND	ND	NA	5.5 B	4.8 B
Barium	1,000	83.6 B	40.6 B	45.0 B	NA	34.6 B	34.4 B
Beryllium	3	ND	ND	0.19 B	NA	ND	ND
Cadmium	5	3.6 B	0.54 B	0.29 B	NA	ND	ND
Calcium	NC	16,400	13,700	13,700	NA	12,000	11,900
Chromium	50	2.1 B	0.56 B	ND	NA	ND	ND
Cobalt	NC	5.5 B	2.7 BE	1.9 B	NA	1.4 B	1.2 B
Copper	200	20.4 B	2.5 B	ND	NA	ND	ND
Iron	300	4,780	1,320	875	NA	1,410	1,130
Lead	25	3.3 B	ND	3.6 B	NA	ND	ND
Magnesium	35,000	5,930	5,290	5,240	NA	4,860	4,920
Manganese	300	239	228	267	NA	182	182
Mercury	0.7	ND	ND	ND	NA	ND	ND
Nickel	100	11.5 B	1.4 B	2.2 B	NA	1.9 B	2.0 B
Potassium	NC	2,450	1,500	1,980	NA	1,890 E	1,860 E
Selenium	10	ND	ND	ND	NA	ND	ND
Silver	50	ND	2.5 B	1.0 B	NA	ND	ND
Sodium	20,000	46,600	45,200	43,900	NA	40,600	40,600
Thallium	0.5	3.0 B	ND	ND	NA	ND	ND
Vanadium	NC	0.72 B	ND	ND	NA	ND	ND
Zinc	2,000	129	16.8 B	38.9 B	NA	37.3 B	33.7 B

BOLD/Italics - exceeds criterion

B - Estimated value (greater than MDL but less than RL)

N - Matrix spike recovery falls outside of the control limit

NC - No Criteria

NA - Not analyzed

E - Estimated due to matrix interference

* - Replicate RPDs were not within QC limits

ND - Not Detected

TABLE 3
DZUS FASTENERS SITE (1-52-033)
JUNE 2006 THROUGH MARCH 2015 SAMPLING EVENTS
SUMMARY OF TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-15B	MW-15B	MW-15B	MW-15B	MW-15B	MW-15B
Sample ID	Class GA	DMW-15B	DMW-15BF	DMW-15B	DMW-15BF	DMW-15B	DMW-15BF
Laboratory ID	Ground	L1807-24	L1808-20	AC75646-001	AC75646-002	AC83807-003	AC83807-004
Sample Date	Water	8/22/12	8/22/12	11/6/13	11/6/13	3/17/15	3/17/15
Filtered/Unfiltered	Criteria	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered
		conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Aluminum	NC	ND	ND	ND	ND	ND	ND
Antimony	3	ND	ND	ND	ND	ND	ND
Arsenic	25	ND	4.3 B	ND	ND	ND	ND
Barium	1,000	32.4 B	29.4 B	ND	ND	ND	ND
Beryllium	3	ND	ND	ND	ND	ND	ND
Cadmium	5	ND	ND	ND	ND	ND	ND
Calcium	NC	12,200 E	11,500	12,000	12,000	9,900	11,000
Chromium	50	ND	ND	ND	ND	ND	ND
Cobalt	NC	1.5 B	1.4 B	ND	ND	ND	ND
Copper	200	ND	18.1 B	ND	ND	ND	ND
Iron	300	1,510 E	48.4 B	3,300	ND	1,500	ND
Lead	25	ND	ND	ND	ND	11	ND
Magnesium	35,000	4,700	4,490	ND	ND	ND	ND
Manganese	300	189	174	170	140	94	ND
Mercury	0.7	ND	ND	ND	ND	ND	ND
Nickel	100	1.5 B	2.7 B	ND	ND	ND	ND
Potassium	NC	1,470	1,510	ND	ND	ND	ND
Selenium	10	ND	ND	ND	ND	ND	ND
Silver	50	ND	ND	ND	ND	ND	ND
Sodium	20,000	40,800 E	39,100	40,000	40,000	32,000	36,000
Thallium	0.5	ND	ND	ND	ND	ND	ND
Vanadium	NC	ND	ND	ND	ND	ND	ND
Zinc	2,000	12.1 B	23.7 B	ND	ND	ND	ND

BOLD/Italics - exceeds criterion

B - Estimated value (greater than MDL but less than RL)

N - Matrix spike recovery falls outside of the control limit

NC - No Criteria

NA - Not analyzed

E - Estimated due to matrix interference

* - Replicate RPDs were not within QC limits

ND - Not Detected

TABLE 3
DZUS FASTENERS SITE (1-52-033)
JUNE 2006 THROUGH MARCH 2015 SAMPLING EVENTS
SUMMARY OF TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-18	MW-18	MW-18	MW-18	MW-18	MW-18
Sample ID	Class GA	MW-18	DMW-18	DMW-18	DMW-18	DMW-18	DMW-18
Laboratory ID	Ground	E0773-06A	F1193-16A	G2114-06	J0429-18A	K0942-25	K0942-26
Sample Date	Water	6/8/06	8/23/07	11/11/08	3/9/10	5/25/11	5/25/11
Filtered/Unfiltered	Criteria	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Filtered
		conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Aluminum	NC	1,430	829	88.1 B	2,270	3,280	ND
Antimony	3	ND	ND	5.1 B	12.2 B	ND	ND
Arsenic	25	ND	ND U	ND	5.9 B	7.0 B	ND
Barium	1,000	168 B	71.3 B	166 B	283	109 B	13.4 B
Beryllium	3	ND	ND	ND	0.31 B	0.29 B	ND
Cadmium	5	3.0 B	1.2 B	9.8	18.1	1.3 B	ND
Calcium	NC	13,900	9,790	12,600	27,000	19,000	18,400
Chromium	50	2.2 B	0.63 B	ND	5 B	3.9 B	ND
Cobalt	NC	7.3 B	5.5 BE	2.0 B	11.6 B	9.2 B	ND
Copper	200	17.7 B	3.5 B	11.1 B	112	12.2 B	ND
Iron	300	1,150	1,320	114 B	4,620	2,890	ND
Lead	25	ND	1.9 B	ND	19.0	ND	ND
Magnesium	35,000	2,340	1,550	2,440	4,130	3,300	3,070
Manganese	300	6,270	4,490	2,870	10,100 *	3,450	ND
Mercury	0.7	ND	ND	ND	ND	ND	ND
Nickel	100	17.5 B	13.0 B	29.3 B	48.0 BE	15.7 B	ND
Potassium	NC	1,520	1,180	1,540	4,120 E	2,050 E	1,860 E
Selenium	10	ND	ND	ND	16.4 B	ND	ND
Silver	50	ND	1.5 B	ND	ND	ND	ND
Sodium	20,000	7,870	6,020	12,100	10,600	16,800	17,300
Thallium	0.5	26.5	ND	ND	64.5	ND	ND
Vanadium	NC	2.6 B	1.4 B	ND	5.0 B	3.9 B	ND
Zinc	2,000	235	89.0	265	366	192	22.2 B

BOLD/Italics - exceeds criterion

B - Estimated value (greater than MDL but less than RL)

N - Matrix spike recovery falls outside of the control limit

NC - No Criteria

NA - Not analyzed

E - Estimated due to matrix interference

* - Replicate RPDs were not within QC limits

ND - Not Detected

TABLE 3
DZUS FASTENERS SITE (1-52-033)
JUNE 2006 THROUGH MARCH 2015 SAMPLING EVENTS
SUMMARY OF TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-18	MW-18	MW-18	MW-18	MW-18	MW-18
Sample ID	Class GA	DMW-18	DMW-18F	DMW-18	DMW-18F	DMW-18	DMW-18F
Laboratory ID	Ground	L1807-18	L1808-28	AC75646-015	AC75646-016	AC83807-019	AC83807-020
Sample Date	Water	8/23/12	8/23/12	11/6/13	11/6/13	3/17/15	3/17/15
Filtered/Unfiltered	Criteria	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered
		conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Aluminum	NC	ND	ND	ND	ND	440	ND
Antimony	3	ND	ND	ND	ND	ND	ND
Arsenic	25	ND	ND	ND	ND	ND	ND
Barium	1,000	19.7 B	17.0 B	ND	ND	ND	ND
Beryllium	3	ND	ND	ND	ND	ND	ND
Cadmium	5	ND	ND	ND	ND	ND	ND
Calcium	NC	14,000	14,300	22,000	21,000	18,000	19,000
Chromium	50	0.75 B	ND	ND	ND	ND	ND
Cobalt	NC	ND	ND	ND	ND	ND	ND
Copper	200	ND	ND	ND	ND	ND	ND
Iron	300	35.3 B	ND	ND	ND	520	ND
Lead	25	ND	ND	ND	ND	ND	ND
Magnesium	35,000	2,360	2,410	ND	ND	ND	ND
Manganese	300	113	23.4 B	450	ND	720	ND
Mercury	0.7	ND	ND	ND	ND	ND	ND
Nickel	100	ND	ND	ND	ND	ND	ND
Potassium	NC	2,310 E	2,410	ND	ND	ND	ND
Selenium	10	ND	ND	ND	ND	ND	ND
Silver	50	ND	ND	ND	ND	ND	ND
Sodium	20,000	17,900	18,700	26,000	25,000	37,000	39,000
Thallium	0.5	ND	ND	ND	ND	ND	ND
Vanadium	NC	ND	ND	ND	ND	ND	ND
Zinc	2,000	ND	ND	ND	ND	ND	ND

BOLD/Italics - exceeds criterion

B - Estimated value (greater than MDL but less than RL)

N - Matrix spike recovery falls outside of the control limit

NC - No Criteria

NA - Not analyzed

E - Estimated due to matrix interference

* - Replicate RPDs were not within QC limits

ND - Not Detected

TABLE 3
DZUS FASTENERS SITE (1-52-033)
JUNE 2006 THROUGH MARCH 2015 SAMPLING EVENTS
SUMMARY OF TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-22A	MW-22A	MW-22A	MW-22A	MW-22A	MW-22A	
Sample ID	Class GA	MW-22A	DMW-22A	DMW-22A	DMW-22A	DMW-22A	DMW-22A	
Laboratory ID	Ground	E0773-11A	F1193-09A	G2114-09	J0429-19A	K0942-11	K0942-12	
Sample Date	Water	6/7/06	8/22/07	11/12/08	3/9/10	5/25/11	5/25/11	
Filtered/Unfiltered	Criteria	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Filtered	
		conc. Q	conc. Q					
Aluminum	NC	4,320	2,870	2,620	1,060	159 B	ND	
Antimony	3	1.7 B	5.2 B	ND	13.0 B	ND	ND	
Arsenic	25	16.0 B	3.8 B	7.2 B	15.4 B	7.5 B	4.5 B	
Barium	1,000	167 B	76.9 B	69.6 B	109 B	106 B	111 B	
Beryllium	3	0.15 B	ND	0.21 B	0.19 B	ND	ND	
Cadmium	5	38.9	22.1	13.5	13.7	6.8	ND	
Calcium	NC	52,100	37,500	55,700	104,000	114,000	96,400	
Chromium	50	18.0 B	12.8 B	13.0 B	8.8 B	2.8 B	0.76 B	
Cobalt	NC	2.2 B	5.2 BE	ND	1.4 B	ND	ND	
Copper	200	32.3	24.0 B	19.3 B	21.5 B	7.9 B	ND	
Iron	300	70,400	22,400	22,000	61,100	16,700	2,260	
Lead	25	8.6 B	13.1	11.3	12.4	ND	ND	
Magnesium	35,000	8,300	5,580	7,860	13,800	15,600	13,100	
Manganese	300	1,280	1,190	1,030	912 *	683	780	
Mercury	0.7	ND	ND	ND	0.094 B	ND	ND	
Nickel	100	6.0 B	3.7 B	2.6 B	4.7 BE	2.4 B	1.4 B	
Potassium	NC	4,560	3,530	3,980	3,430 E	4,520 E	5,120 E	
Selenium	10	8.7 B	ND	ND	24.3 B	ND	ND	
Silver	50	ND	ND	ND	ND	ND	ND	
Sodium	20,000	95,200	69,400	39,900	57,800	100,000	134,000	
Thallium	0.5	ND	2.8 B	ND	ND	ND	ND	
Vanadium	NC	17.4 B	9.2 B	7.0 B	6.3 B	3.1 B	ND	
Zinc	2,000	1,650	1,170	714	1,360	1,000	546	

BOLD/Italics - exceeds criterion

B - Estimated value (greater than MDL but less than RL)

N - Matrix spike recovery falls outside of the control limit

NC - No Criteria

NA - Not analyzed

E - Estimated due to matrix interference

* - Replicate RPDs were not within QC limits

ND - Not Detected

TABLE 3
DZUS FASTENERS SITE (1-52-033)
JUNE 2006 THROUGH MARCH 2015 SAMPLING EVENTS
SUMMARY OF TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-22A	MW-22A	MW-22A	MW-22A	MW-22A	MW-22A
Sample ID	Class GA	DMW-22A	DMW-22AF	DMW-22A	DMW-22AF	DMW-22A	DMW-22AF
Laboratory ID	Ground	L1807-17	L1808-27	AC75646-019	AC75646-020	AC83807-009	AC83807-010
Sample Date	Water	8/23/12	8/23/12	11/7/13	11/7/13	3/17/15	3/17/15
Filtered/Unfiltered	Criteria	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered
		conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Aluminum	NC	ND	ND	ND	ND	ND	ND
Antimony	3	ND	ND	ND	ND	ND	ND
Arsenic	25	ND	ND	ND	ND	ND	ND
Barium	1,000	36.1 B	37.8 B	ND	ND	ND	ND
Beryllium	3	ND	ND	ND	ND	ND	ND
Cadmium	5	ND	ND	ND	ND	ND	ND
Calcium	NC	27,600	28,200	33,000	30,000	45,000	51,000
Chromium	50	2.2 B	1.7 B	ND	ND	ND	ND
Cobalt	NC	ND	ND	ND	ND	ND	ND
Copper	200	ND	ND	ND	ND	ND	ND
Iron	300	2,700	2,690	2,800	2,100	2,100	640
Lead	25	ND	ND	ND	ND	ND	ND
Magnesium	35,000	4,060	4,210	ND	ND	7,200	8,200
Manganese	300	437	443	440	380	220	260
Mercury	0.7	ND	ND	ND	ND	ND	ND
Nickel	100	ND	ND	ND	ND	ND	ND
Potassium	NC	2,980 E	3,040	ND	ND	ND	ND
Selenium	10	ND	ND	ND	ND	ND	ND
Silver	50	ND	ND	ND	ND	ND	ND
Sodium	20,000	59,700	61,000	43,000	41,000	28,000	34,000
Thallium	0.5	ND	ND	ND	ND	ND	ND
Vanadium	NC	ND	ND	ND	ND	ND	ND
Zinc	2,000	16.9 B	16.1 B	ND	ND	280	290

BOLD/Italics - exceeds criterion

B - Estimated value (greater than MDL but less than RL)

N - Matrix spike recovery falls outside of the control limit

NC - No Criteria

NA - Not analyzed

E - Estimated due to matrix interference

* - Replicate RPDs were not within QC limits

ND - Not Detected

TABLE 3
DZUS FASTENERS SITE (1-52-033)
JUNE 2006 THROUGH MARCH 2015 SAMPLING EVENTS
SUMMARY OF TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-22B	MW-22B	MW-22B	MW-22B	MW-22B	MW-22B
Sample ID	Class GA	MW-22B	DMW-22B	DMW-22B	DMW-22B	DMW-22B	DMW-22B
Laboratory ID	Ground	E0773-12A	F1193-08A	G2114-11	J0429-20A	k0942-13	k0942-13
Sample Date	Water	6/7/06	8/22/07	11/12/08	3/9/10	5/25/11	5/25/11
Filtered/Unfiltered	Criteria	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Filtered
		conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Aluminum	NC	763 B	151 B	ND	56.3 B	ND	ND
Antimony	3	ND	4.7 B	ND	8.7 B	ND	ND
Arsenic	25	ND	ND	ND	ND	ND	ND
Barium	1,000	76.6 B	48.2 B	41.3 B	57.6 B	43.3 B	35.6 B
Beryllium	3	ND	ND	ND	0.039 B	ND	ND
Cadmium	5	29.0 B	4.4 B	1.2 B	1.7 B	ND	ND
Calcium	NC	12,800	20,400	27,200	21,400	19,500	19,700
Chromium	50	7.9 B	1.5 B	ND	1.6 B	0.66 B	ND
Cobalt	NC	17.4 B	3.9 BE	1.5 B	1.0 B	ND	ND
Copper	200	118 B	4.0 B	ND	ND	ND	ND
Iron	300	4,600	1,120	518	358	164 B	ND
Lead	25	8.6 B	3 B	2.4 B	3.3 B	ND	ND
Magnesium	35,000	2,660 B	3,130	5,090	3,510	3,230	3,300
Manganese	300	2,310	2,440	775	940 *	589	342
Mercury	0.7	ND	ND	ND	ND	ND	ND
Nickel	100	28.0 B	2.7 B	6.5 B	2.0 BE	0.85 B	ND
Potassium	NC	3,000 B	2,500	1,910	4,220 E	4,740 E	4,260 E
Selenium	10	ND	ND	ND	19.0 B	ND	ND
Silver	50	ND	4.2 B	ND	ND	ND	ND
Sodium	20,000	8,170 B	17,100	11,300	14,400	12,700	13,600
Thallium	0.5	20.1 B	3.5 B	ND	ND	ND	ND
Vanadium	NC	ND	0.49 B	ND	ND	ND	ND
Zinc	2,000	194 B	39.4 B	29.8 B	34.6 B	20.1 B	17.6 B

BOLD/Italics - exceeds criterion

B - Estimated value (greater than MDL but less than RL)

N - Matrix spike recovery falls outside of the control limit

NC - No Criteria

NA - Not analyzed

E - Estimated due to matrix interference

* - Replicate RPDs were not within QC limits

ND - Not Detected

TABLE 3
DZUS FASTENERS SITE (1-52-033)
JUNE 2006 THROUGH MARCH 2015 SAMPLING EVENTS
SUMMARY OF TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-22B	MW-22B	MW-22B	MW-22B	MW-22B	MW-22B	
Sample ID	Class GA	DMW-22B	DMW-22BF	DMW-22B	DMW-22BF	DMW-22B	DMW-22BF	
Laboratory ID	Ground	L1807-16	L1808-26	AC75646-029	AC75646-030	AC83807-007	AC83807-008	
Sample Date	Water	8/23/12	8/23/12	11/7/13	11/7/13	3/17/15	3/17/15	
Filtered/Unfiltered	Criteria	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered	
		conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	
Aluminum	NC	ND	ND	ND	ND	ND	ND	
Antimony	3	ND	ND	ND	ND	ND	ND	
Arsenic	25	ND	ND	ND	ND	ND	ND	
Barium	1,000	39.6 B	40.5 B	ND	ND	ND	ND	
Beryllium	3	ND	ND	ND	ND	ND	ND	
Cadmium	5	ND	ND	ND	ND	ND	ND	
Calcium	NC	22,400	22,500	26,000	27,000	27,000	31,000	
Chromium	50	ND	ND	ND	ND	ND	ND	
Cobalt	NC	ND	ND	ND	ND	ND	ND	
Copper	200	ND	ND	ND	ND	ND	ND	
Iron	300	110 B	ND	ND	ND	ND	ND	
Lead	25	ND	ND	ND	ND	ND	ND	
Magnesium	35,000	3,860	3,950	ND	ND	5,100	5,900	
Manganese	300	748	726	610	600	550	590	
Mercury	0.7	ND	ND	ND	ND	ND	ND	
Nickel	100	ND	ND	ND	ND	ND	ND	
Potassium	NC	4,470 E	4,270	ND	ND	ND	ND	
Selenium	10	ND	ND	ND	ND	ND	ND	
Silver	50	ND	ND	ND	ND	ND	ND	
Sodium	20,000	19,200	19,000	13,000	13,000	15,000	17,000	
Thallium	0.5	ND	ND	ND	ND	ND	ND	
Vanadium	NC	ND	ND	ND	ND	ND	ND	
Zinc	2,000	5.7 B	ND	ND	ND	ND	ND	

BOLD/Italics - exceeds criterion

B - Estimated value (greater than MDL but less than RL)

N - Matrix spike recovery falls outside of the control limit

NC - No Criteria

NA - Not analyzed

E - Estimated due to matrix interference

* - Replicate RPDs were not within QC limits

ND - Not Detected

TABLE 3
DZUS FASTENERS SITE (1-52-033)
JUNE 2006 THROUGH MARCH 2015 SAMPLING EVENTS
SUMMARY OF TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-23A	MW-23A	MW-23A	MW-23A	MW-23A	MW-23A	
Sample ID	Class GA	MW-23A	DMW-23A	DMW-23A	DMW-23A	DMW-23A	DMW-23A	
Laboratory ID	Ground	E0773-01A	F1193-12A	G2114-14	J0429-21A	K0942-15	K0942-16	
Sample Date	Water	6/7/06	8/22/07	11/12/08	3'10/10	5/25/11	5/25/11	
Filtered/Unfiltered	Criteria	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Filtered	
		conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	
Aluminum	NC	941	2,440	3,200	3,790	5,060	ND	
Antimony	3	1.8 B	5.8 B	ND	9.5 B	ND	ND	
Arsenic	25	2.0 B	4.1 B	5.8 B	7.9 B	7.4 B	ND	
Barium	1,000	87.5 B	51.2 B	40.1 B	47.8 B	47.4 B	34.6 B	
Beryllium	3	ND	ND	0.29 B	0.23 B	ND	ND	
Cadmium	5	110	702	1,080	704	924	9.5	
Calcium	NC	34,200	40,900	31,000	38,600	29,300	27,800	
Chromium	50	3.6 B	4.9 B	3.6 B	6.4 B	6.4 B	0.97 B	
Cobalt	NC	3.2 B	6.1 BE	ND	0.76 B	ND	ND	
Copper	200	33.2	35.9	47.6	137	190	ND	
Iron	300	10,300	29,700	13,100	11,500	15,200	2,030	
Lead	25	ND	6.6 B	9.5 B	11.2	5.6 B	ND	
Magnesium	35,000	6,660	6,280	9,020	8,010	5,160	5,100	
Manganese	300	1,100	612	1,390	1,410 *	1,600	1,480	
Mercury	0.7	0.065 B	ND	ND	0.12 B	0.035 B	ND	
Nickel	100	9.3 B	7.1 B	2.2 B	6.3 BE	3.7 B	1.2 B	
Potassium	NC	7,070	5,200	6,780	6,930 E	6,270 E	6,420 E	
Selenium	10	1.3 B	6.1 B	ND	13.5 B	ND	ND	
Silver	50	0.92 B	ND	ND	ND	ND	ND	
Sodium	20,000	60,200	32,400	37,800	64,600	67,900	70,800	
Thallium	0.5	9.3 B	ND	ND	11.3 B	ND	ND	
Vanadium	NC	5.5 B	12.6 B	20.5 B	11.4 B	16.4 B	ND	
Zinc	2,000	181	26.9 B	42.7 B	48.3 B	70.5	15.6 B	

BOLD/Italics - exceeds criterion

B - Estimated value (greater than MDL but less than RL)

N - Matrix spike recovery falls outside of the control limit

NC - No Criteria

NA - Not analyzed

E - Estimated due to matrix interference

* - Replicate RPDs were not within QC limits

ND - Not Detected

TABLE 3
DZUS FASTENERS SITE (1-52-033)
JUNE 2006 THROUGH MARCH 2015 SAMPLING EVENTS
SUMMARY OF TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-23A	MW-23A	MW-23A	MW-23A	MW-23A	MW-23A
Sample ID	Class GA	DMW-23A	DMW-23AF	DMW-23A	DMW-23AF	DMW-23A	DMW-23AF
Laboratory ID	Ground	L1807-28	L1808-24	AC75646-027	AC75646-028	AC83807-015	AC83807-016
Sample Date	Water	8/22/12	8/22/12	11/7/13	11/7/13	3/17/15	3/17/15
Filtered/Unfiltered	Criteria	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered
		conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Aluminum	NC	161 B	ND	ND	ND	ND	ND
Antimony	3	ND	ND	ND	ND	ND	ND
Arsenic	25	ND	ND	ND	ND	ND	ND
Barium	1,000	28.0 B	27.3 B	ND	ND	ND	ND
Beryllium	3	ND	ND	ND	ND	ND	ND
Cadmium	5	31.7	3.3 B	24.0	13.0	10.0	ND
Calcium	NC	26,700 E	26,400	20,000	20,000	41,000	40,000
Chromium	50	1.2 B	4.0 B	ND	ND	ND	ND
Cobalt	NC	ND	ND	ND	ND	ND	ND
Copper	200	6.7 B	ND	ND	ND	ND	ND
Iron	300	1,860 E	602	900	650	8,000	6,400
Lead	25	ND	ND	ND	ND	ND	ND
Magnesium	35,000	4,950	4,750	ND	ND	8,600	8,400
Manganese	300	1,110	1,170	980	1,000	780	820
Mercury	0.7	ND	ND	ND	ND	ND	ND
Nickel	100	ND	2.0 B	ND	ND	ND	ND
Potassium	NC	5,770	5,790	ND	ND	6,400	6,800
Selenium	10	ND	ND	ND	ND	ND	ND
Silver	50	ND	ND	ND	ND	ND	ND
Sodium	20,000	74,100 E	73,400	27,000	29,000	91,000	95,000
Thallium	0.5	ND	ND	ND	ND	ND	ND
Vanadium	NC	1.1 B	ND	ND	ND	ND	ND
Zinc	2,000	ND	5.9 B	ND	ND	ND	ND

BOLD/Italics - exceeds criterion

B - Estimated value (greater than MDL but less than RL)

N - Matrix spike recovery falls outside of the control limit

NC - No Criteria

NA - Not analyzed

E - Estimated due to matrix interference

* - Replicate RPDs were not within QC limits

ND - Not Detected

TABLE 3
DZUS FASTENERS SITE (1-52-033)
JUNE 2006 THROUGH MARCH 2015 SAMPLING EVENTS
SUMMARY OF TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-23B	MW-23B	MW-23B	MW-23B	MW-23B	MW-23B	
Sample ID	Class GA	MW-23B	DMW-23B	DMW-23B	DMW-23B	DMW-23B	DMW-23B	
Laboratory ID	Ground	E0773-02A	F1193-11A	G2114-15	J0429-22A	K0942-27	K0942-28	
Sample Date	Water	6/7/06	8/22/07	11/12/08	3/10/10	5/25/11	5/25/11	
Filtered/Unfiltered	Criteria	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Filtered	
		conc. Q	conc. Q					
Aluminum	NC	2,450	632	406	2,820	1,810	ND	
Antimony	3	3.2 B	ND	ND	6.2 B	ND	ND	
Arsenic	25	4.1 B	ND	ND	6.7 B	ND	ND	
Barium	1,000	215	86.4 B	64.6 B	77.4 B	64.8 B	150 B	
Beryllium	3	0.21 B	ND	0.13 B	0.3 B	ND	ND	
Cadmium	5	320	60.0	42.2	43.8	40.1	5.8	
Calcium	NC	21,500	25,100	15,700	24,400	24,800	21,700	
Chromium	50	74.9	13.9 B	4.3 B	61.6	12.6 B	8.5 B	
Cobalt	NC	4.8 B	2.4 BE	ND	3.5 B	1.7 B	0.91 B	
Copper	200	94.6	19.8 B	24.6 B	54.8	25.6 B	13.9 B	
Iron	300	8,220	2,140	1,270	7,870	5,200	36,100	
Lead	25	35.7	10.3	17.7	43.9	22.6	ND	
Magnesium	35,000	1,890	1,290	1,590	2,730	4,150	2,460	
Manganese	300	548	508	52.1	398 *	126	169	
Mercury	0.7	0.11 B	ND	ND	0.11 B	ND	ND	
Nickel	100	68.8	16.7 B	20.5 B	23.2 BE	14.8 B	10 B	
Potassium	NC	2,400	1,970	1,660	1,650 E	2,450 E	2,110 E	
Selenium	10	ND	8.6 B	ND	19.3 B	ND	ND	
Silver	50	ND	5.0 B	0.81 B	ND	ND	ND	
Sodium	20,000	2,390	3,870	2,200	84,400	18,900	18,500	
Thallium	0.5	3.1 B	ND	ND	6.1 B	ND	ND	
Vanadium	NC	17.7 B	9.0 B	5.9 B	12.1 B	12.9 B	ND	
Zinc	2,000	417	145	198	376	410	47 B	

BOLD/Italics - exceeds criterion

B - Estimated value (greater than MDL but less than RL)

N - Matrix spike recovery falls outside of the control limit

NC - No Criteria

NA - Not analyzed

E - Estimated due to matrix interference

* - Replicate RPDs were not within QC limits

ND - Not Detected

TABLE 3
DZUS FASTENERS SITE (1-52-033)
JUNE 2006 THROUGH MARCH 2015 SAMPLING EVENTS
SUMMARY OF TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-23B	MW-23B	MW-23B	MW-23B	MW-23B	MW-23B
Sample ID	Class GA	DMW-23B	DMW-23BF	DMW-23B	DMW-23BF	DMW-23B	DMW-23BF
Laboratory ID	Ground	L1807-26	L1808-22	AC75646-025	AC75646-026	AC83807-017	AC83807-018
Sample Date	Water	8/22/12	8/22/12	11/7/13	11/7/13	3/17/15	3/17/15
Filtered/Unfiltered	Criteria	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered
		conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Aluminum	NC	103 B	ND	1,100	ND	730	ND
Antimony	3	ND	ND	ND	ND	ND	ND
Arsenic	25	ND	ND	ND	ND	ND	ND
Barium	1,000	29.0 B	26.8 B	ND	ND	ND	ND
Beryllium	3	ND	ND	ND	ND	ND	ND
Cadmium	5	69.6	33.1	45.0	35.0	27.0	31.0
Calcium	NC	18,100 E	17,700	11,000	12,000	8,900	9,900
Chromium	50	10.7 B	7.8 B	<i>59.0</i>	ND	ND	ND
Cobalt	NC	ND	ND	ND	ND	ND	ND
Copper	200	4.1 B	ND	ND	ND	ND	ND
Iron	300	279 E	117 B	2,400	ND	1,600	ND
Lead	25	ND	ND	8.3	ND	5.6	ND
Magnesium	35,000	2,950	2,910	ND	ND	ND	ND
Manganese	300	138	135	52.0	ND	ND	ND
Mercury	0.7	ND	ND	ND	ND	ND	ND
Nickel	100	2.4 B	1.3 B	ND	ND	ND	ND
Potassium	NC	1,760	1,820	ND	ND	ND	ND
Selenium	10	ND	ND	ND	ND	ND	ND
Silver	50	ND	ND	ND	ND	ND	ND
Sodium	20,000	15,000 E	14,700	11,000	11,000	25,000	27,000
Thallium	0.5	ND	ND	ND	ND	ND	ND
Vanadium	NC	ND	ND	ND	ND	ND	ND
Zinc	2,000	17.7 B	ND	95.0	ND	61.0	ND

BOLD/Italics - exceeds criterion

B - Estimated value (greater than MDL but less than RL)

N - Matrix spike recovery falls outside of the control limit

NC - No Criteria

NA - Not analyzed

E - Estimated due to matrix interference

* - Replicate RPDs were not within QC limits

ND - Not Detected

Sample Location	NYSDEC	MW-17	MW-17	MW-17	MW-2	MW-2	MW-2	MW-3	MW-3	MW-3
Sample ID	Class GA	DMW-17	DMW-17F		DMW-2	DMW-2F		DMW-3	DMW-3F	
Laboratory ID	Ground	AC83807-021	AC83807-022		AC83807-027	AC83807-028		AC83807-031	AC83807-032	
Sample Date	Water	3/17/15	3/17/15		3/18/15	3/18/15		3/18/15	3/18/15	
Filtered/Unfiltered	Criteria	Unfiltered	Filtered	Percent	Unfiltered	Filtered	Percent	Unfiltered	Filtered	Percent
Metal		conc. Q	conc. Q	Dissolved	conc. Q	conc. Q	Dissolved	conc. Q	conc. Q	Dissolved
Aluminum	NC	ND	ND	NC	7,200	ND	NC	490	ND	NC
Antimony	3	ND	ND	NC	ND	ND	NC	ND	ND	NC
Arsenic	25	ND	ND	NC	21	ND	NC	ND	ND	NC
Barium	1,000	ND	ND	NC	65	ND	NC	ND	ND	NC
Beryllium	3	ND	ND	NC	ND	ND	NC	ND	ND	NC
Cadmium	5	ND	4.1	NC	15.0	2.6	17.3%	20.0	14.0	70.0%
Calcium	NC	37,000	41,000	110.8%	21,000	20,000	95.2%	9,300	9,300	100.0%
Chromium	50	ND	ND	NC	ND	ND	NC	ND	ND	NC
Cobalt	NC	ND	ND	NC	13.0	3.8	29.2%	ND	ND	NC
Copper	200	ND	ND	NC	ND	ND	NC	ND	ND	NC
Iron	300	880	ND	NC	98,000	4,200	4.3%	510	ND	NC
Lead	25	6.5	ND	NC	29.0	ND	NC	ND	ND	NC
Magnesium	35,000	11,000	12,000	109.1%	ND	ND	NC	ND	ND	NC
Manganese	300	520	ND	NC	410	240	58.5%	64	ND	NC
Mercury	0.7	ND	ND	NC	ND	ND	NC	ND	ND	NC
Nickel	100	ND	ND	NC	ND	ND	NC	ND	ND	NC
Potassium	NC	ND	ND	NC	ND	ND	NC	ND	ND	NC
Selenium	10	ND	ND	NC	ND	ND	NC	ND	ND	NC
Silver	50	ND	ND	NC	ND	ND	NC	ND	ND	NC
Sodium	20,000	7,100	8,400	118.3%	19,000	20,000	105.3%	18,000	18,000	100.0%
Thallium	0.5	ND	ND	NC	ND	ND	NC	ND	ND	NC
Vanadium	NC	ND	ND	NC	ND	ND	NC	ND	ND	NC
Zinc	2,000	ND	ND	NC	210	ND	NC	ND	ND	NC
Turbidity	50 NTU	14.9			28.8			42.7		

Notes: ND - Not Detected

NC - both filtered and unfiltered result was "not detected"

BOLD/Italics - exceeds criterion

Groundwater Contaminants of Concern


Sample Location	NYSDEC	MW-9	MW-9	MW-9	MW-9B	MW-9B	MW-9B	MW-13A	MW-13A	MW-13A
Sample ID	Class GA	DMW-9	DMW-9F		DMW-9B	DMW-9BF		DMW-13A	DMW-13AF	
Laboratory ID	Ground	AC83807-029	AC83807-030		AC83807-023	AC83807-024		AC83807-011	AC83807-012	
Sample Date	Water	3/18/15	3/18/15		3/18/15	3/18/15		3/17/15	3/17/15	
Filtered/Unfiltered	Criteria	Unfiltered	Filtered	Percent	Unfiltered	Filtered	Percent	Unfiltered	Filtered	Percent
Metal		conc. Q	conc. Q	Dissolved	conc. Q	conc. Q	Dissolved	conc.	conc.	Dissolved
Aluminum	NC	ND	ND	NC	ND	ND	NC	420	ND	NC
Antimony	3	ND	ND	NC	ND	ND	NC	ND	ND	NC
Arsenic	25	ND	ND	NC	ND	ND	NC	ND	ND	NC
Barium	1,000	ND	ND	NC	ND	ND	NC	ND	ND	NC
Beryllium	3	ND	ND	NC	ND	ND	NC	ND	ND	NC
Cadmium	5	ND	2.4	NC	ND	2.5	NC	9.6	9.1	94.8%
Calcium	NC	13,000	14,000	107.7%	6,400	6,700	104.7%	20,000	21,000	105.0%
Chromium	50	ND	ND	NC	ND	ND	NC	ND	ND	NC
Cobalt	NC	ND	ND	NC	ND	ND	NC	17.0	18.0	105.9%
Copper	200	ND	ND	NC	ND	ND	NC	ND	ND	NC
Iron	300	<i>550</i>	ND	NC	ND	ND	NC	8,600	6,200	72.1%
Lead	25	ND	ND	NC	ND	ND	NC	ND	25.0	NC
Magnesium	35,000	ND	ND	NC	ND	ND	NC	ND	ND	NC
Manganese	300	ND	ND	NC	44	ND	NC	1,100	1,200	109.1%
Mercury	0.7	ND	ND	NC	ND	ND	NC	ND	ND	NC
Nickel	100	ND	ND	NC	ND	ND	NC	ND	ND	NC
Potassium	NC	ND	ND	NC	ND	ND	NC	ND	ND	NC
Selenium	10	ND	ND	NC	ND	ND	NC	ND	ND	NC
Silver	50	ND	ND	NC	ND	ND	NC	ND	ND	NC
Sodium	20,000	18,000	21,000	116.7%	13,000	14,000	107.7%	43,000	47,000	109.3%
Thallium	0.5	ND	ND	NC	ND	ND	NC	ND	ND	NC
Vanadium	NC	ND	ND	NC	ND	ND	NC	ND	ND	NC
Zinc	2,000	ND	ND	NC	ND	ND	NC	ND	ND	NC
Turbidity	50 NTU	0.5			2.7			71		

Notes: ND - Not Detected

NC - both filtered and unfiltered result was "not detected"

BOLD/Italics - exceeds criterion

Groundwater Contaminants of Concern

Sample Location	NYSDEC	MW-13B	MW-13B	MW-13B	MW-15A	MW-15A	MW-15A	MW-15B	MW-15B	MW-15B
Sample ID	Class GA	DMW-13B	DMW-13BF		DMW-15A	DMW-15AF		DMW-15B	DMW-15BF	
Laboratory ID	Ground	AC83807-013	AC83807-014		AC83807-001	AC83807-002		AC83807-003	AC83807-004	
Sample Date	Water	3/17/15	3/17/15		3/17/15	3/17/15		3/17/15	3/17/15	
Filtered/Unfiltered	Criteria	Unfiltered	Filtered	Percent	Unfiltered	Filtered	Percent	Unfiltered	Filtered	Percent
Metal		conc. Q	conc. Q	Dissolved	conc. Q	conc. Q	Dissolved	conc. Q	conc. Q	Dissolved
Aluminum	NC	1,000	ND	NC	820	ND	NC	ND	ND	NC
Antimony	3	ND	ND	NC	ND	ND	NC	ND	ND	NC
Arsenic	25	ND	ND	NC	ND	ND	NC	ND	ND	NC
Barium	1,000	ND	ND	NC	ND	ND	NC	ND	ND	NC
Beryllium	3	ND	ND	NC	ND	ND	NC	ND	ND	NC
Cadmium	5	4.0	ND	NC	17.0	8.2	48.2%	ND	ND	NC
Calcium	NC	12,000	13,000	108.3%	12,000	14,000	116.7%	9,900	11,000	111.1%
Chromium	50	ND	ND	NC	ND	ND	NC	ND	ND	NC
Cobalt	NC	3.0	ND	NC	ND	ND	NC	ND	ND	NC
Copper	200	ND	ND	NC	ND	ND	NC	ND	ND	NC
Iron	300	2,100	ND	NC	1,100	ND	NC	1,500	ND	NC
Lead	25	6.3	ND	NC	6.3	ND	NC	11.0	ND	NC
Magnesium	35,000	ND	ND	NC	ND	ND	NC	ND	ND	NC
Manganese	300	780	ND	NC	150	ND	NC	94.0	ND	NC
Mercury	0.7	ND	ND	NC	ND	ND	NC	ND	ND	NC
Nickel	100	ND	ND	NC	ND	ND	NC	ND	ND	NC
Potassium	NC	ND	ND	NC	ND	ND	NC	ND	ND	NC
Selenium	10	ND	ND	NC	ND	ND	NC	ND	ND	NC
Silver	50	ND	ND	NC	ND	ND	NC	ND	ND	NC
Sodium	20,000	12,000	13,000	108.3%	20,000	23,000	115.0%	32,000	36,000	112.5%
Thallium	0.5	ND	ND	NC	ND	ND	NC	ND	ND	NC
Vanadium	NC	ND	ND	NC	ND	ND	NC	ND	ND	NC
Zinc	2,000	ND	ND	NC	ND	ND	NC	ND	ND	NC
Turbidity	50 NTU	48.8			31.7			4.4		

Notes: ND - Not Detected

NC - both filtered and unfiltered result was "not detected"

BOLD/Italics - exceeds criterion

Sample Location	NYSDEC	MW-18	MW-18	MW-18	MW-22A	MW-22A	MW-22A	MW-22B	MW-22B	MW-22B
Sample ID	Class GA	DMW-18	DMW-18F		DMW-22A	DMW-22AF		DMW-22B	DMW-22BF	
Laboratory ID	Ground	AC83807-019	AC83807-020		AC83807-009	AC83807-010		AC83807-007	AC83807-008	
Sample Date	Water	3/17/15	3/17/15		3/17/15	3/17/15		3/17/15	3/17/15	
Filtered/Unfiltered	Criteria	Unfiltered	Filtered	Percent	Unfiltered	Filtered	Percent	Unfiltered	Filtered	Percent
Metal		conc. Q	conc. Q	Dissolved	conc. Q	conc. Q	Dissolved	conc. Q	conc. Q	Dissolved
Aluminum	NC	440	ND	NC	ND	ND	NC	ND	ND	NC
Antimony	3	ND	ND	NC	ND	ND	NC	ND	ND	NC
Arsenic	25	ND	ND	NC	ND	ND	NC	ND	ND	NC
Barium	1,000	ND	ND	NC	ND	ND	NC	ND	ND	NC
Beryllium	3	ND	ND	NC	ND	ND	NC	ND	ND	NC
Cadmium	5	ND	ND	NC	ND	ND	NC	ND	ND	NC
Calcium	NC	18,000	19,000	105.6%	45,000	51,000	113.3%	27,000	31,000	114.8%
Chromium	50	ND	ND	NC	ND	ND	NC	ND	ND	NC
Cobalt	NC	ND	ND	NC	ND	ND	NC	ND	ND	NC
Copper	200	ND	ND	NC	ND	ND	NC	ND	ND	NC
Iron	300	520	ND	NC	2,100	640	30.5%	ND	ND	NC
Lead	25	ND	ND	NC	ND	ND	NC	ND	ND	NC
Magnesium	35,000	ND	ND	NC	7,200	8,200	113.9%	5,100	5,900	115.7%
Manganese	300	720	ND	NC	220	260	118.2%	550	590	107.3%
Mercury	0.7	ND	ND	NC	ND	ND	NC	ND	ND	NC
Nickel	100	ND	ND	NC	ND	ND	NC	ND	ND	NC
Potassium	NC	ND	ND	NC	ND	ND	NC	ND	ND	NC
Selenium	10	ND	ND	NC	ND	ND	NC	ND	ND	NC
Silver	50	ND	ND	NC	ND	ND	NC	ND	ND	NC
Sodium	20,000	37,000	39,000	105.4%	28,000	34,000	121.4%	15,000	17,000	113.3%
Thallium	0.5	ND	ND	NC	ND	ND	NC	ND	ND	NC
Vanadium	NC	ND	ND	NC	ND	ND	NC	ND	ND	NC
Zinc	2,000	ND	ND	NC	280	290	103.6%	ND	ND	NC
Turbidity	50 NTU	22.1			21.7			0.7		

Notes: ND - Not Detected

NC - both filtered and unfiltered result was "not detected"

BOLD/Italics - exceeds criterion

Groundwater Contaminants of Concern

Sample Location NYSDEC MW-23A MW-23A MW-23A MW-23B MW-23B MW-23B Sample ID Class GA DMW-23A DMW-23AF DMW-23B DMW-23BF Laboratory ID Ground AC83807-018 AC83807-015 AC83807-016 AC83807-017 3/17/15 3/17/15 Sample Date Water 3/17/15 3/17/15 Filtered/Unfiltered Criteria Unfiltered Filtered Percent Unfiltered Filtered Percent Metal conc. Q Dissolved conc. Q conc. Q Dissolved conc. Q NC NC Aluminum ND ND NC 730 ND Antimony 3 ND NC NC ND ND ND Arsenic 25 ND NC ND NC ND ND Barium 1,000 ND ND NC ND ND NC Beryllium 3 ND ND NC ND ND NC 5 Cadmium 10.0 ND NC 27.0 31.0 114.8% Calcium NC 41.000 40.000 97.6% 8.900 9.900 111.2% Chromium 50 ND ND NC ND ND NC Cobalt NC NC ND ND NC ND ND Copper 200 ND ND NC ND ND NC Iron 300 6.400 80.0% ND NC 8,000 1.600 Lead 25 ND ND NC 5.6 ND NC Magnesium 97.7% ND NC 35.000 8.600 8.400 ND NC Manganese 300 780 820 105.1% ND ND Mercury 0.7 ND ND NC ND ND NC Nickel 100 ND ND NC ND ND NC Potassium NC NC 6.400 6.800 106.3% ND ND Selenium NC 10 ND ND NC ND ND Silver 50 NC NC ND ND ND ND Sodium 27,000 20,000 91,000 95.000 104.4% 25,000 108.0% Thallium 0.5 ND ND NC ND ND NC Vanadium NC ND ND NC ND ND NC Zinc 2.000 ND ND NC ND NC 61.0 Turbidity 50 NTU 8.2 47.3

Notes: ND - Not Detected

NC - both filtered and unfiltered result was "not detected"

BOLD/Italics - exceeds criterion

Groundwater Contaminants of Concern

Sample	NYSDEC	Lake	Lake	Lake	Lake	Lake	Lake	Lake	Lake
Location	Class A	Capri	Capri	Capri	Capri	Capri	Capri	Capri	Capri
Sample ID	Surface	SW-1	SW-1	SW-1	SW-1	SW-1	SW-1	SW-1	SW-1
Laboratory ID	Water	E0868-01A	F1193-20A	G2136-11	J0376-01A	K0911-08	L1949-01	AC75648-158	AC84282-012
Sample Date	Criteria	6/21/06	8/23/07	11/14/08	3/4/10	5/22/11	09/17/12	11/8/13	4/11/15
		conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Aluminum	NC	31.9 B	40.1 B	ND	29.6 B	ND	ND	ND	ND
Antimony	3	ND	ND	6.0 B	ND	ND	ND	ND	ND
Arsenic	50	ND	ND	ND	ND	ND	ND	0.56 JB	ND
Barium	1,000	13.2 B	23.1 B	31.8 B	22.4 B	13.6 B	20.8 B	ND	ND
Beryllium	3	ND	ND	ND	ND	ND U	ND	ND	ND
Cadmium	5	1.1 B	2.3 B	1.5 B	2.6 B	1.6 B	ND	1.5 J	3.4
Calcium	NC	15,100	14,100	14,300	15,300	13,900	14,900	16,000	15,000
Chromium	50	0.6 B	0.95 B	ND	0.52 B	1.3 B	ND	ND	ND
Cobalt	NC	0.94 B	1.4 BE	ND	0.76 B	0.77 B	ND	0.80 J	ND
Copper	200	8.9 B	3.1 B	ND	ND	ND	ND	ND	ND
Iron	300	691	738	598	387	416	172 B	1,100	370
Lead	50	ND	2.1 B	ND	ND	ND	ND	3.2	ND
Magnesium	35,000	3,500	2,860	3,570	3,420	2,960	3,420	ND	ND
Manganese	300	1,050	862	1,610	996	1,000	552	1,700	760
Mercury	0.7	ND	ND	ND	ND	ND	ND	ND	ND
Nickel	100	1.3 B	0.6 B	ND	1.6 B	ND	ND	ND	ND
Potassium	NC	2,000	1,930	2,250	2,070	2,040	2,300	ND	ND
Selenium	10	ND	6.0 B	ND	ND	ND	ND	ND	ND
Silver	50	1.8 B	2.8 B	0.98 B	ND	ND	ND	ND	ND
Sodium	20,000	18,500	15,800	19,000	22,500	18,700	24,600	25,000	24,000
Thallium	0.5	ND	ND	ND	ND	ND	ND	ND	ND
Vanadium	NC	0.78 B	0.79 B	ND	2.6 B	ND	ND	ND	ND
Zinc	2,000	22.4 B	22.8 B	22.3 B	38 B	22.3 B	10.1 B	ND	ND

Notes: All values in µg/L

E - Estimated due to matrix interference

BOLD/Italics - exceeds criterion

B - Estimated value (greater than MDL but less than RL)

NC - No Criteria

ND - Not Detected

^{* -} Replicate RPDs were not within QC limits

Sample	NYSDEC	Lake	Lake	Lake	Lake	Lake	Lake	Lake	Lake
Location	Class A	Capri	Capri	Capri	Capri	Capri	Capri	Capri	Capri
Sample ID	Surface	SW-2	SW-2	SW-2	SW-2	SW-2	SW-2	SW-2	SW-2
Laboratory ID	Water	E0868-03A	F1194-02A	G2136-09	J0376-02A	K0911-09	L1949-02	AC75648-159	AC84282-013
Sample Date	Criteria	6/21/06	8/23/07	11/14/08	3/4/10	5/22/11	09/17/12	11/8/13	4/11/15
		conc. Q	conc.	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Aluminum	NC	16.8 B	98.4 B	ND	33.2 B	ND	ND	ND	ND
Antimony	3	ND	ND	ND	5.7 B	ND	ND	0.58 J	ND
Arsenic	50	ND	ND	ND	ND	ND	ND	1.1 JB	ND
Barium	1,000	12.2 B	24.3 B	32.4 B	24.2 B	12.9 B	20.2 B	ND	ND
Beryllium	3	ND	ND	ND	ND	ND	ND	0.33 J	ND
Cadmium	5	1.0 B	2.1 B	2.0 B	2.8 B	1.7 B	ND	0.82 J	2.8
Calcium	NC	14,900	13,300	14,300	16,100	13,900	14,700	15,000	15,000
Chromium	50	0.52 B	1.2 B	ND	0.86 B	0.72 B	ND	ND	ND
Cobalt	NC	0.92 B	1 B	ND	1 B	ND	ND	0.97 J	ND
Copper	200	ND	4.4 B	ND	6.2 B	ND	ND	ND	ND
Iron	300	649	819	675	478	508	176 B	680	510
Lead	50	ND	3.1 B	2.4 B	ND	ND	ND	1.5 J	ND
Magnesium	35,000	3,490	2,940	3,530	3,700	2,940	3,360	ND	ND
Manganese	300	1,010	819 E	1,560	968	1,080	564	1,300	840
Mercury	0.7	ND	ND	ND	ND	ND	ND	ND	ND
Nickel	100	1.1 B	0.81 B	ND	2.4 B	ND	ND	ND	ND
Potassium	NC	1,990	1,990	2,320	2,080	1,990	2,330	ND	ND
Selenium	10	ND	ND	ND	ND	ND	ND	ND	ND
Silver	50	1.6 B	3.1 B	ND	ND	ND	ND	ND	ND
Sodium	20,000	18,100	16,200 E	19,500	22,000	18,600	23,800	21,000	24,000
Thallium	0.5	ND	ND	ND	7.2 B	ND	ND	0.74 J	ND
Vanadium	NC	ND	0.88 B	1.1 B	3.3 B	ND	ND	ND	ND
Zinc	2,000	15.6 B	27.4 B	21 B	34.5 B	20.3 B	5.3 B	ND	ND

Notes: All values in µg/L

E - Estimated due to matrix interference

* - Replicate RPDs were not within QC limits

BOLD/Italics - exceeds criterion

B - Estimated value (greater than MDL but less than RL)

NC - No Criteria

ND - Not Detected

Sample	NYSDEC	Lake	Lake	Lake	Lake	Lake	Lake	Lake	Lake
Location	Class A	Capri	Capri	Capri	Capri	Capri	Capri	Capri	Capri
Sample ID	Surface	SW-3	SW-3	SW-3	SW-3	SW-3	SW-3	SW-3	SW-3
Laboratory ID	Water	E0868-05A	F1194-04A	G2136-13	J0376-03A	K0911-10	L1949-03	AC75648-165	AC84282-014
Sample Date	Criteria	6/21/06	8/23/07	11/14/08	3/4/10	5/22/11	09/17/12	11/8/13	4/11/15
		conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Aluminum	NC	69.5 B	37 U	ND	27 B	ND	ND	ND	ND
Antimony	3	ND	ND	ND	7.2 B	ND	ND	ND	ND
Arsenic	50	ND	ND	ND	ND	ND	ND	0.62 JB	ND
Barium	1,000	7.9 B	12.6 B	38.6 B	19.6 B	10.1 B	17.2 B	ND	ND
Beryllium	3	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	5	1.9 B	0.32 B	0.97 B	2.8 B	1.4 B	ND	1.7 JB	ND
Calcium	NC	15,200	13,100	14,000	15,000	13,900	14,500	16,000	15,000
Chromium	50	0.58 B	0.7 B	ND	0.59 B	0.67 B	ND	ND	ND
Cobalt	NC	0.72 B	1.0 B	ND	ND	ND	ND	2.0	ND
Copper	200	ND	3.9 B	ND	ND	ND	ND	ND	ND
Iron	300	<i>788</i>	280	772	332	311	144 B	590	ND
Lead	50	0.92 B	ND	ND	ND	ND	ND	3.5	ND
Magnesium	35,000	3,540	2,990	3,440	3,380	3,030	3,310	ND	ND
Manganese	300	882	73.9 E	1,790	911	990	355	940	640
Mercury	0.7	ND	ND	ND	ND	ND	ND	ND	ND
Nickel	100	0.96 B	ND	ND	1.3 B	ND	ND	ND	ND
Potassium	NC	2,000	2,020	2,290	2,000	2,000	2,210	ND	ND
Selenium	10	ND	ND	ND	ND	ND	ND	ND	ND
Silver	50	1.3 B	3.4 B	0.64 B	ND	ND	ND	ND	ND
Sodium	20,000	18,300	16,800 E	17,700	23,300	18,800	23,500	23,000	23,000
Thallium	0.5	ND	ND	ND	5.9 B	ND	ND	ND	ND
Vanadium	NC	0.7 B	0.42 B	ND	2.8 B	ND	ND	ND	ND
Zinc	2,000	21.5 B	14 B	16.4 B	33.4 B	18.9 B	ND	ND	ND

Notes: All values in µg/L

E - Estimated due to matrix interference

* - Replicate RPDs were not within QC limits

BOLD/Italics - exceeds criterion

B - Estimated value (greater than MDL but less than RL)

NC - No Criteria

ND - Not Detected

Sample	NYSDEC	Lake	Lake	Lake	Lake	Lake	Lake	Lake	Lake
Location	Class A	Capri	Capri	Capri	Capri	Capri	Capri	Capri	Capri
Sample ID	Surface	SW-4	SW-4	SW-4	SW-4	SW-4	SW-4	SW-4	SW-4
Laboratory ID	Water	E0868-07A	F1194-06A	G2136-15	J0376-04A	K0911-11	L1949-04	AC75648-164	AC84282-015
Sample Date	Criteria	6/21/06	8/23/07	11/14/08	3/4/10	5/22/11	09/17/12	11/8/13	4/11/15
		conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Aluminum	NC	ND	ND	ND	27.4 B	ND	ND	ND	ND
Antimony	3	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic	50	ND	ND	ND	ND	ND	ND	0.50 JB	ND
Barium	1,000	5.7 B	14 B	31.9 B	20.2 B	9.8 B	19.6 B	ND	ND
Beryllium	3	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	5	0.89 B	0.77 B	0.63 B	2.6 B	1.4 B	ND	0.93 J	ND
Calcium	NC	14,600	12,900	14,000	15,300	13,700	13,900	15,000	13,000
Chromium	50	ND	0.88 B	ND	0.51 B	0.75 B	ND	ND	ND
Cobalt	NC	0.37 B	1.2 B	ND	ND	ND	ND	0.44 J	3.1
Copper	200	11.7 B	4.9 B	ND	ND	ND	ND	ND	ND
Iron	300	610	609	741	344	322	152 B	450	390
Lead	50	ND	2.2 B	ND	ND	ND	ND	2.4 J	ND
Magnesium	35,000	3,510	2,950	3,490	3,420	2,980	3,190	ND	ND
Manganese	300	<i>7</i> 86	135 E	1,630	943	918	463	910	550
Mercury	0.7	ND	ND	ND	ND	ND	ND	ND	ND
Nickel	100	0.6 B	ND	ND	0.88 B	ND	ND	ND	ND
Potassium	NC	1,950	2,040	2,310	1,980	1,960	2,150	ND	ND
Selenium	10	ND	ND	ND	ND	ND	ND	ND	ND
Silver	50	ND	2.8 B	ND	ND	ND	ND	ND	ND
Sodium	20,000	18,100	16,600 E	17,800	22,900	18,700	23,900	22,000	17,000
Thallium	0.5	ND	ND	ND	ND	ND	ND	ND	2.0
Vanadium	NC	ND	ND	ND	2 B	ND	ND	ND	ND
Zinc	2,000	20.2 B	18 B	9.7 B	31.9 B	18.9 B	5.3 B	ND	ND

Notes: All values in μg/L

E - Estimated due to matrix interference

* - Replicate RPDs were not within QC limits

BOLD/Italics - exceeds criterion

B - Estimated value (greater than MDL but less than RL)

NC - No Criteria

ND - Not Detected

Sample	NYSDEC	Willetts	Willetts	Willetts	Willetts	Willetts	Willetts	Willetts	Willetts
Location	Class A	Creek	Creek	Creek	Creek	Creek	Creek	Creek	Creek
Sample ID	Surface	SW-5	SW-5	SW-5	SW-5	SW-5	SW-5	SW-5	SW-5
Laboratory ID	Water	E0868-09A	F1193-18A	G2114-20	J0376-05A	K0911-12	L1949-05	AC75648-163	AC84282-003
Sample Date	Criteria	6/21/06	8/23/07	11/12/08	3/4/10	5/22/11	09/18/12	11/8/13	4/11/15
		conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Aluminum	NC	15.3 B	ND	ND	79.3 B	305	ND	1,200	ND
Antimony	3	1.5 B	4.4 B	ND	ND	ND	ND	0.54 J	ND
Arsenic	50	ND	ND	ND	5.2 B	ND	ND	3.7 B	ND
Barium	1,000	36.9 B	36.4 B	26.2 B	24.6 B	40.7 B	31.4 B	71.0	ND
Beryllium	3	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	5	5.7	5.6	3.0 B	5.1	8.8	4.1 B	15.0	6.9
Calcium	NC	14,400	16,100	12,500	17,800	19,200	15,200	12,000	15,000
Chromium	50	ND	0.39 B	ND	0.99 B	2.6 B	ND	ND	ND
Cobalt	NC	0.82 B	1.9 BE	ND	ND	1.8 B	ND	5.4	ND
Copper	200	ND	1.7 B	ND	5.6 B	11.3 B	3.8 B	ND	ND
Iron	300	632	599	1,060	959	4,080	690	14,000	460
Lead	50	ND	ND	ND	ND	10.2	ND	38.0	ND
Magnesium	35,000	3,550	3,420	3,100	3,960	4,020	3,510	ND	ND
Manganese	300	1,420	1,110	956	450	923	519	3,000	280
Mercury	0.7	ND	ND	ND	ND	ND	ND	0.16 J	ND
Nickel	100	0.98 B	0.85 B	ND	1.1 B	1.4 B	ND	ND	ND
Potassium	NC	2,080	2,040	1,780	2,070	2,340	2,240	ND	ND
Selenium	10	ND	ND	ND	ND	ND	ND	ND	ND
Silver	50	ND	3.1 B	ND	ND	ND	ND	ND	ND
Sodium	20,000	21,100	21,800	18,100	20,300	26,900	28,100	22,000	24,000
Thallium	0.5	ND	ND	ND	ND	ND	ND	ND	ND
Vanadium	NC	ND	ND	0.99 B	12.1 B	6.9 B	ND	ND	ND
Zinc	2,000	22 B	21.2 B	10.4 B	38.5 B	98.7	15.9 B	78.0	ND

Notes: All values in μg/L

E - Estimated due to matrix interference

* - Replicate RPDs were not within QC limits

BOLD/Italics - exceeds criterion

B - Estimated value (greater than MDL but less than RL)

NC - No Criteria

ND - Not Detected

Sample	NYSDEC	Willetts	Willetts	Willetts	Willetts	Willetts	Willetts	Willetts	Willetts	Lake Capri
Location	Class A	Creek	Creek	Creek	Creek	Creek	Creek	Creek	Creek	Cove
Sample ID	Surface	SW-6	SW-6	SW-6	SW-6	SW-6	SW-6	SW-6	SW-6	SC-4
Laboratory ID	Water	E0868-11A	F1194-08A	G2114-16	J0376-06	K0911-13	L1949-06		AC84282-004	AC84282-005
Sample Date	Criteria	6/21/06	8/23/07	11/12/08	3/4/10	5/22/11	09/17/12	11/8/13	4/11/15	4/11/15
		conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Aluminum	NC	40.5 B	ND	190 B	63.9 B	103 B	84.4 B		ND	ND
Antimony	3	ND	8.0 B	ND	ND	ND	ND	creekbed	ND	ND
Arsenic	50	ND	ND	ND	ND	ND	ND	was dry	ND	ND
Barium	1,000	35.5 B	40.6 B	37.7 B	22.8 B	27.8 B	23.6 B	at the	ND	ND
Beryllium	3	ND	ND	ND	ND	ND	ND	time of	ND	ND
Cadmium	5	0.55 B	2.8 B	75.4	ND	ND	ND	sampling	ND	ND
Calcium	NC	26,700	27,200	20,100	19,200	25,100	21,400		21,000	15,000
Chromium	50	0.99 B	0.88 B	7.2 B	1.5 B	0.73 B	1.7 B		ND	ND
Cobalt	NC	3.1 B	2.8 B	ND	ND	ND	ND		ND	ND
Copper	200	ND	2.8 B	ND	ND	ND	ND		ND	ND
Iron	300	5,400	2,170	4,010	639	2,280	6,840		2,000	ND
Lead	50	ND	2.5 B	9.8 B	ND	ND	ND		ND	ND
Magnesium	35,000	5,130	5,290	4,080	4,320	4,960	4,860		ND	ND
Manganese	300	2,610	1,510 E	1,040	406	869	1,160		550	640
Mercury	0.7	ND	ND	ND	ND	ND	ND		ND	ND
Nickel	100	1.4 B	1.5 B	ND	1.8 B	ND	0.91 B		ND	ND
Potassium	NC	2,230	2,480	2,830	2,250	2,810	2,460		ND	ND
Selenium	10	ND	ND	ND	10.5 B	ND	ND		ND	ND
Silver	50	ND	5.9 B	ND	ND	ND	ND		ND	ND
Sodium	20,000	29,200	33,600 E	26,000	20,500	33,800	32,100		28,000	23,000
Thallium	0.5	ND	ND	ND	ND	ND	ND		ND	ND
Vanadium	NC	1.1 B	0.63 B	1.6 B	1.6 B	ND	ND		ND	ND
Zinc	2,000	35.6 B	32.2 B	48.2 B	43.3 B	35.8 B	21.3 B		ND	ND

Notes: All values in μg/L

E - Estimated due to matrix interference

* - Replicate RPDs were not within QC limits

BOLD/Italics - exceeds criterion

B - Estimated value (greater than MDL but less than RL)

NC - No Criteria

ND - Not Detected

Sample	NYS	DEC	Lake	Lake	Lake	Lake	Lake	Lake	Lake	Lake
Location	Tech	nical	Capri	Capri	Capri	Capri	Capri	Capri	Capri	Capri
Sample ID	Guida	nce for	SED-1	SED-1	SED-1	SED-1	SED-1	SED-1	SED-1	SED-1
Laboratory ID	Sedimen	t Criteria	E0868-02A	F1193-19A	G2136-10	J0376-09A	K0911-01	L1949-09	AC75648-012	AC84282-006
Sample Date	Lowest	Highest	6/21/06	8/23/07	11/14/08	3/4/10	5/22/11	9/17/12	11/8/13	4/11/15
	Effect	Effect	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Aluminum	NC	NC	5,020	895	7630 *	6,730 E	9,620	10,800	4,200	2,600
Antimony	2.0	25	0.7 B	0.41 B	2.2 BN	6.4	ND	ND	ND	ND
Arsenic	6.0	33	7.9	1.5	8.7	16.1	15.2 *	18.1	ND	5.6
Barium	NC	NC	81.2	31.9	67.7 B*E	175	445	203	73.0	39.0
Beryllium	NC	NC	0.5 B	0.074 B	0.64 B	0.75 BE	0.87 B	0.34 B	ND	ND
Cadmium	0.6	9	47.8	11.6	61.4 N*E	69.2	<i>81.2</i> *	89.8	63.0	26.0
Calcium	NC	NC	2,540	646	3,140 *	5,180 *	7,440 *	3,340	ND	ND
Chromium	26	110	20.7	2.8	27.1 E	39.1 *	<i>50.0</i> *	57.4	ND	ND
Cobalt	NC	NC	7.6	3.7	20.2 E	20.9	29.4 E	19.7 B	ND	ND
Copper	16	110	38.6	86.3	65.7	127 *	121 *	144	61.0	220
Iron	20,000	20,000	10,300	3,880	19,700 E	36,000	<i>44,600</i> *	26,700	8,200	8,600
Lead	31	110	170	19.3	176 N*E	225	226 N*	289	110	72
Magnesium	NC	NC	1,300	217	1,260 *E	1,770	2,100 *E	2,170	ND	ND
Manganese	460	1,100	1,290	1,200	181 *	2,250	22,600 *	3,620	3,600	310
Mercury	0.15	1.3	0.21	0.0071 B	0.34	0.38	0.33 B	0.52	ND	ND
Nickel	16	50	11.4	3.0	19.4	24.1 E	24.1 *	27.3	ND	ND
Potassium	NC	NC	514	91.9	465 *	429	748	660	ND	ND
Selenium	NC	NC	1.6 B	0.64 B	ND	5.0 B	ND	6.1 B	ND	ND
Silver	1.0	2.2	ND	ND	ND	ND	2.7 B	ND	ND	ND
Sodium	NC	NC	117	44.2 B	136 B	339	433	388 B	ND	ND
Thallium	NC	NC	5.8	ND	ND	12.7	3.8 B	8.6 B	ND	ND
Vanadium	NC	NC	29.4	5.1	39.9 E	78.7 E	99.2	90.5	ND	ND
Zinc	120	270	215	71.6	<i>445</i> *E	493 *	572 *	642	210	140

Notes: B - Estimated value (greater than MDL but less than RL)

BOLD/Italics - exceeds lowest effects criterion

E - Replicate RPDs were not within QC limits

N - Spike recoveries were not within QC limts

All values in mg/kg

NC - No Criteria ND - Not Detected

^{* -} Percent recovery for duplicates were not within QC limits

Sample	NYS	DEC	Lake	Lake	Lake	Lake	Lake	Lake	Lake	Lake
Location	Tech	nical	Capri	Capri	Capri	Capri	Capri	Capri	Capri	Capri
Sample ID	Guidai	nce for	SED-2	SED-2	SED-2	SED-2	SED-2	SED-2	SED-2	SED-2
Laboratory ID	Sedimen	nt Criteria	E0868-04A	F1194-01A	G2136-08	J0376-10A	K0911-02	L1949-10	AC75648-012	AC84282-007
Sample Date	Lowest	Highest	6/21/06	8/23/07	11/14/08	3/4/10	5/22/11	9/17/12	11/8/13	4/11/15
	Effect	Effect	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Aluminum	NC	NC	15,500	1,850	2,800 *	9,050 E	8,310	8,300	9,100	12,000
Antimony	2.0	25	0.92 B	0.82 B	0.19 BN	1.3 B	ND	ND	ND	ND
Arsenic	6.0	33	19.7	2.0 B	1.8	20.2	13.4 *	19.2	ND	15.0
Barium	NC	NC	89.8	57.9	40.8 *E	173	108	209	270	91.0
Beryllium	NC	NC	1.2	0.16 B	0.16 B	0.89 E	0.75 B	0.40 B	ND	ND
Cadmium	0.6	9	133	21.2	12.5 N*E	111	96.6 *	122	96.0	150
Calcium	NC	NC	2,860	1,320	1,400 *	3,810 *	4,330 *	4,090	ND	ND
Chromium	26	110	33.7	7.7	6.5 E	49.4 *	45.2 *	47.7	45.0	49.0
Cobalt	NC	NC	12.1	8.1	3 BE	17.8	11.1 E	16.5	20.0	13.0
Copper	16	110	210	19.6	15.6	97.7 *	80.2 *	91.0	130	130
Iron	20,000	20,000	20,300	8,940	3,850 E	27,500	17,300 *	25,400	42,000	17,000
Lead	31	110	315	40.7	25.8 N*E	375	315 N*	408	280	340
Magnesium	NC	NC	1,510	404	305 *E	1,690	1,360 *E	1,500	ND	ND
Manganese	460	1,100	153	1,300	769 *	3,510	1,480 *	3,790	6,800	1,900
Mercury	0.15	1.3	0.45	0.047 BN	0.018 B	0.35	0.5	0.49	ND	0.35
Nickel	16	50	17.6	6.8 E	3.2 B	22.0 E	17.6 *	21.9	ND	ND
Potassium	NC	NC	555	200 E	123 *	373	389	428	ND	ND
Selenium	NC	NC	2.2 B	1.2 B	ND	ND	ND	6.2 B	ND	ND
Silver	1.0	2.2	0.33 B	ND	ND	ND	ND	ND	ND	ND
Sodium	NC	NC	143	92.5 B	46.5 B	200	219	228	ND	ND
Thallium	NC	NC	0.39 B	ND	ND	20.5	2.5 B	9.8	ND	ND
Vanadium	NC	NC	55.9	11.9	5.8 E	61.3 E	54.0	60.8	84.0	ND
Zinc	120	270	402	138	67.9 *E	495 *	406 *	526	550	480

Notes: B - Estimated value (greater than MDL but less than RL)

BOLD/Italics - exceeds lowest effects criterion

All values in mg/kg NC - No Criteria

ND - Not Detected

E - Replicate RPDs were not within QC limits

^{* -} Percent recovery for duplicates were not within QC limits

N - Spike recoveries were not within QC limts

Sample	NYS	DEC	Lake	Lake	Lake	Lake	Lake	Lake	Lake	Lake
Location	Tech	ınical	Capri	Capri	Capri	Capri	Capri	Capri	Capri	Capri
Sample ID	Guidaı	nce for	SED-3	SED-3	SED-3	SED-3	SED-3	SED-3	SED-3	SED-3
Laboratory ID	Sedimen	t Criteria	E0868-06A	F1194-03A	G2136-14	J0376-11A	K0911-03	L1949-11	AC75648-015	AC84282-008
Sample Date	Lowest	Highest	6/21/06	8/23/07	11/14/08	3/4/10	5/22/11	9/17/12	11/8/13	4/11/15
	Effect	Effect	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Aluminum	NC	NC	690	2,010	5,860 *	3,490 E	5,890	1,580	6,000	6,600
Antimony	2.0	25	ND	0.35 B	0.63 BN	ND	ND	ND	ND	ND
Arsenic	6.0	33	0.31 B	3.1	4.2 B	2.4	5.7 *	2.3	ND	4.2
Barium	NC	NC	6.7	29.7	88.2 *E	23.1	65.1	10.2 B	62.0	ND
Beryllium	NC	NC	0.047 B	0.18 B	0.30 B	0.29 BE	0.50	0.037 B	ND	ND
Cadmium	0.6	9	1.5	27.7	1.7 N*E	22.3	16.1 *	14.1	<i>53.0</i>	64.0
Calcium	NC	NC	104	605	11,700 *	1,260 *	2,940 *	199	ND	ND
Chromium	26	110	1.5	7.9	9.6 E	13.7 *	9.1 *	3.7	21.0	ND
Cobalt	NC	NC	0.66 B	4.7	12.6 E	3.6	5.7 E	2.4 B	9.8	ND
Copper	16	110	2.7	16.7	32.4	32.5 *	10.9 *	8.5	57.0	70.0
Iron	20,000	20,000	920	5,730	10,900 E	3,770	6,240 *	1,830	9,100	9,200
Lead	31	110	9.2	44.2	34.0 N*E	<i>85.9</i>	46.0 N*	21.4	130	150
Magnesium	NC	NC	121	326	4,200 *E	527	675 *E	158	ND	ND
Manganese	460	1,100	89.8	568	908 *	357	1,090 *	132	1,600	370
Mercury	0.15	1.3	0.016 B	0.049 BN	0.074 B	0.11	0.061 B	0.032 B	ND	ND
Nickel	16	50	1.6 B	5.0 E	8.5 B	7.4 E	5.8 *	2.4 B	ND	ND
Potassium	NC	NC	115	168 E	1,010 *	173	254	68.7	ND	ND
Selenium	NC	NC	0.2 B	1.2 B	ND	ND	ND	ND	ND	ND
Silver	1.0	2.2	ND	ND	ND	ND	ND	ND	ND	ND
Sodium	NC	NC	13.7 B	51.5 B	528	90.5	103	21.8 B	ND	ND
Thallium	NC	NC	0.33 B	ND	ND	1.7	1.1 B	0.36 B	ND	ND
Vanadium	NC	NC	1.8	9.5	36.4 E	12.5 E	10.7	3.3	ND	ND
Zinc	120	270	10.0	110	71.3 *E	106 *	73.5 *	44.7	220	250

Notes: B - Estimated value (greater than MDL but less than RL)

BOLD/Italics - exceeds lowest effects criterion

E - Replicate RPDs were not within QC limits

N - Spike recoveries were not within QC limts

All values in mg/kg NC - No Criteria ND - Not Detected

^{* -} Percent recovery for duplicates were not within QC limits

Sample	NYS	DEC	Lake	Lake	Lake	Lake	Lake	Lake	Lake	Lake
Location	Tech	nical	Capri	Capri	Capri	Capri	Capri	Capri	Capri	Capri
Sample ID	Guida	nce for	SED-4	SED-4	SED-4	SED-4	SED-4	SED-4	SED-4	SED-4
Laboratory ID	Sedimen	t Criteria	E0868-08A	F1194-05A	G2136-16	J0376-12A	K0911-04	L1949-12	AC75648-016	AC84282-009
Sample Date	Lowest	Highest	6/21/06	8/23/07	11/14/08	3/4/10	5/22/11	9/17/12	11/8/13	4/11/15
	Effect	Effect	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Aluminum	NC	NC	2,730	3,290	1,790 *	2,170 E	5,850	11,700	13,000	4,800
Antimony	2.0	25	0.22 B	0.76 B	0.42 BN	0.3 B	ND	ND	ND	ND
Arsenic	6.0	33	3.4	4.0	3.9	1.9	4.4 *	6.2 B	ND	4.8
Barium	NC	NC	41.5	47.8	177 *E	18.7	64.8	103	110	66
Beryllium	NC	NC	0.2 B	0.22 B	0.13 B	0.19 BE	0.45 B	0.36 B	ND	ND
Cadmium	0.6	9	32.3	32.3	15.8 N*E	14.8	47.3 *	<i>7</i> 9.5	98.0	<i>57.0</i>
Calcium	NC	NC	588	1,240	8,090 *	758 *	2,560 *	3,200	ND	ND
Chromium	26	110	8.6	12.5	6.8 E	8.1 *	21.7 *	45.4	47.0	ND
Cobalt	NC	NC	4.9	10.0	7.0 E	3.1	9.5 E	13.3 B	ND	11
Copper	16	110	21.6	35.7	17.1	22.6 *	49.5 *	117	140	54
Iron	20,000	20,000	4,450	9,330	7,280 E	2,540	9,170 *	12,800	17,000	9,000
Lead	31	110	71.2	193	34.3 N*E	60.6	129 N*	297	310	110
Magnesium	NC	NC	352	519	653 *E	304	868 *E	1,650	ND	ND
Manganese	460	1,100	837	845	11,700 *	272	1,150 *	1,820	2,300	1,100
Mercury	0.15	1.3	0.096	0.059 BN	0.21	0.082	0.18	0.39	ND	ND
Nickel	16	50	6.0	10.7 E	6.3	4.8 E	13 *	25.3	ND	ND
Potassium	NC	NC	145	236 E	281 *	103	383	623	ND	ND
Selenium	NC	NC	0.76 B	1.9 B	3.3	ND	ND	4.6 B	ND	ND
Silver	1.0	2.2	ND	ND	1.1 B	ND	ND	ND	ND	ND
Sodium	NC	NC	35.4 B	87.0	131	56 B	145 B	312 B	ND	ND
Thallium	NC	NC	3.7	ND	2.8	1.6	1.7 B	4.6 B	ND	ND
Vanadium	NC	NC	9.2	16.9	7.4 E	7.2 E	26.6	41.2	ND	ND
Zinc	120	270	122	186	110 *E	71.3 *	232 *	323	330	250

Notes: B - Estimated value (greater than MDL but less than RL)

BOLD/Italics - exceeds lowest effects criterion

E - Replicate RPDs were not within QC limits

* - Percent recovery for duplicates were not within QC limits

N - Spike recoveries were not within QC limts

All values in mg/kg

NC - No Criteria

ND - Not Detected

Sample	NYS	DEC	Willetts	Willetts	Willetts	Willetts	Willetts	Willetts	Willetts	Willetts
Location	Tech	nical	Creek	Creek	Creek	Creek	Creek	Creek	Creek	Creek
Sample ID	Guidai	nce for	SED-5	SED-5	SED-5	SED-5	SED-5	SED-5	SED-5	SED-5
Laboratory ID	Sedimen	t Criteria	E0868-10A	F1193-17A	G2114-21	J0376-13A	K0911-05	L1949-13	AC75648-017	AC84282-010
Sample Date	Lowest	Highest	6/21/06	8/23/07	11/14/08	3/4/10	5/22/11	9/18/12	11/8/13	4/11/15
	Effect	Effect	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Aluminum	NC	NC	1,060	552	5,150	2,540 E	6,300	345	820	5,300
Antimony	2.0	25	0.074 B	0.27 B	1.1 BN	0.68 B	1.4 BN	ND	ND	ND
Arsenic	6.0	33	0.6 B	0.52 B	8.2	6.5	9.3 *	1.6	ND	11.0
Barium	NC	NC	12.1	13.6	96.6	84.6	114	15.1	ND	120
Beryllium	NC	NC	0.083 B	0.03 B	0.34 B	0.24 BE	0.57 B	0.010 B	ND	ND
Cadmium	0.6	9	0.43	1.6	<i>52.0</i>	28.8	73.5 *	1.7	7.1	62.0
Calcium	NC	NC	228	1,430	4,150	3,470 *	7,960 *	330	ND	4,300
Chromium	26	110	3.8	2.7	33.3	18.5 *	44.0 *	3.5	ND	35.0
Cobalt	NC	NC	1.2 B	1.1 B	7.8	7.4	13.3 E	1.1 B	ND	13.0
Copper	16	110	4.7	4.7	103	<i>54.0</i> *	166 *	9.0	42.0	110
Iron	20,000	20,000	3,400	3,410	23,900	25,800	39,900 *	4,180	5,100	32,000
Lead	31	110	7.9	4.9	215 E	83.3	229 N*	9.4	37.0	190
Magnesium	NC	NC	604	864	1,370	701	1,370 *E	75.8	ND	ND
Manganese	460	1,100	174	291	2,140	3,750	1,210 *	417	610	3,500
Mercury	0.15	1.3	0.016 B	0.0055 B	0.48	0.26	0.37	0.023 B	ND	1.2
Nickel	16	50	1.6	1.0 B	19.2	8.0 E	22.5 *	1.9 B	ND	ND
Potassium	NC	NC	135	58.3	320	188	360	29.6 B	ND	ND
Selenium	NC	NC	0.28 B	0.56 B	ND	2.3 B	ND	0.87 B	ND	ND
Silver	1.0	2.2	ND	ND	ND	0.52 B	ND	0.084 B	ND	ND
Sodium	NC	NC	18.3 B	102	204	141	323	11.7 B	ND	ND
Thallium	NC	NC	0.56 B	ND	2.1 B	20.1	1.9 B	0.76 B	ND	ND
Vanadium	NC	NC	5.6	4.5	54.2	44.6 E	175	7.8	27.0	60.0
Zinc	120	270	13.2	26.2	290 E	171 *	440 *	24.2	78.0	360

Notes: B - Estimated value (greater than MDL but less than RL)

BOLD/Italics - exceeds lowest effects criterion

E - Replicate RPDs were not within QC limits

N - Spike recoveries were not within QC limts

All values in mg/kg NC - No Criteria ND - Not Detected

^{* -} Percent recovery for duplicates were not within QC limits

TABLE 6 DZUS FASTENERS SITE (1-52-033) JUNE 2006 THROUGH APRIL 2015 SAMPLING EVENTS SUMMARY OF TAL METALS IN WILLETTS CREEK AND LAKE CAPRI SEDIMENT SAMPLES

Sample	NYS	DEC	Willetts	Willetts	Willetts	Willetts	Willetts	Willetts	Willetts	Willetts
Location	Tech	nical	Creek	Creek	Creek	Creek	Creek	Creek	Creek	Creek
Sample ID	Guida	nce for	SED-6	SED-6	SED-6	SED-6	SED-6	SED-6	SED-6	SED-6
Laboratory ID	Sedimen	t Criteria	E0868-12A	F1194-07A	G2114-17	J0376-14	K0911-06	L1949-14	AC75648-018	AC84282-011
Sample Date	Lowest	Highest	6/21/06	8/23/07	11/14/08	3/4/10	5/22/11	9/18/12	11/8/13	4/11/15
	Effect	Effect	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Aluminum	NC	NC	1,030	775	7,700	802 E	1,370	574	1,000	810
Antimony	2.0	25	0.076	0.38 B	2.6 N	0.38 B	0.44 BN	ND	ND	ND
Arsenic	6.0	33	0.97	0.84 B	6.4	0.79	2.7 *	0.64 B	ND	0.56
Barium	NC	NC	7.4	4.7 B	89.7	3.6 B	10.4	2.7 B	ND	ND
Beryllium	NC	NC	0.094	0.049 B	0.36 B	0.069 BE	0.11 B	ND	ND	ND
Cadmium	0.6	9	0.23	0.31	101	0.31	ND	0.30	ND	ND
Calcium	NC	NC	4,760	599	7,690	2,450 *	4,670 *	299	ND	ND
Chromium	26	110	2.4	3.4	41.8	4.4 *	15.9 *	5.4	ND	ND
Cobalt	NC	NC	1.8	0.77 B	8.1	0.65 B	1.9 BE	0.50 B	3.3	ND
Copper	16	110	28.3	6.3	77.3	9.4 *	21.5 *	8.0	11.0	8.7
Iron	20,000	20,000	3,290	2,900	25,600	2,810	<i>36,900</i> *	2,120	27,000	2,600
Lead	31	110	7.9	10.3	109 E	9.5	39.7 N*	8.7	88.0	7.2
Magnesium	NC	NC	2,930	468	1,980	1,410	1,290 *E	263	ND	ND
Manganese	460	1,100	102	30.4	978	21.3	118 *	16.2	610	18.0
Mercury	0.15	1.3	0.036 B	ND	0.15	ND	0.019 B	0.011 B	ND	ND
Nickel	16	50	1.8	1.9 BE	17.2	1.8 BE	10.1 *	2.0 B	ND	ND
Potassium	NC	NC	118	122 E	528	66.4	97.5	54.2 B	ND	ND
Selenium	NC	NC	ND	0.69 B	ND	ND	ND	ND	ND	ND
Silver	1.0	2.2	ND	ND	ND	ND	ND	0.080 B	ND	ND
Sodium	NC	NC	24.9 B	70.7	414	47.7	51.8	22.0 B	ND	ND
Thallium	NC	NC	0.25 B	0.36 B	0.98 B	ND	ND	ND	ND	ND
Vanadium	NC	NC	9.9	6.0	42.4	4.2 E	8.5	3.2	18.0	ND
Zinc	120	270	17.2	24.2	409 E	31.0 *	68.9 *	38.9	66.0	32.0

Notes: B - Estimated value (greater than MDL but less than RL)

BOLD/Italics - exceeds lowest effects criterion

E - Replicate RPDs were not within QC limits

* - Percent recovery for duplicates were not within QC limits

N - Spike recoveries were not within QC limts

All values in mg/kg NC - No Criteria

ND - Not Detected

TABLE 6 DZUS FASTENERS SITE (1-52-033) JUNE 2006 THROUGH APRIL 2015 SAMPLING EVENTS SUMMARY OF TAL METALS IN WILLETTS CREEK AND LAKE CAPRI SEDIMENT SAMPLES

Sample	NYS	DEC	Lake Capri				
Location	Tech	nnical	Cove	Cove	Cove	Cove	Cove
Sample ID	Guida	nce for	SC-1	SC-2	SC-3	SC-4	SC-5
Laboratory ID	Sedimer	nt Criteria	AC84282-016	AC84282-017	AC84282-018	AC84282-019	AC84282-020
Sample Date	Lowest	Highest	4/10/15	4/10/15	4/10/15	4/10/15	4/10/15
	Effect	Effect	conc. Q				
Aluminum	NC	NC	NC	NC	NC	600	NC
Antimony	2.0	25	NC	NC	NC	ND	NC
Arsenic	6.0	33	NC	NC	NC	0.52	NC
Barium	NC	NC	NC	NC	NC	ND	NC
Beryllium	NC	NC	NC	NC	NC	ND	NC
Cadmium	0.6	9	12.0	0.82	ND	ND	1.4
Calcium	NC	NC	NC	NC	NC	ND	NC
Chromium	26	110	NC	NC	NC	ND	NC
Cobalt	NC	NC	NC	NC	NC	ND	NC
Copper	16	110	NC	NC	NC	ND	NC
Iron	20,000	20,000	NC	NC	NC	1,400	NC
Lead	31	110	NC	NC	NC	ND	NC
Magnesium	NC	NC	NC	NC	NC	ND	NC
Manganese	460	1,100	NC	NC	NC	61.0	NC
Mercury	0.15	1.3	NC	NC	NC	ND	NC
Nickel	16	50	NC	NC	NC	ND	NC
Potassium	NC	NC	NC	NC	NC	ND	NC
Selenium	NC	NC	NC	NC	NC	ND	NC
Silver	1.0	2.2	NC	NC	NC	ND	NC
Sodium	NC	NC	NC	NC	NC	ND	NC
Thallium	NC	NC	NC	NC	NC	ND	NC
Vanadium	NC	NC	NC	NC	NC	ND	NC
Zinc	120	270	NC	NC	NC	ND	NC

Notes: B - Estimated value (greater than MDL but less than RL)

BOLD/Italics - exceeds lowest effects criterion

E - Replicate RPDs were not within QC limits

* - Percent recovery for duplicates were not within QC limits

N - Spike recoveries were not within QC limts

All values in mg/kg NC - No Criteria ND - Not Detected

TABLE 7 DZUS FASTENERS SITE (1-52-033) MARCH 2015 (ROUND 8) SAMPLING EVENT GROUNDWATER FIELD DUPLICATE DATA SUMMARY

Sample Location Sample ID Laboratory ID Sample Date Filtered/Unfiltered Metal	MW-15B	MW-15B	Precision
	DMW-15B	DMW-65B	as
	AC83807-003	AC83807-005	Relative
	3/17/15	3/17/15	Percent
	Unfiltered	Unfiltered	Difference
	conc. Q	conc. Q	(RPD)
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium	ND ND ND ND 9,900 ND ND 1,500 11 ND 94 ND ND ND ND ND	ND ND ND ND ND 11,000 ND ND 1,600 ND ND ND ND ND ND ND ND ND ND ND ND ND	NC NC NC NC NC NC NC NC NC NC NC NC NC N
Vanadium	ND	ND	NC
Zinc	ND	ND	NC

MW-15BF	MW-15BF	Precision
DMW-15BF	DMW-65BF	as
AC83807-004	AC83807-006	Relative
3/17/15	3/17/15	Percent
Filtered	Filtered	Difference
conc. Q	conc. Q	(RPD)
ND	ND	NC
11,000	11,000	0.0%
ND	ND	NC
ND	ND	NC
ND	ND	NC
ND	340	NC
ND	ND	NC
ND	ND	NC
ND	45	NC
ND	ND	NC
36,000	35,000	2.8%
ND	ND	NC
ND	ND	NC
ND	ND	NC
<u>L</u>		

Notes:

All values in µg/L

NC - Not Calculable (analyte not detected in one or both analyses)

ND - Not Detected

B - Estimated value (greater than MDL but less than RL)

E - Estimated concentration due to interference based on serial dilution.

BOLD/Italics - exceeds criterion

TABLE 8 DZUS FASTENERS SITE (1-52-033) MARCH 2015 (ROUND 8) SAMPLING EVENT SURFACE WATER FIELD DUPLICATE DATA SUMMARY

Sample Location Sample ID Laboratory ID	Lake Capri Cove SC-4 AC84282-005	Lake Capri Cove RC-1 SW AC84282-024	Precision as Relative Percent
Sample Date	4/11/15	4/11/15	Difference
Metal			(RPD)
ivietai	conc. Q	conc. Q	(KPD)
Aluminum	ND	320	NC
Antimony	ND	ND	NC
Arsenic	ND	ND	NC
Barium	ND	ND	NC
Beryllium	ND	ND	NC
Cadmium	ND	ND	NC
Calcium	15,000	13,000	14.3%
Chromium	ND	ND	NC
Cobalt	ND	3.9	NC
Copper	ND	ND	NC
Iron	ND	600	NC
Lead	ND	3.2	NC
Magnesium	ND	ND	NC
Manganese	640	700	9.0%
Mercury	ND	ND	NC
Nickel	ND	ND	NC
Potassium	ND	ND	NC
Selenium	ND	ND	NC
Silver	ND	ND	NC
Sodium	23,000	18,000	24.4%
Thallium	ND	ND	NC
Vanadium	ND	ND	NC
Zinc	ND	ND	NC

All values in µg/L

NC - Not Calculable (analyte not detected in one or both analyses)

ND - Not Detected

B - Estimated value (greater than MDL but less than RL)

E - Estimated concentration due to interference based on serial dilution.

BOLD/Italics - exceeds criterion

TABLE 9 DZUS FASTENERS SITE (1-52-033) MARCH 2015 (ROUND 8) SAMPLING EVENT SEDIMENT FIELD DUPLICATE DATA SUMMARY

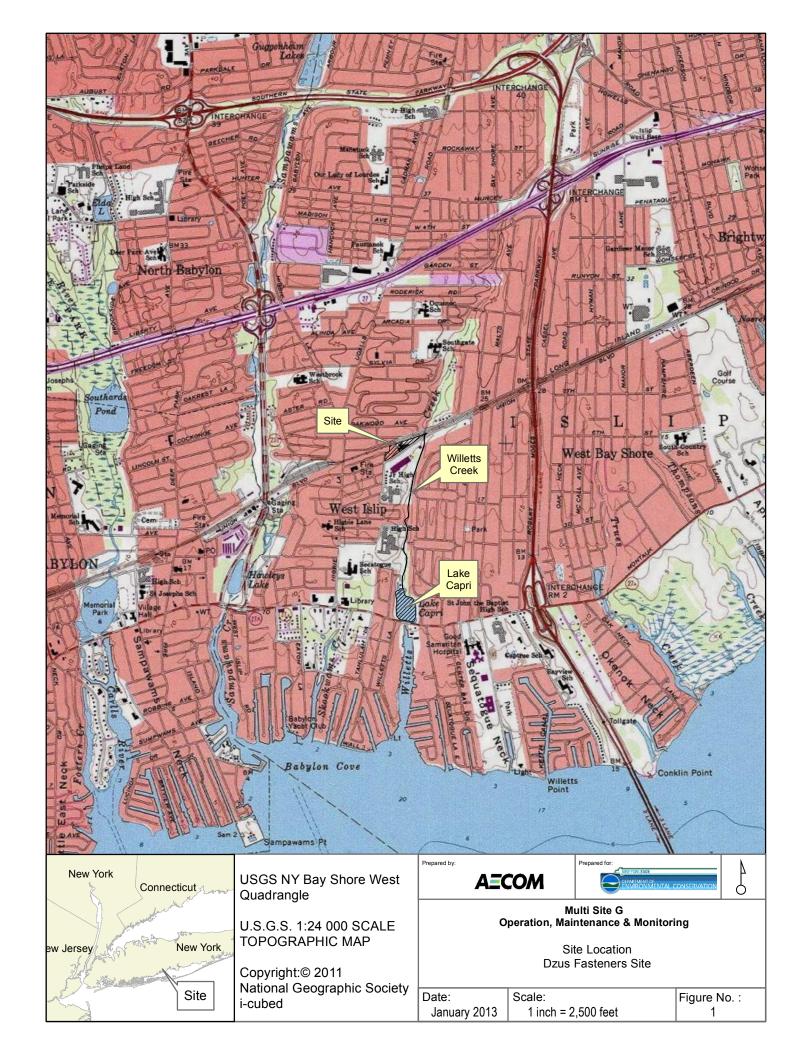
Sample Location	Lake Capri Cove	Lake Capri Cove	Precision as
Field Sample ID	SC-4 SED	FQ-1 SED	Relative
Laboratory ID	AC84282-019	AC84282-021	Percent
Sample Date	4/10/15	4/11/15	Difference
Metal	conc. Q	conc. Q	(RPD)
Aluminum	600	910	41.1%
Antimony	ND	ND	NC
Arsenic	0.52	0.9	52.5%
Barium	ND	ND	NC
Beryllium	ND	ND	NC
Cadmium	ND	0.83	NC
Calcium	ND	ND	NC
Chromium	ND	ND	NC
Cobalt	ND	ND	NC
Copper	ND	ND	NC
Iron	1,400	2,400	52.6%
Lead	ND	ND	NC
Magnesium	ND	ND	NC
Manganese	61	120	65.2%
Mercury	ND	ND	NC
Nickel	ND	ND	NC
Potassium	ND	ND	NC
Selenium	ND	ND	NC
Silver	ND	ND	NC
Sodium	ND	ND	NC
Thallium	ND	ND	NC
Vanadium	ND	17.0	NC
Zinc	ND	ND	NC

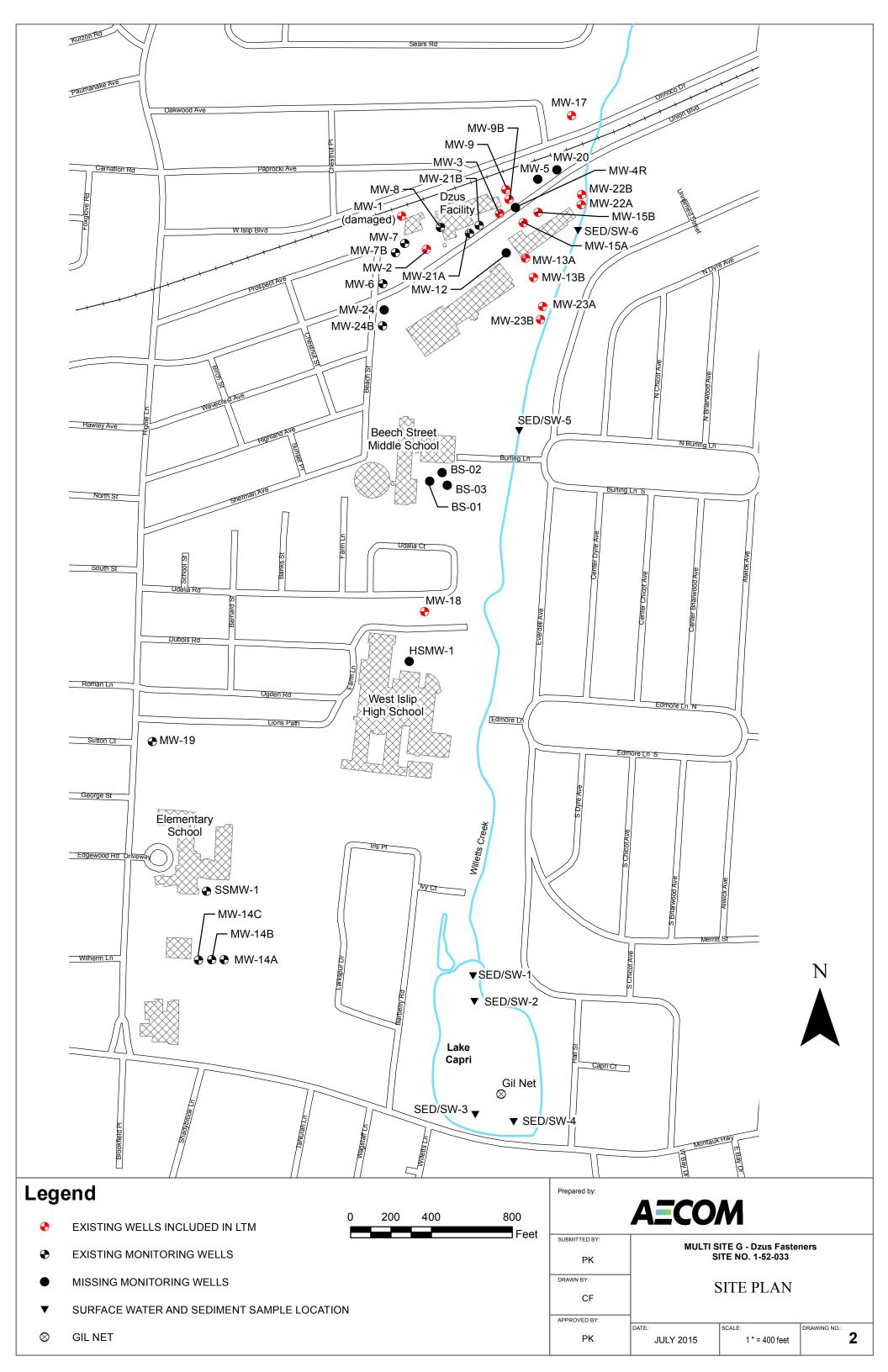
All values in mg/kg dry weight.

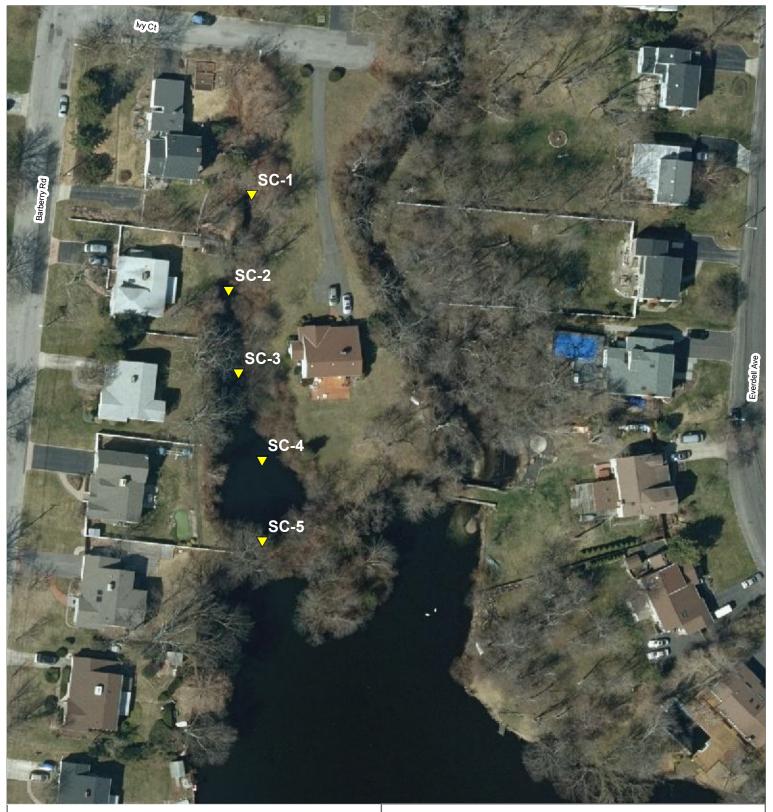
NC - Not Calculable (analyte not detected in one or both analyses)

ND - Not Detected

B - Estimated value (greater than MDL but less than RL)

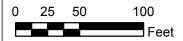

E - Estimated concentration due to interference based on serial dilution


N - Laboratory spike recovery ouside control limit


* - Laboratory Replicate RPDs were not within QC limits

BOLD/Italics - exceeds criterion

Figures



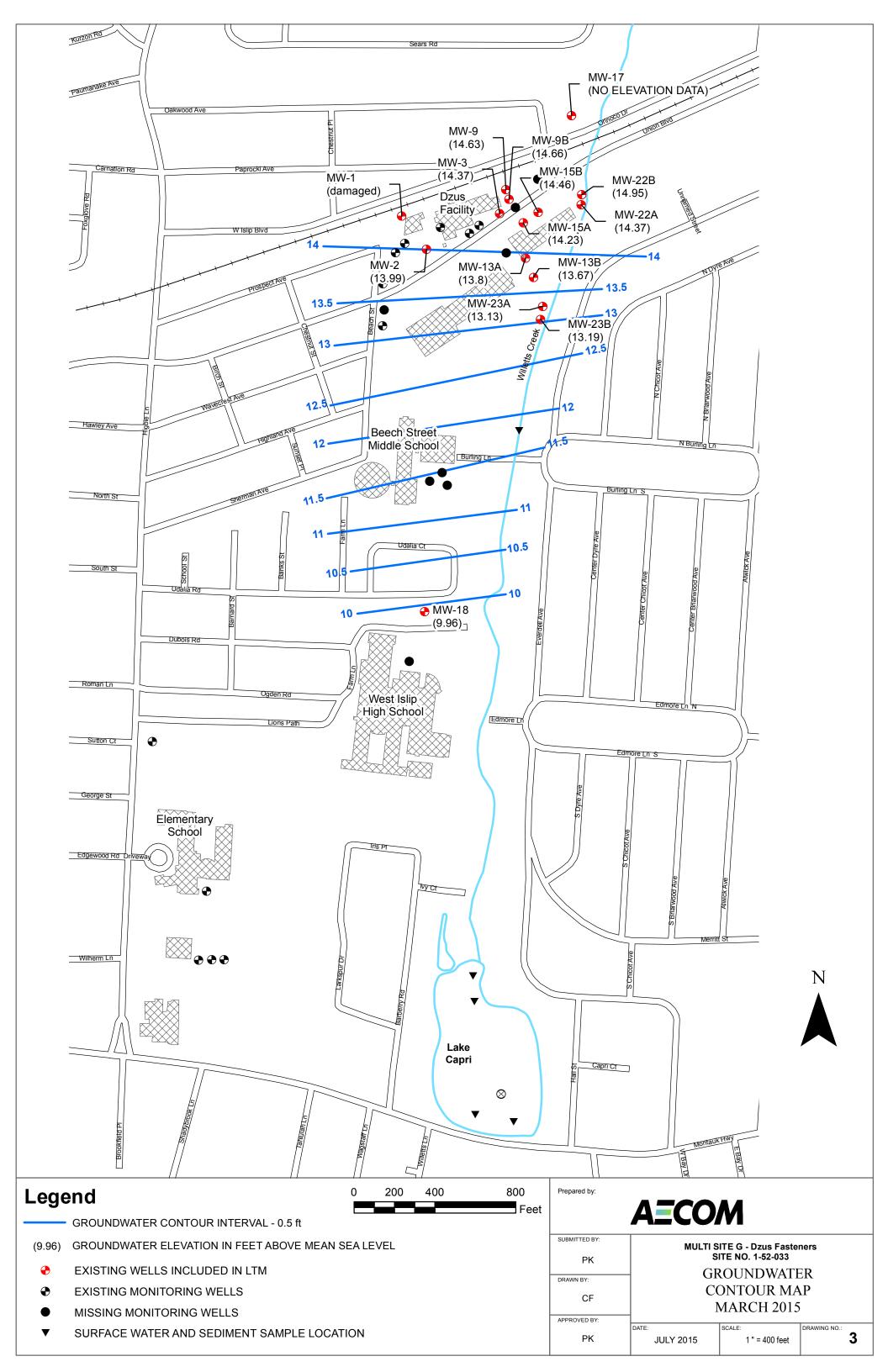
Legend

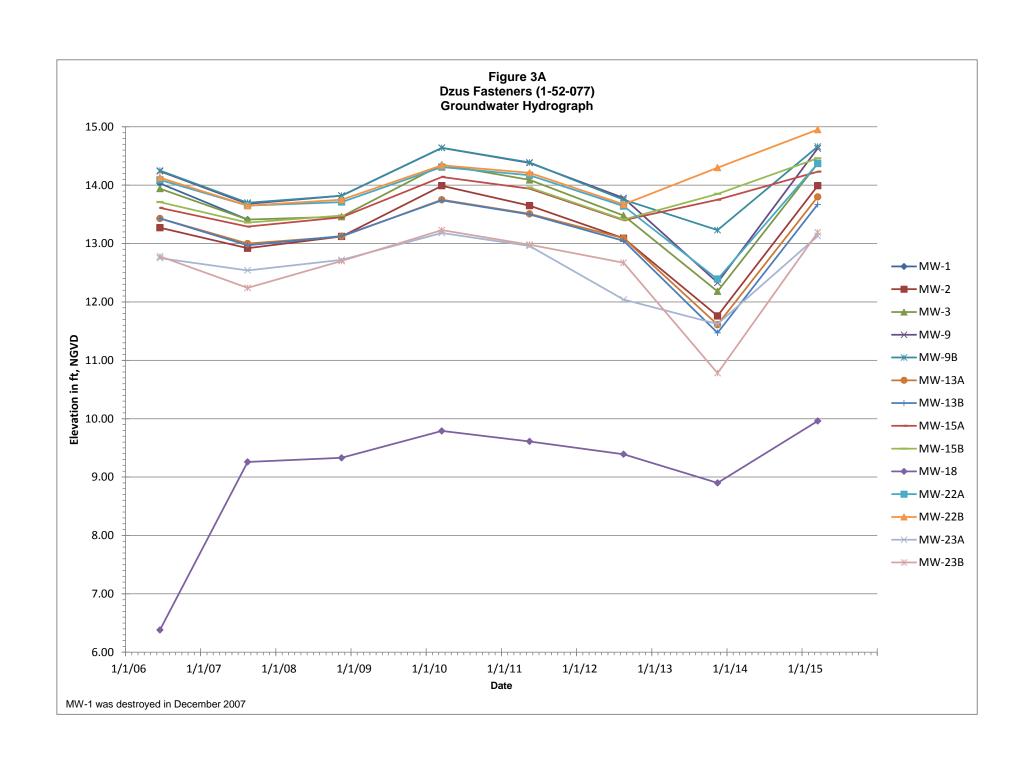
Cove Sampling Locations

Sources:

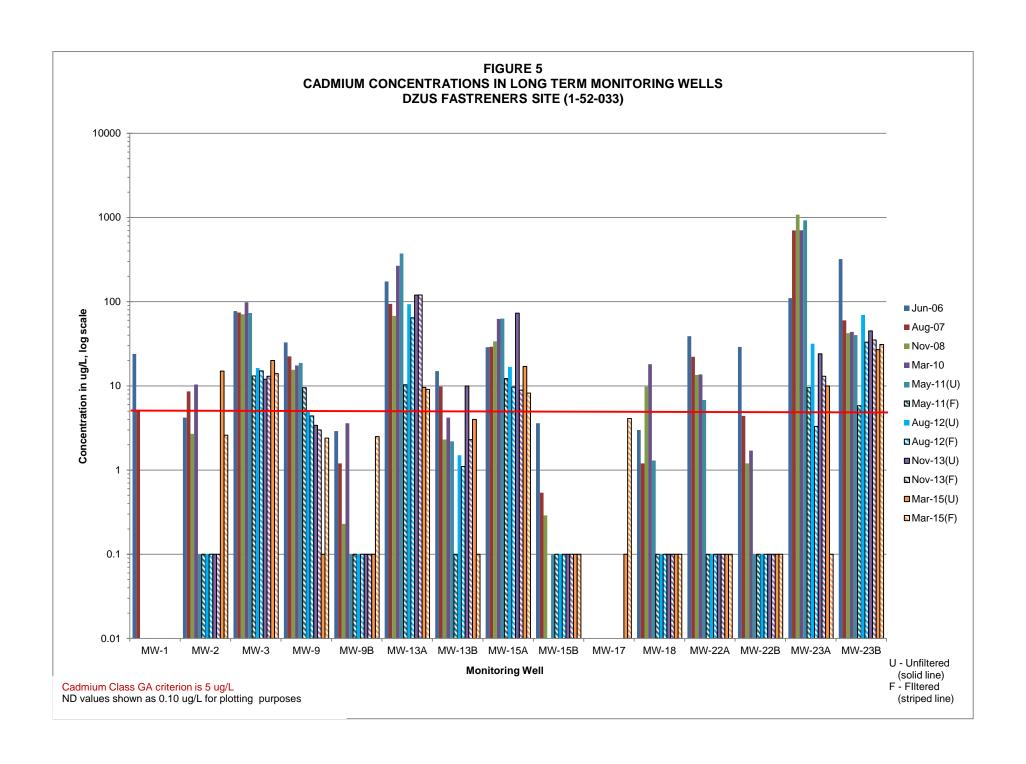
Aerials from 2013 Half Foot 4 Band Long Island Zone New York Statewide Digital Orthoimagery Program Prepared by:

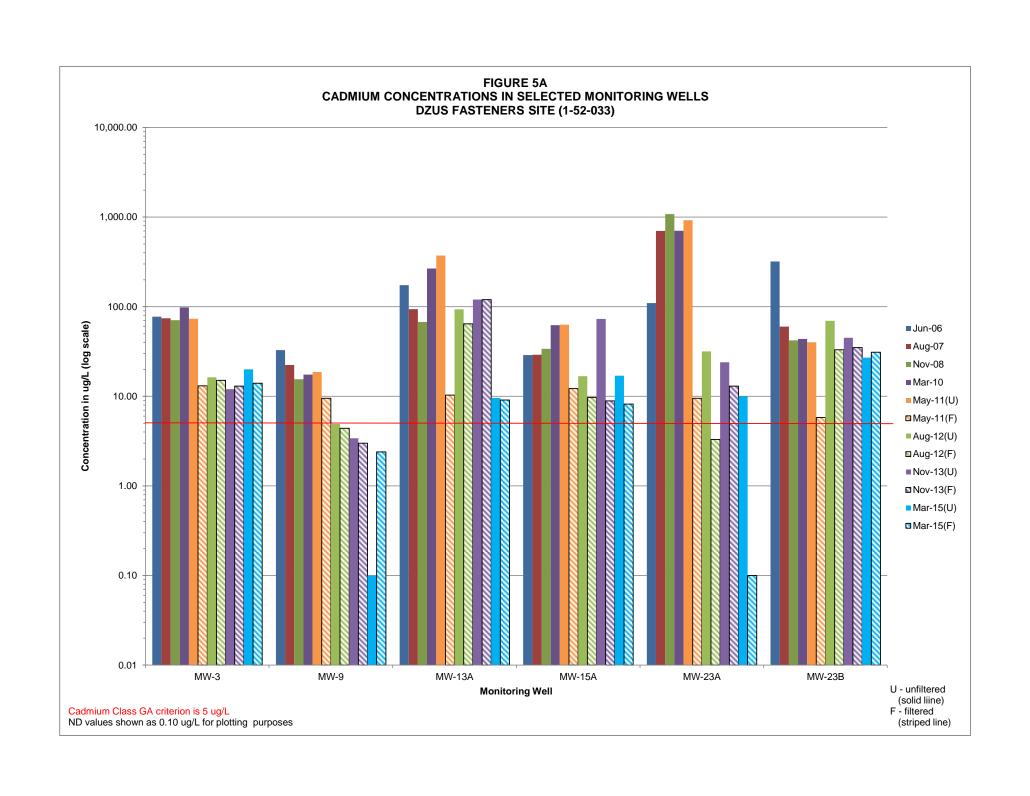
PΚ

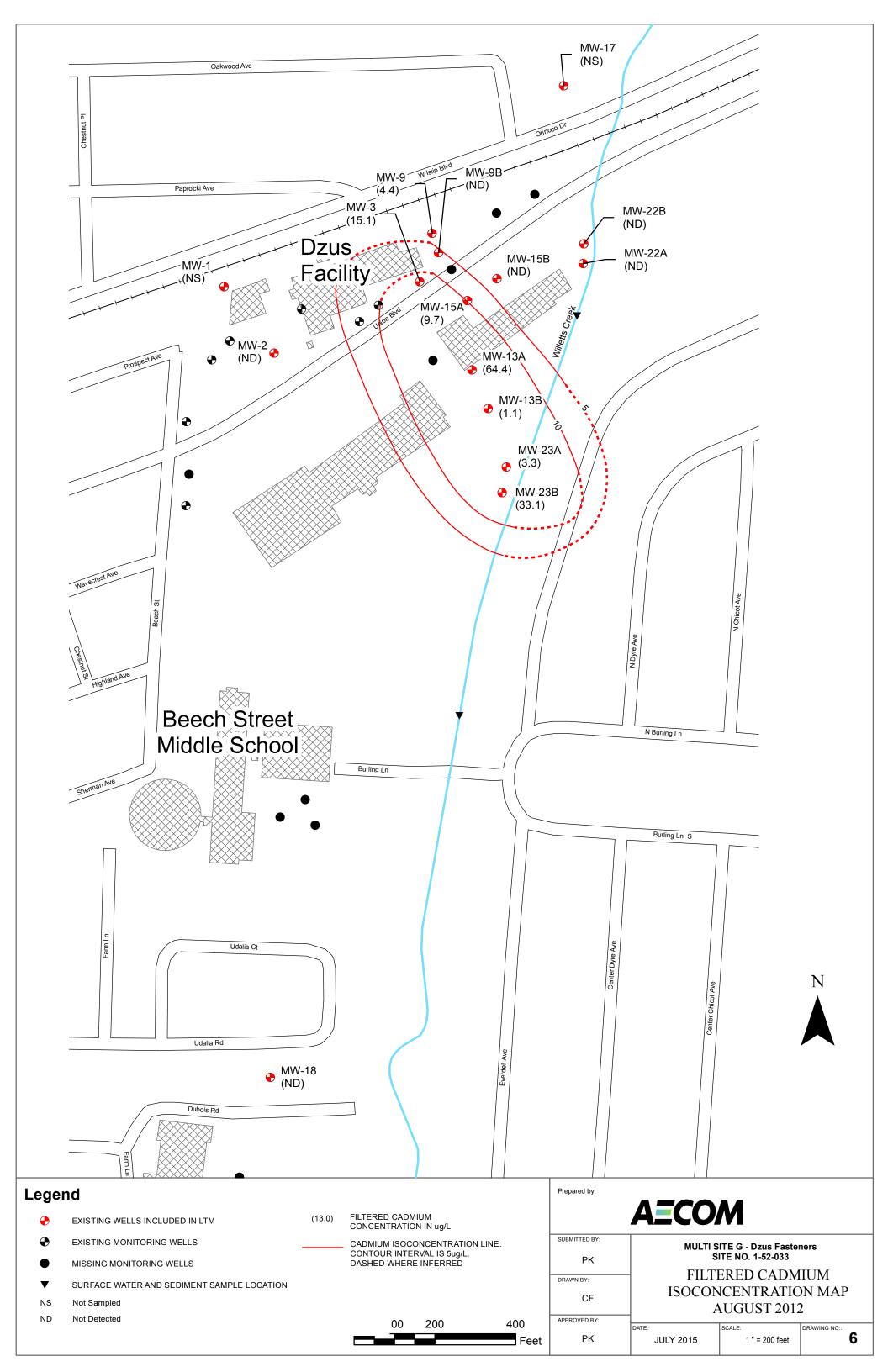


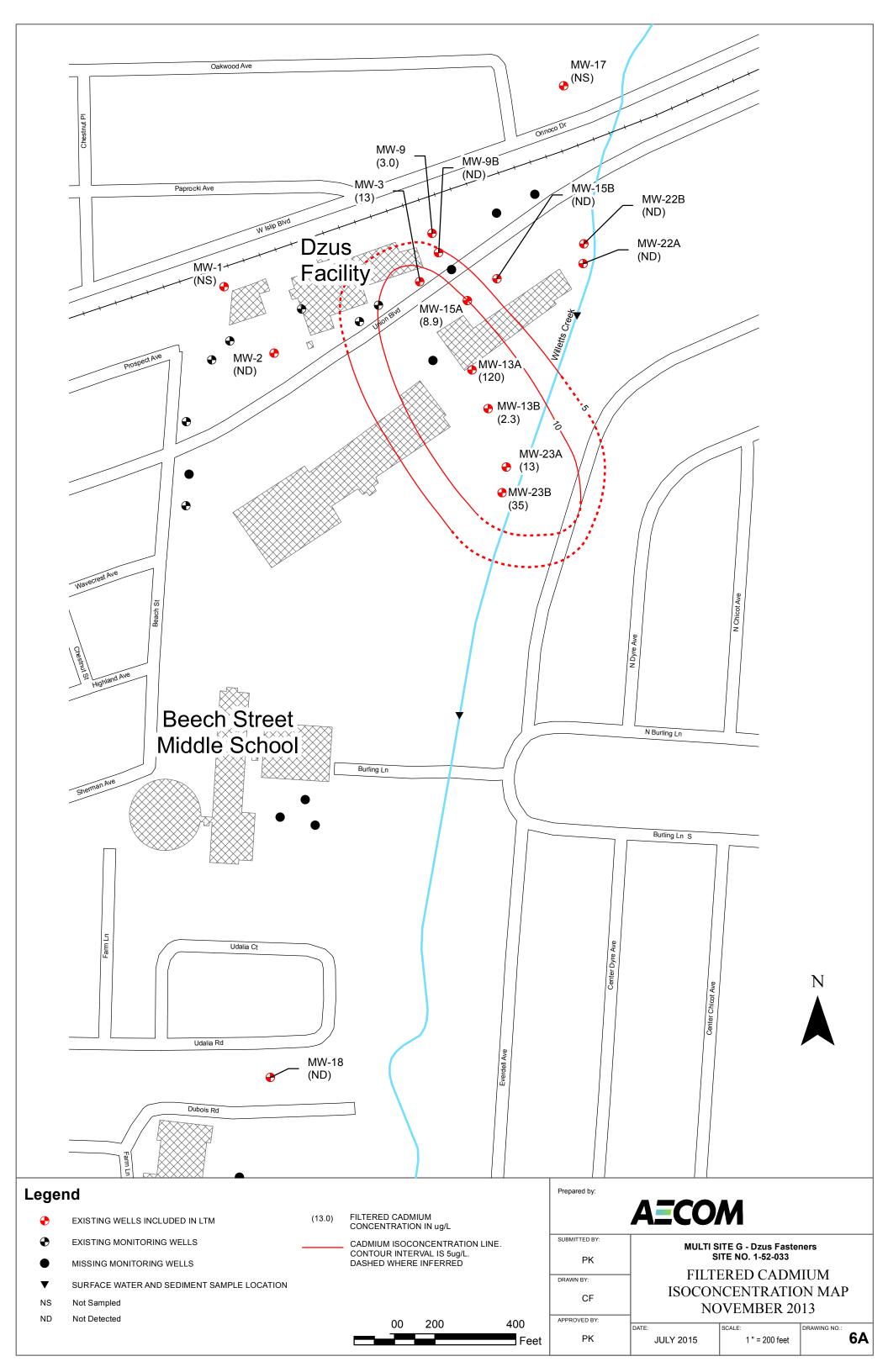

SUBMITTED BY:		MULTI S	SITE G - Dzus	Fasteners
PK			ITE NO. 1-52	
DRAWN BY:		LAK	E CAPR	I COVE
CF		SAMP	LE LOC	CATIONS
APPROVED BY:	\neg			
	DATE:		SCALE:	DRAWING N

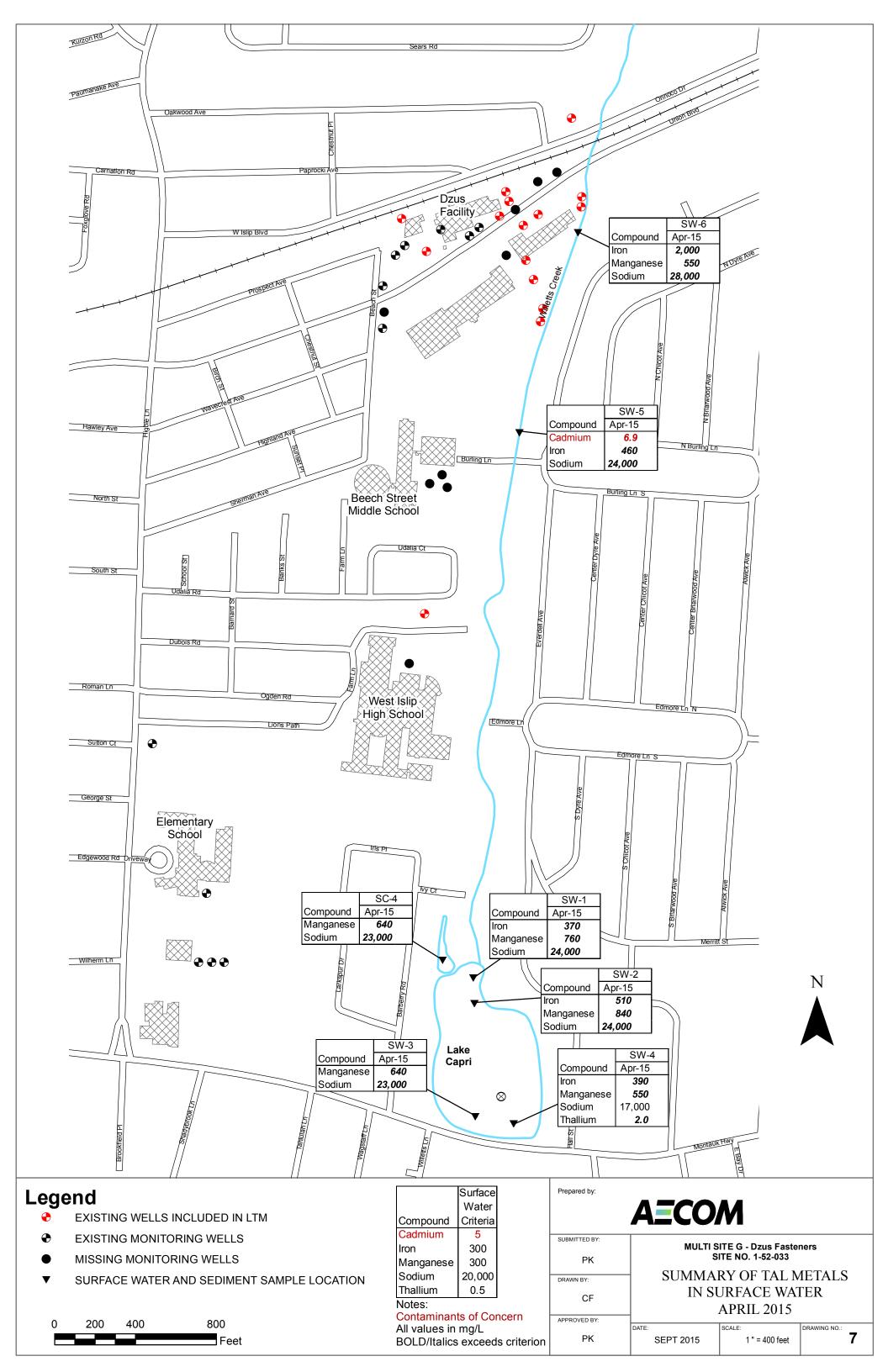
1 " = 75 feet

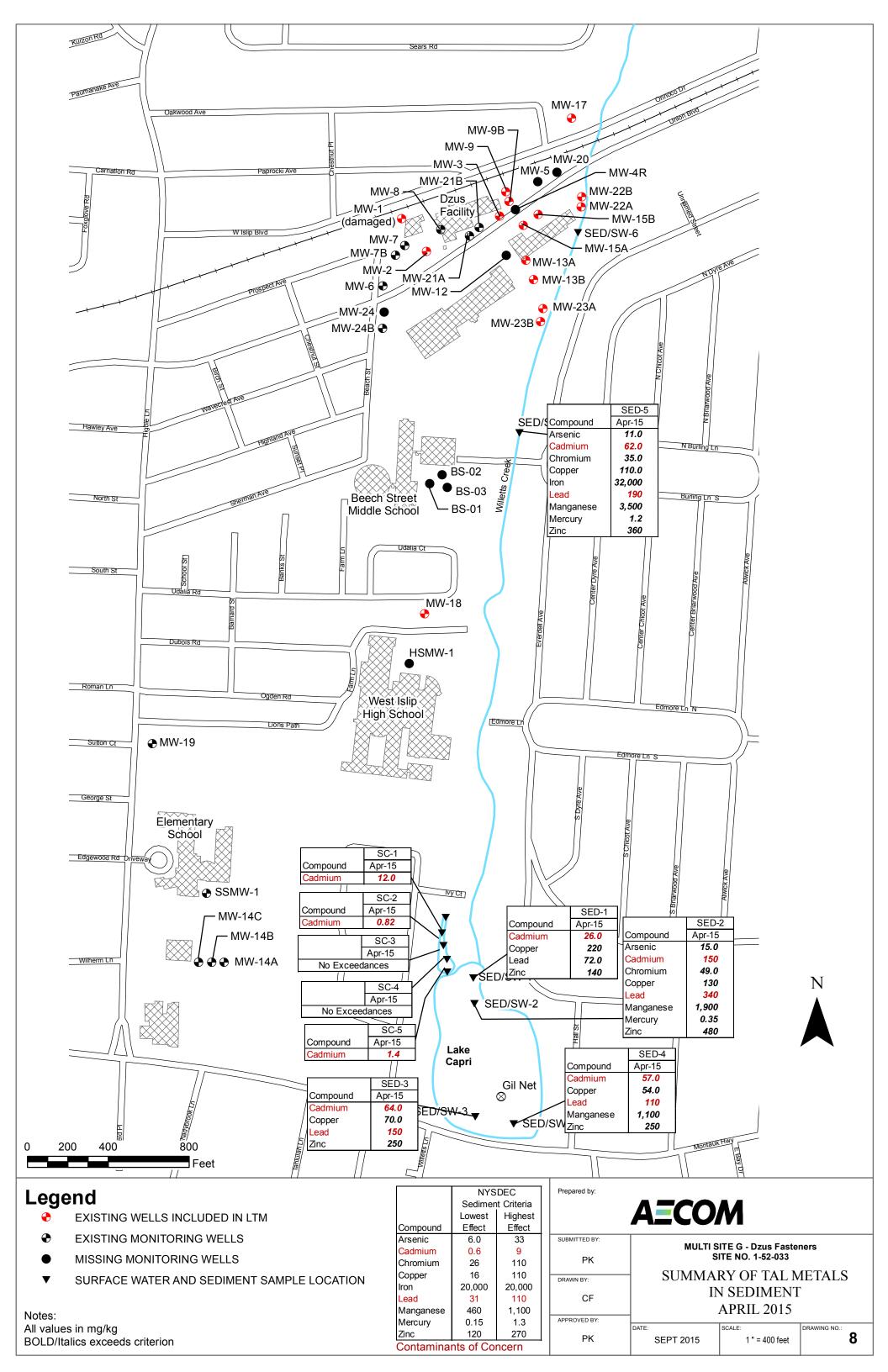

JULY 2015

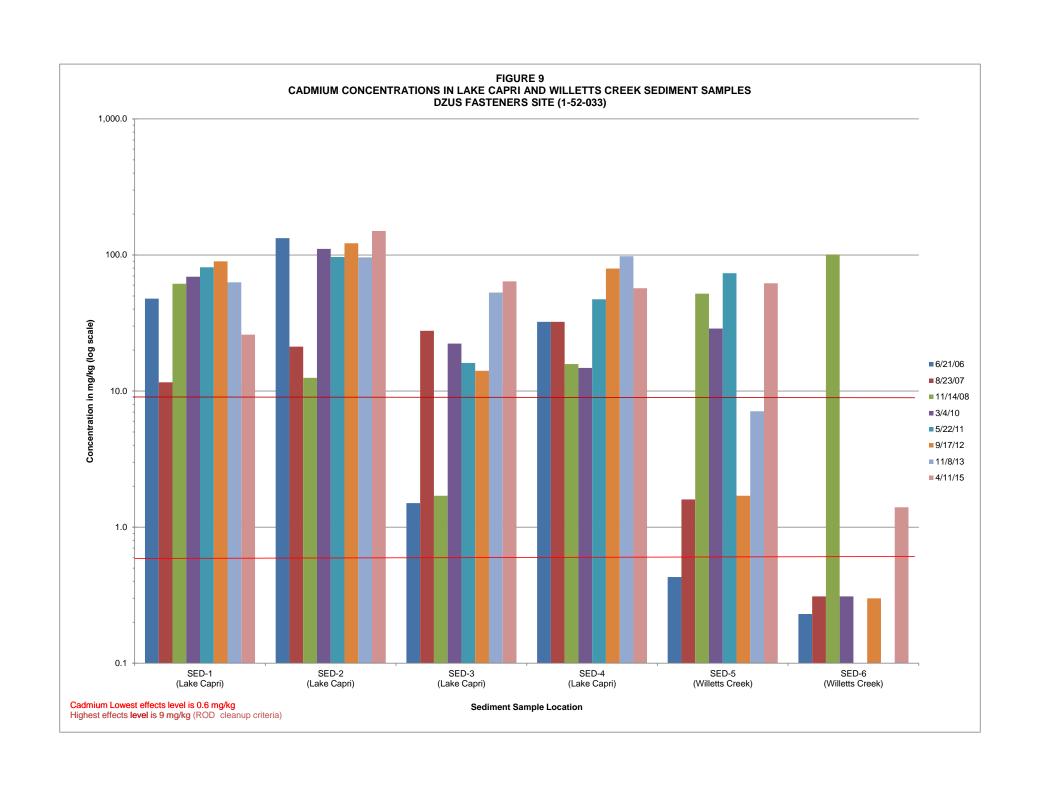

2A

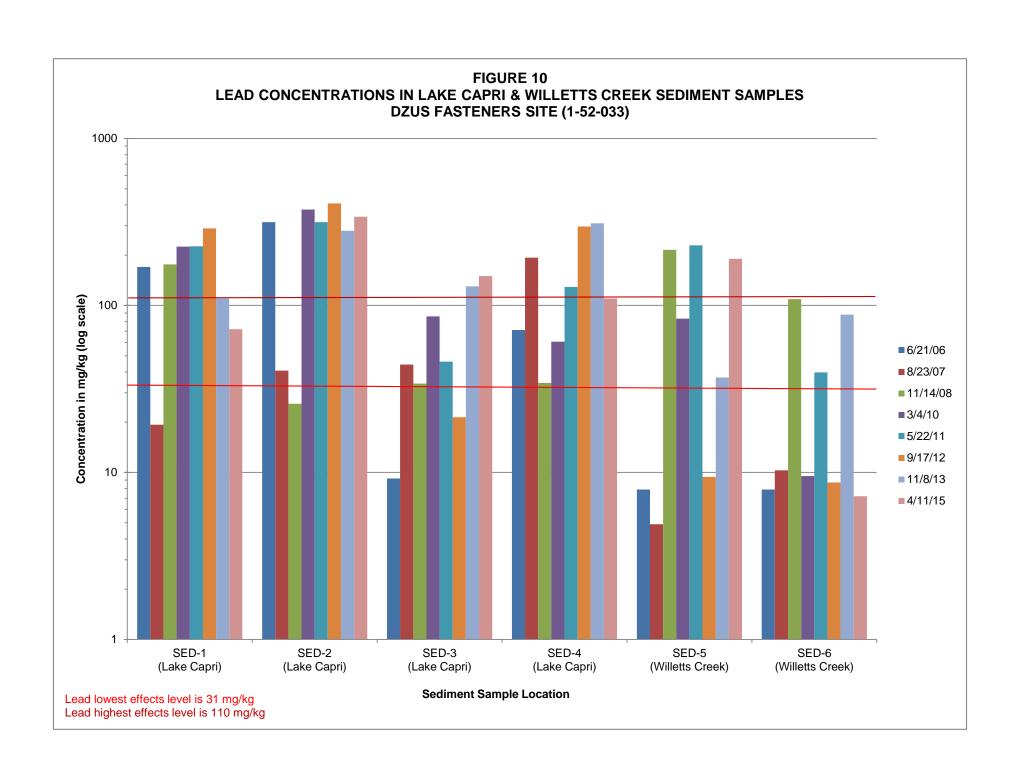


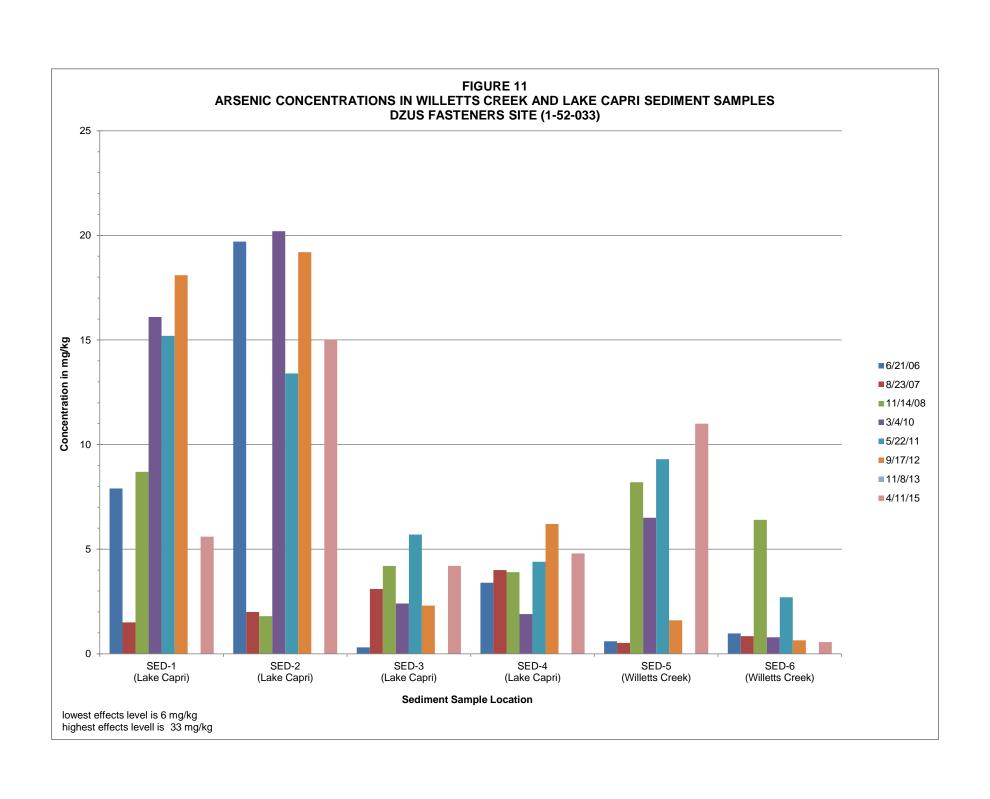


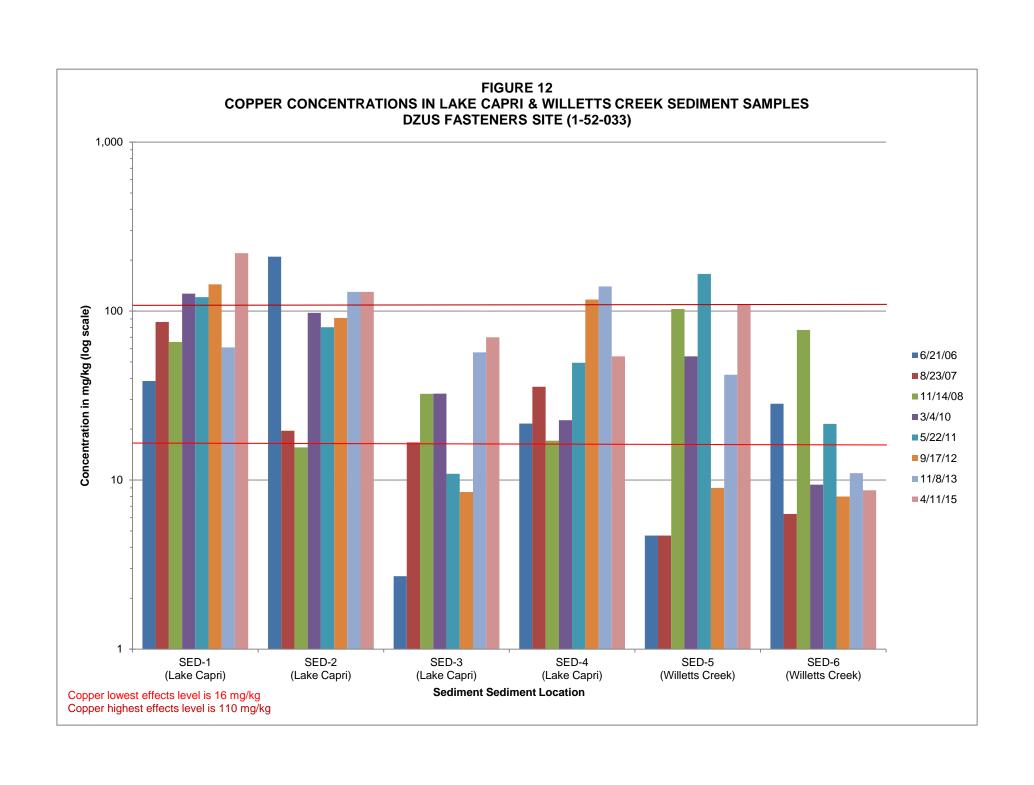


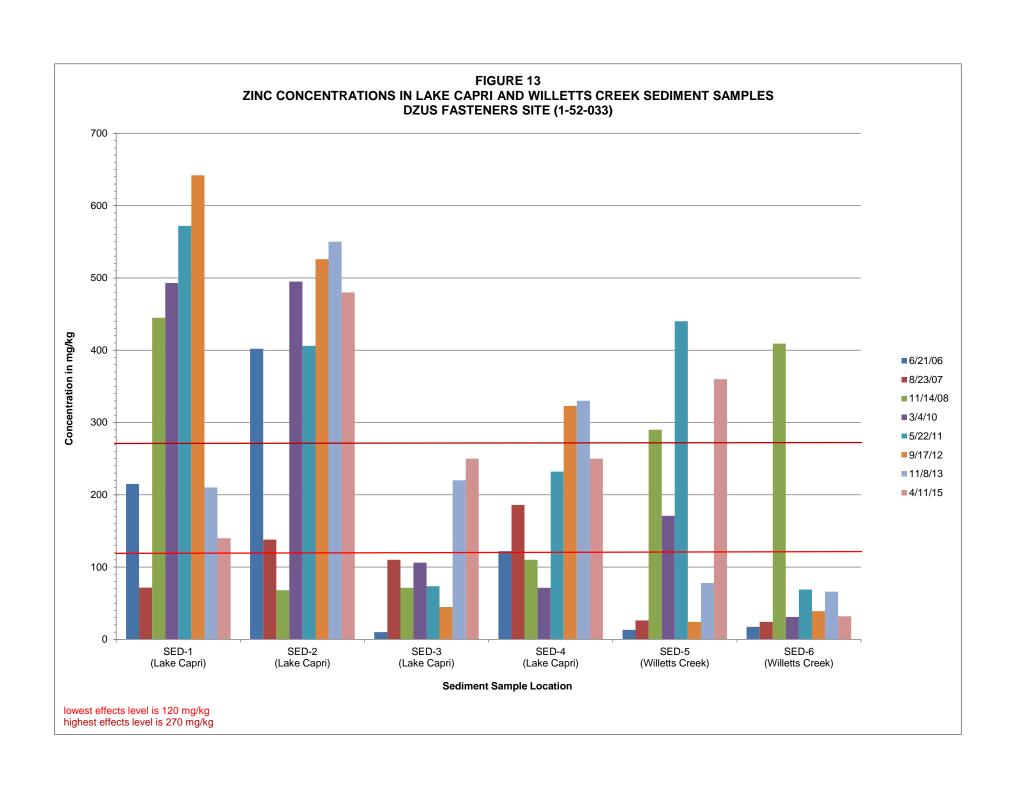


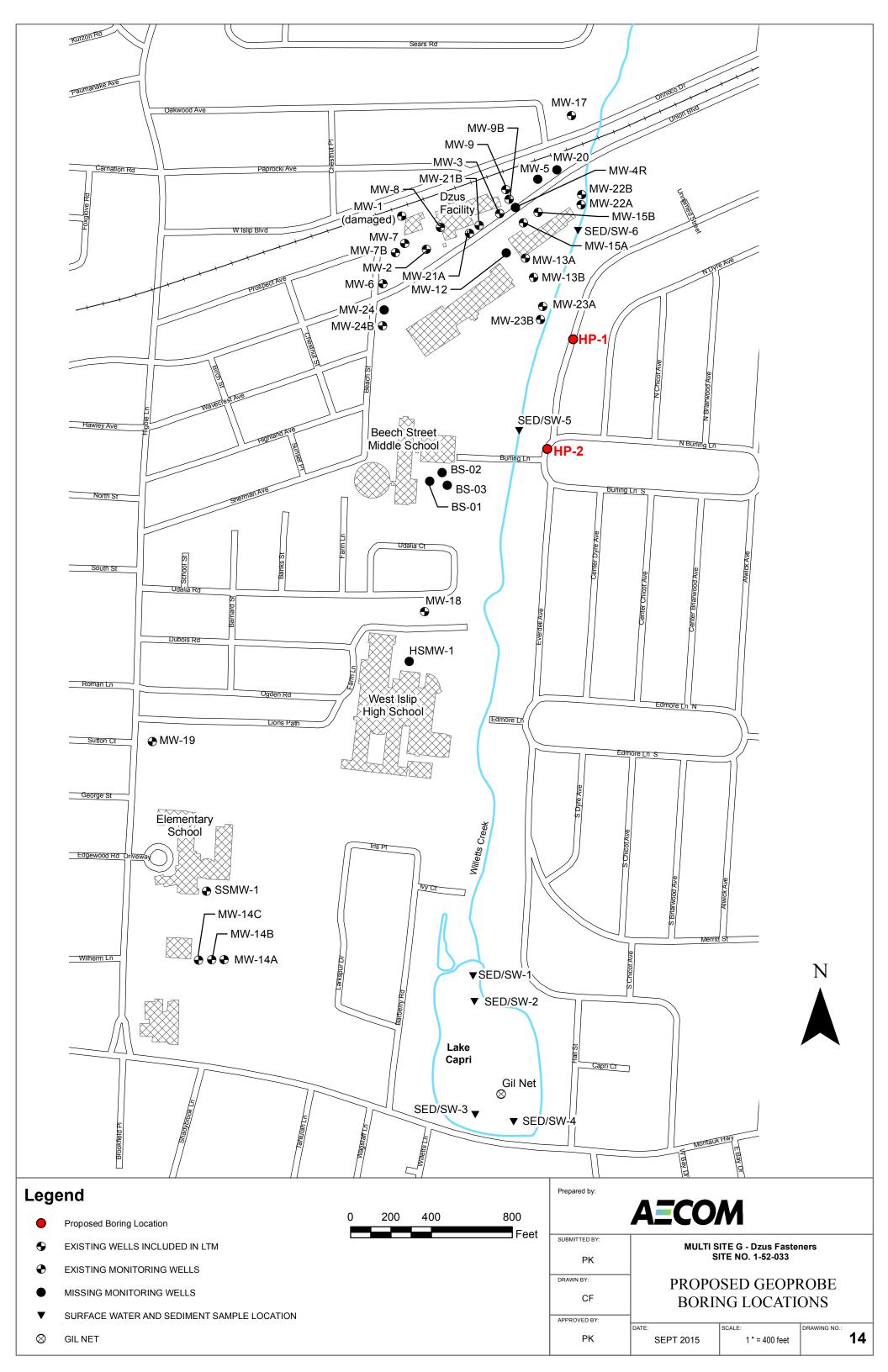




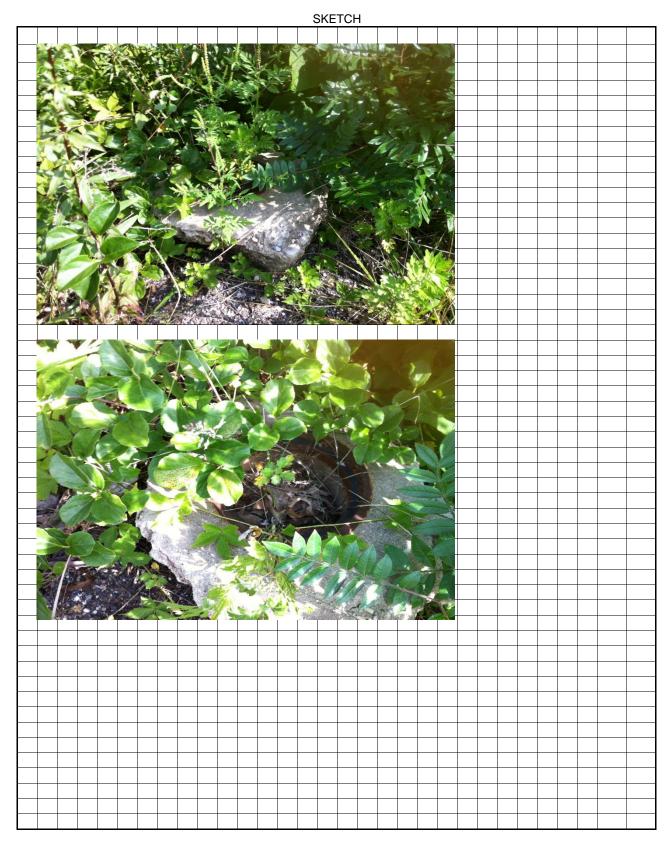








Appendix A


NYSDEC Monitoring Well Field Inspection Logs

SITE NAME:Dzus FastenersSITE ID.: 1-52-033INSPECTOR:CF/RP

MONITORING WELL FIELD INSPECTION LOG

DATE/TIME: 3/18/2015 0900 WELL ID.: MW-01

WEEE 15 IN	<u> </u>		
	-	YES	
WELL VISIBLE? (If not, provide directions below)		_	X
WELL COORDINATES? Latitude: 40° 42.49 Longitude: 73° 18.10 PDOP Reading from Trimble pathfinder: Satelites:	See	Rep	ort
GPS Method (circle) Trimble And/Or Magellan			
or o mounda (circle) Trimble Tribate in magentain	Г	YES	
WELL I.D. VISIBLE?	[Χ
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)			Χ
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:			
	ſ	YES	NO
SURFACE SEAL PRESENT?	[NA
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe.	-		NA
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	. L		NA
HEADSPACE READING (ppm) AND INSTRUMENT USED: Mini RAE 2000	_		NA
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	_		NA
PROTECTIVE CASING MATERIAL TYPE:			NA
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):		YES	NA
LOCK PRESENT?		ILO	NA
LOCK FUNCTIONAL?	-		NA
DID YOU REPLACE THE LOCK?	[NA
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)			NA
WELL MEASURING POINT VISIBLE?	L		NA
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):		NA	
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):		NA	
MEASURE WELL DIAMETER (Inches):	_	NA	
WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL CASING:	_	NA NA	
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE		NA NA	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	_	NA	
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhe	ad -		
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NEC!		RY.	
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden	, etc.)		
AND ASSESS THE TYPE OF RESTORATION REQUIRED.			
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT			
(e.g. Gas station, salt pile, etc.):			
DELIA DI CO			
REMARKS:			
The well was apparently destroyed during snow removal operations in 12/2007.			

SITE NAME:Dzus FastenersSITE ID.: 1-52-033INSPECTOR: CF/RP

MONITORING WELL FIELD INSPECTION LOG

DATE/TIME: 3/18/2015 0900

WELL ID.: MW-2 YES NO WELL VISIBLE? (If not, provide directions below) WELL COORDINATES? Latitude: 40° 42.49 Longitude: 73° 18.10 See Report PDOP Reading from Trimble pathfinder: Satelites: GPS Method (circle) Trimble And/Or Magellan YES NO WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back) WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL: YES NO SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below) HEADSPACE READING (ppm) AND INSTRUMENT USED: Mini RAE 2000 0.0 PID TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) Flushmount PROTECTIVE CASING MATERIAL TYPE: SS MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches): 6 YES NO LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): 14.2 MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): 7.43 MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL: PVC PHYSICAL CONDITION OF VISIBLE WELL CASING: GOOD ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Accessible by truck mounted rig. Located near the parking lot edge DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. well is in grassy area between parking lot and fence along union. IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): parking lot and site **REMARKS:** 1/4" OD poly tubing left in well. Concrete is all the way up above the PVC. Hard to keep dirt from

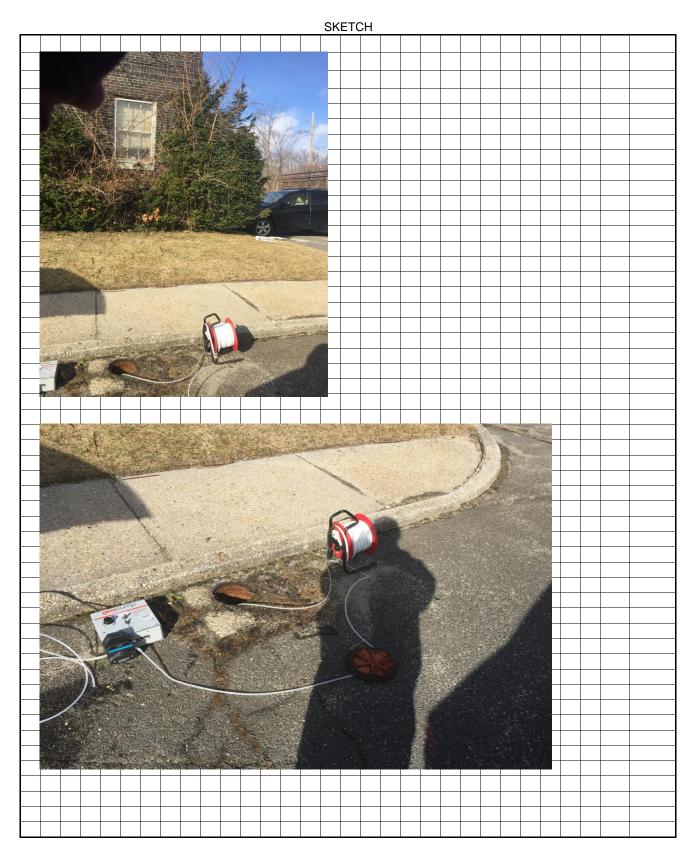
falling in when opening.

SITE NAME:Dzus FastenersSITE ID.: 1-52-033INSPECTOR:CF/RP

MONITORING WELL FIELD INSPECTION LOG

DATE/TIME: 3/18/2015 0900

	WELL ID.: M	W-3	
			S NO
(,1 ,			<u> </u>
WELL COORDINATES? Latitude: 40° 42.49 PDOP Reading from Trimble pathfinder:	Longitude: 73° 18.02 Satelites:	See Re	port
	gellan		
,	,	YES	S NO
WELL I.D. VISIBLE?			Χ
WELL LOCATION MATCH SITE MAP? (if not, sketch act	tual location on back)	Х	
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING	OR WELL:	N/A	
		YES	S NO
		X	
SURFACE SEAL COMPETENT? (If cracked, heaved etc	•	. X . X	
PROTECTIVE CASING IN GOOD CONDITION? (If dama			
HEADSPACE READING (ppm) AND INSTRUMENT USE		0.0	
TYPE OF PROTECTIVE CASING AND HEIGHT OF STIPPROTECTIVE CASING MATERIAL TYPE:	CKUP IN FEET (If applicable)		ushmount
MEASURE PROTECTIVE CASING INSIDE DIAMETER			
MERCONE I NO LEGITVE ORGINO INCIDE BIRINETEN	(1101100).	YES	
LOCK PRESENT?			Х
			NA
			X
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CA		X	Х
MEASURE WELL DEPTH FROM MEASURING POINT (•		
MEASURE DEPTH TO WATER FROM MEASURING PO MEASURE WELL DIAMETER (Inches):	JINT (Feet):	. <u>5.34</u> 2	
		<u>PVC</u>	
PHYSICAL CONDITION OF VISIBLE WELL CASING:		<u>GO</u>	
ATTACH ID MARKER (if well ID is confirmed) and IDENT	ΓΙFY MARKER TYPE	. =	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTIL	LITIES	. <u>-</u>	
DESCRIBE ACCESS TO WELL: (Include accessibility to power lines, proximity to permanent structures, etc.); ADD			
Accessible by truck mounted rig over front lawn			
DESCRIBE WELL SETTING (For example, located in a f	iold in a playaround on payament in a gordon	oto \	
AND ASSESS THE TYPE OF RESTORATION REQUIR		, etc.)	
	.ED.		
In a grassy area on Dzus property along Union Blvd			
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CO	ONTAMINATION, IF PRESENT		
(e.g. Gas station, salt pile, etc.):	·		
Site and road			
REMARKS:			
1/4" OD poly tubing left in well.			

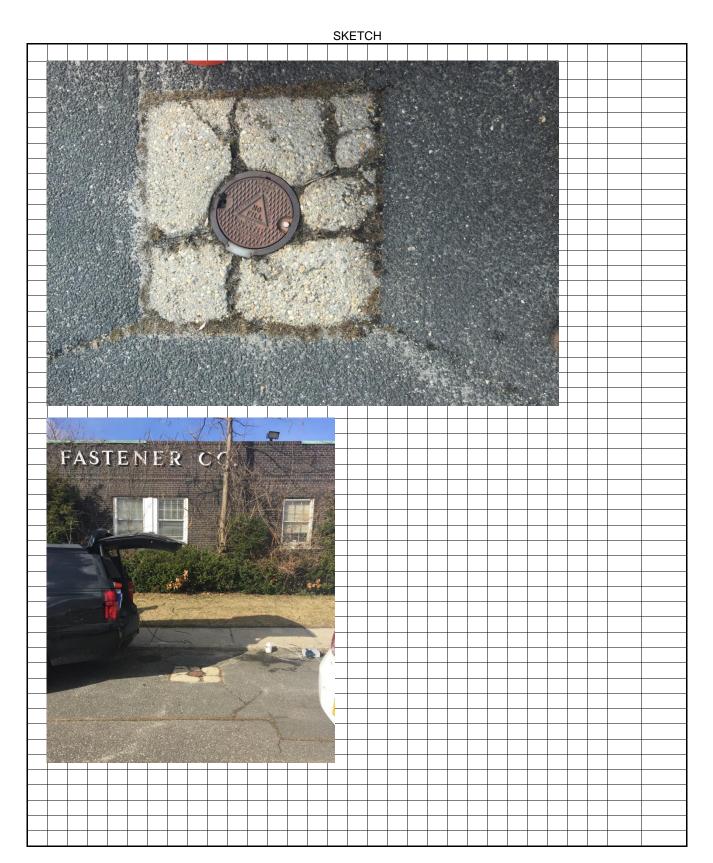

 SITE NAME:
 Dzus Fasteners
 SITE ID.: 1-52-033

 INSPECTOR:
 CF/RP

MONITORING WELL FIELD INSPECTION LOG

DATE/TIME: 3/18/2015 0900

WELL ID.: M	IW-9
WELL VICIDIES (If not provide discretions helps)	YES NO
WELL VISIBLE? (If not, provide directions below) WELL COORDINATES? Latitude: 40° 42.50 PDOP Reading from Trimble pathfinder: GPS Method (circle) Trimble And/Or Magellan	X See Report
WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	X
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL: N/A wrongly numbered on road SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	YES NO X X X
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below) HEADSPACE READING (ppm) AND INSTRUMENT USED: Mini RAE 2000 TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) PROTECTIVE CASING MATERIAL TYPE: MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches): LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK?	
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	X X 12.0
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overher power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECL Accessible by truck mounted rig	
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garder AND ASSESS THE TYPE OF RESTORATION REQUIRED. pavement along east side of Dzus building	n, etc.)
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): on-site, parking lot	
REMARKS:	
1/4" OD poly tubing left in well.	


 SITE NAME:
 Dzus Fasteners
 SITE ID.: 1-52-033

 INSPECTOR:
 CF/RP

MONITORING WELL FIELD INSPECTION LOG

DATE/TIME: 3/18/2015 0900

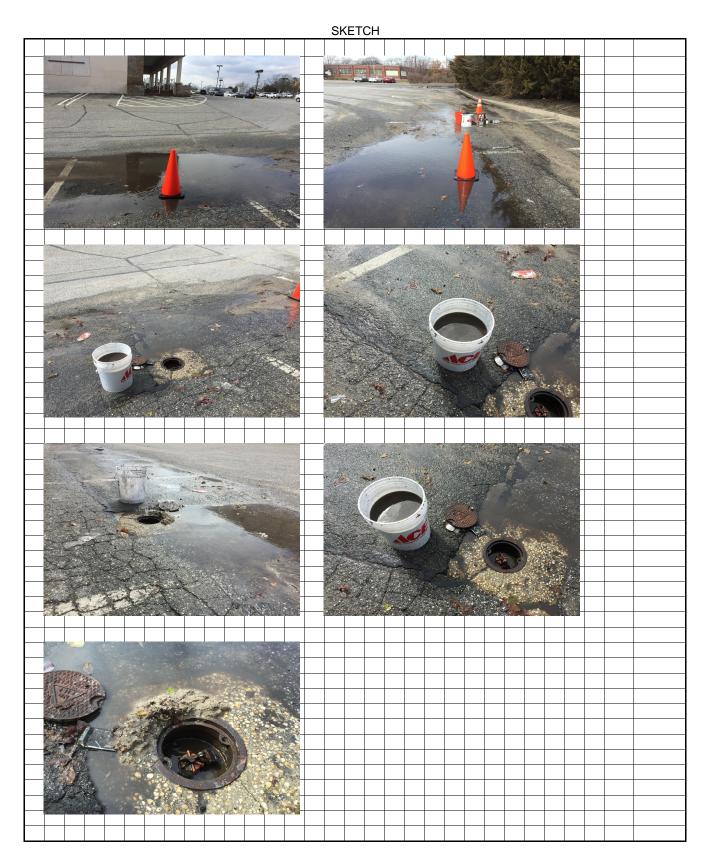
	WELL ID.: M	W-9B
		YES NO
WELL VISIBLE? (If not, provide directions below)		X
WELL COORDINATES? Latitude: 40° 42.49 PDOP Reading from Trimble pathfinder:	Longitude: 73° 18.01 Satelites:	See Report
GPS Method (circle) Trimble And/Or Magella		
• ,		YES NO
		X
WELL LOCATION MATCH SITE MAP? (if not, sketch actual	I location on back) Move back 30 ft	Х
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR	R WELL: N/A written on road	
CUREAGE OF AL PRESENTS		YES NO
SURFACE SEAL PRESENT?SURFACE SEAL COMPETENT? (If cracked, heaved etc., c	describe below)	X X
PROTECTIVE CASING IN GOOD CONDITION? (If damage		. X
HEADSPACE READING (ppm) AND INSTRUMENT USED:	•	0.0 PID
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICK		Flushmount
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inc	ches):	
LOOK PRESENTS		YES NO
LOCK PRESENT? LOCK FUNCTIONAL?		X X
		X
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASE	ED? (If yes,describe below)	X
WELL MEASURING POINT VISIBLE?		X
MEASURE WELL DEPTH FROM MEASURING POINT (Fee	et):	44.0
MEASURE DEPTH TO WATER FROM MEASURING POIN		
MEASURE WELL DIAMETER (Inches):		
		<u>PVC</u> GOOD
ATTACH ID MARKER (if well ID is confirmed) and IDENTIF		
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILIT		
DESCRIBE ACCESS TO WELL: (Include accessibility to true	ck mounted rig, natural obstructions, overhe	ad
power lines, proximity to permanent structures, etc.); ADD S		
Accessible by truck mounted rig		
DESCRIBE WELL SETTING (For example, located in a field		i, etc.)
AND ASSESS THE TYPE OF RESTORATION REQUIRED).	
pavement along east side of Dzus building		
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CON	TAMINATION IF DRESENT	
(e.g. Gas station, salt pile, etc.):	I AWINATION, II T NEGENT	
on-site, parking lot		
on one, parting for		
REMARKS:		
1/4" OD poly tubing left in well. New bolts needed		

SITE NAME:Dzus FastenersSITE ID.: 1-52-033INSPECTOR:CF/RP

MONITORING WELL FIELD INSPECTION LOG

DATE/TIME: 3/17/2015 1300 WELL ID.: MW-13A

	T	_ 1
WELL VICIDIES (If not provide directions below)		S NO
WELL VISIBLE? (If not, provide directions below) WELL COORDINATES? Latitude: 40° 42.44 Longitude: 73° 17.100	. X See Re	anort
PDOP Reading from Trimble pathfinder: Satelites:	See N	sport
GPS Method (circle) Trimble And/Or Magellan		
G. C. Manual (analog) and analog a	YE	S NO
WELL I.D. VISIBLE? On pavement (spray paint)		Х
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	Х	
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:		
WELE I.B. AG II AN I EARG GIVE GAGING ON WELE.	YE	S NO
SURFACE SEAL PRESENT?	. X	
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	. X	
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	. X	
HEADSPACE READING (ppm) AND INSTRUMENT USED: Mini RAE 2000	0.0	PID
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	. Flus	nmount
PROTECTIVE CASING MATERIAL TYPE:	. SS	
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):		3
LOOK PRESENTS		S NO
LOCK PRESENT?	. <u>X</u>	V
DID YOU REPLACE THE LOCK?	. ⊢	X
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)	·	X
WELL MEASURING POINT VISIBLE?	. X	
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	. 10.	5
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):		
MEASURE WELL DIAMETER (Inches):		2
WELL CASING MATERIAL:	. PV	С
PHYSICAL CONDITION OF VISIBLE WELL CASING:	. GC	OD
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	<u>-</u>	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	· <u>-</u>	
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead		
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECE	SSARY	
Accessible by truck mounted rig		
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden,	etc)	
AND ASSESS THE TYPE OF RESTORATION REQUIRED.	, 0.0.)	
In parking lot across the street from the site near liquor store.		
in parking for across the street from the site near liquor store.		
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT		
(e.g. Gas station, salt pile, etc.):		
parking lot		
REMARKS:		
1/4" OD poly tubing left in well.		



SITE NAME:Dzus FastenersSITE ID.: 1-52-033INSPECTOR:CF/RP

MONITORING WELL FIELD INSPECTION LOG

DATE/TIME: 3/17/2015 1300 WELL ID.: MW-13B

WELL IS IV	100
WELL VISIBLE? (If not, provide directions below)	YES NO
WELL COORDINATES? Latitude: 40° 42.43 Longitude: 73° 17.99	See Report
PDOP Reading from Trimble pathfinder: Satelites:	·
GPS Method (circle) Trimble And/Or Magellan	ly-alva
WELL LD VISIBLES. On payament (aprox point)	YES NO X
WELL I.D. VISIBLE? On pavement (spray paint) WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	X
	<u> </u>
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	YES NO
SURFACE SEAL PRESENT?	
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	X
HEADSPACE READING (ppm) AND INSTRUMENT USED: Mini RAE 2000	0.0 PID
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	
PROTECTIVE CASING MATERIAL TYPE: MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	
WE/GORE FROTEOTIVE O/TOING HOIDE DI/WETER (HOROS).	YES NO
LOCK PRESENT?	
LOCK FUNCTIONAL?	
DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)	
WELL MEASURING POINT VISIBLE?	
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	· · · · · · · · · · · · · · · · · · ·
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	
MEASURE WELL DIAMETER (Inches):	
WELL CASING MATERIAL:	
PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead	
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NEC	
Accessible by truck mounted rig	
, and the second	
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garder	n, etc.)
AND ASSESS THE TYPE OF RESTORATION REQUIRED.	
In parking lot across the street from the site near liquor store.	
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT	
(e.g. Gas station, salt pile, etc.):	
parking lot	
REMARKS:	
1/4" OD poly tubing left in well. New bolt needed, new seal needed, silted up inside.	
Well was covered by puddle and had to be bailed out.	



SITE NAME:	Dzus Fasteners	SITE ID.: 1-52-033
		INSDECTOD: CE/PD

MONITORING WELL FIELD INSPECTION LOG

INSPECTOR: <u>CF/RP</u>
DATE/TIME: 3/17/2015 1000

W	/ELL ID.: MW-15A
	YES NO
WELL VISIBLE? (If not, provide directions below) WELL COORDINATES? Latitude: 40° 42.49 Longitude: 73° 17.97	X X See Report
PDOP Reading from Trimble pathfinder: Satelites:	
GPS Method (circle) Trimble And/Or Magellan	
WELL ID ((0)D) 50 0 (1)	YES NO
WELL I.D. VISIBLE? On pavement (spray paint) WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	X X
•	Λ
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	YES NO
SURFACE SEAL PRESENT?	1/
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	
	X
Cap is missing HEADSPACE READING (ppm) AND INSTRUMENT USED: Mini F	RAE 2000 0.0 PID
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	Flushmount
PROTECTIVE CASING MATERIAL TYPE:	
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	
LOCK PRESENT?	
LOCK FUNCTIONAL?	
DID YOU REPLACE THE LOCK?	X
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE?	X
	<u> </u>
MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	
MEASURE WELL DIAMETER (Inches):	
WELL CASING MATERIAL:	PVC
PHYSICAL CONDITION OF VISIBLE WELL CASING:	<u>GOOD</u>
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstruction)	
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BAC	
Accessible by truck mounted rig	,
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement,	in a garden, etc.)
AND ASSESS THE TYPE OF RESTORATION REQUIRED.	
Asphalt parking lot in front of ACE hardware store toward Union Blvd.	
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT	
(e.g. Gas station, salt pile, etc.):	
parking lot	
	<u>-</u>
REMARKS:	
1/4" OD poly tubing left in well.	

 SITE NAME:
 Dzus Fasteners
 SITE ID.: 1-52-033

 INSPECTOR:
 CF/RP

MONITORING WELL FIELD INSPECTION LOG

DATE/TIME: 3/17/2015 1000
WELL ID: MW-15B

WELL ID IV	100-100
WELL VISIBLE? (If not, provide directions below)	YES NO
WELL COORDINATES? Latitude: 40° 42.50 Longitude: 73° 17.96	See Report
PDOP Reading from Trimble pathfinder: Satelites:	
GPS Method (circle) Trimble And/Or Magellan	YES NO
WELL I.D. VISIBLE? On asphalt pavement (spray paint)	X
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	X
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	
WELL I.D. AS IT ALL EARS ON FROTECTIVE GASING OR WELL.	YES NO
SURFACE SEAL PRESENT?	
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	X
HEADSPACE READING (ppm) AND INSTRUMENT USED: Mini RAE 2000	0.0 PID
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	
PROTECTIVE CASING MATERIAL TYPE: MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	
WEASORE PROTECTIVE CASING INSIDE DIAWETER (IIICHES).	YES NO
LOCK PRESENT?	
LOCK FUNCTIONAL?	
DID YOU REPLACE THE LOCK?	
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE?	
	<u></u>
MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	
MEASURE WELL DIAMETER (Inches):	
WELL CASING MATERIAL:	
PHYSICAL CONDITION OF VISIBLE WELL CASING:	
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	<u>-</u>
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead)	
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NEC	ESSARY.
Accessible by truck mounted rig	
	_
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garder	etc)
AND ASSESS THE TYPE OF RESTORATION REQUIRED.	., στο.,
Asphalt parking lot in front of ACE hardware store toward Union Blvd.	
Top rout parting for it. Hold of the last at the last	
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT	
(e.g. Gas station, salt pile, etc.):	
parking lot	
REMARKS:	
1/4" OD poly tubing left in well.	

SITE NAME:Dzus FastenersSITE ID.: 1-52-033INSPECTOR:CF/RP

MONITORING WELL FIELD INSPECTION LOG

DATE/TIME: 3/17/2015 1500

WELL ID.: MW-17 YES NO WELL VISIBLE? (If not, provide directions below) WELL COORDINATES? Latitude: NM Longitude: NM See Report PDOP Reading from Trimble pathfinder: Satelites: GPS Method (circle) Trimble And/Or Magellan YES NO WELL I.D. VISIBLE? On pavement (spray paint) WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back) WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL: YES NO SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below) HEADSPACE READING (ppm) AND INSTRUMENT USED: Mini RAE 2000 0.0 PID TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) 3 ushmount PROTECTIVE CASING MATERIAL TYPE: SS MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches): 6 YES NO LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): 16.0 MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): 6.14 MEASURE WELL DIAMETER (Inches): 2 WELL CASING MATERIAL: PVC PHYSICAL CONDITION OF VISIBLE WELL CASING: GOOD ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Accessible by truck mounted rig over grass DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Grassy area IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION. IF PRESENT (e.g. Gas station, salt pile, etc.): Creek and Road **REMARKS:**

1/4" OD poly tubing left in well

SITE NAME:Dzus FastenersSITE ID.: 1-52-033INSPECTOR:CF/RP

MONITORING WELL FIELD INSPECTION LOG

DATE/TIME: 3/17/2015 1600

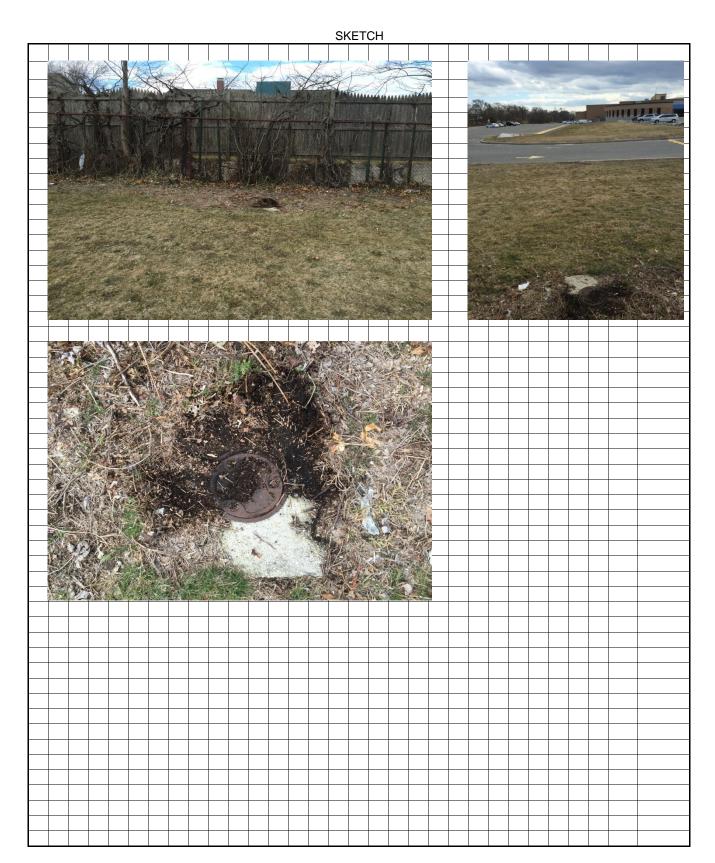
WELL ID.: MW-18 YES NO WELL VISIBLE? (If not, provide directions below) WELL COORDINATES? Latitude: 40° 70.27 Longitude: 73° 30.14 See Report PDOP Reading from Trimble pathfinder: Satelites: GPS Method (circle) Trimble And/Or Magellan YES NO WELL I.D. VISIBLE? On pavement (spray paint) WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back) WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL: X NO SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below) HEADSPACE READING (ppm) AND INSTRUMENT USED: Mini RAE 2000 0.0 PID TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) Flushmount PROTECTIVE CASING MATERIAL TYPE: SS MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches): 6 YES NO LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK?

IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): 13.4 MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): 4.35 MEASURE WELL DIAMETER (Inches): 2 WELL CASING MATERIAL: PVC PHYSICAL CONDITION OF VISIBLE WELL CASING: GOOD ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Accessible by truck mounted rig over grass

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED.

By bushes across from street light on grassy area in high school parking lot.


IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.):

none evident

REMARKS:

1/4" OD poly tubing left in well. New bolts needed

Passable obstruction in well at 8.2 feet

 SITE NAME:
 Dzus Fasteners
 SITE ID.: 1-52-033

 INSPECTOR:
 CF/RP

MONITORING WELL FIELD INSPECTION LOG

DATE/TIME: 3/17/2015 1100

	WELL ID.: N	1W-22A
MELL MODE ES (K		YES NO
WELL VISIBLE? (If not, provide directions below)	L an ait and a 700 47 044	X
WELL COORDINATES? Latitude: 40° 42.491 PDOP Reading from Trimble pathfinder:	Longitude: 73° 17.941 Satelites:	See Report
GPS Method (circle) Trimble And/Or Magell		
,		YES NO
WELL I.D. VISIBLE? On concrete pad (spray paint)		X
WELL LOCATION MATCH SITE MAP? (if not, sketch actual	Il location on back)	Х
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OF	R WELL:	N/A
		YES NO
		X
SURFACE SEAL COMPETENT? (If cracked, heaved etc.,	•	X
PROTECTIVE CASING IN GOOD CONDITION? (If damage	,	
HEADSPACE READING (ppm) AND INSTRUMENT USED:		0.0 PID
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICK	` ,	Flushmount
PROTECTIVE CASING MATERIAL TYPE: MEASURE PROTECTIVE CASING INSIDE DIAMETER (In:	ches):	<u>SS</u> 6
MEAGORET ROTECTIVE GAGING INCIDE DIAMETER (III		YES NO
LOCK PRESENT?		X
LOCK FUNCTIONAL?		X
		X
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASI		X
WELL MEASURING POINT VISIBLE?		X
MEASURE WELL DEPTH FROM MEASURING POINT (Fe	•	
MEASURE DEPTH TO WATER FROM MEASURING POIN		
(,		<u>2</u> PVC
		<u>FVC</u> GOOD
ATTACH ID MARKER (if well ID is confirmed) and IDENTIF		
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILIT		
DESCRIBE ACCESS TO WELL: (Include accessibility to tru	ick mounted rig, natural obstructions, overhe	ead
power lines, proximity to permanent structures, etc.); ADD S		
Accessible by truck mounted rig over grass		
DECODINE WELL CETTING (5		
DESCRIBE WELL SETTING (For example, located in a field		n, etc.)
AND ASSESS THE TYPE OF RESTORATION REQUIRED	J.	
In the grassy area around side of laundromat		
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CON	ITAMINATION, IF PRESENT	
(e.g. Gas station, salt pile, etc.):		
creek and parking lot		
REMARKS:		
1/4" OD poly tubing left in well. New bolts needed		

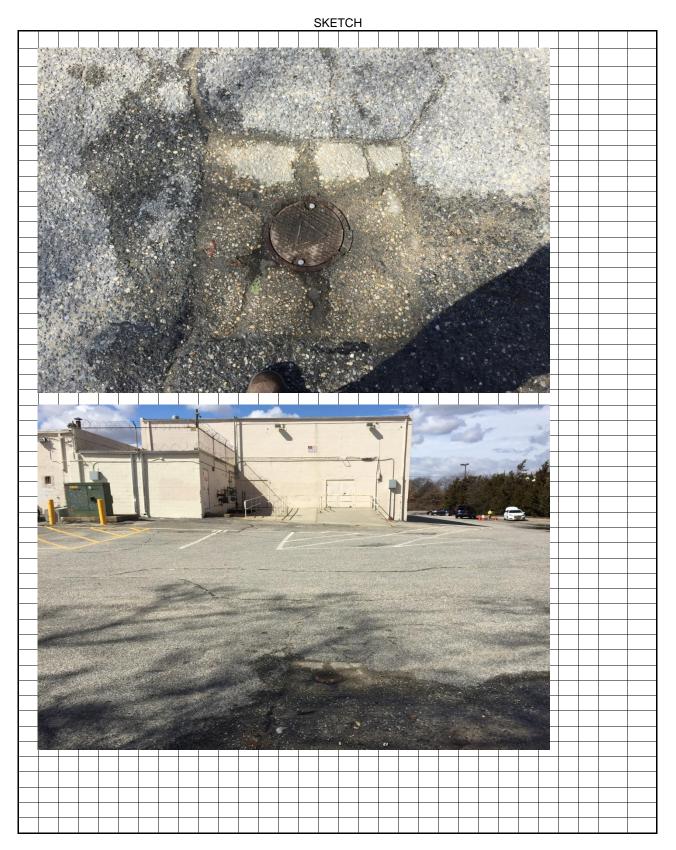
 SITE NAME:
 Dzus Fasteners
 SITE ID.: 1-52-033

 INSPECTOR:
 CF/RP

MONITORING WELL FIELD INSPECTION LOG

DATE/TIME: 3/17/2015 0900

	WELL ID	.: MW-22	IW-22 B			
WELL VISIBLE? (If not, provide directions below)			YES X	NO		
WELL COORDINATES? Latitude: 40° 42.491	Longitude: 73° 17.941	 Se	e Rep	ort		
PDOP Reading from Trimble pathfinder: GPS Method (circle) Trimble And/Or Magellan	Satelites:	00				
			YES			
WELL I.D. VISIBLE? On concrete pad				X		
WELL LOCATION MATCH SITE MAP? (if not, sketch actual lo	ocation on back)		Χ			
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR V	VELL:		N/A YES	NO		
SURFACE SEAL PRESENT?			Χ			
SURFACE SEAL COMPETENT? (If cracked, heaved etc., des PROTECTIVE CASING IN GOOD CONDITION? (If damaged,	•		X X			
	,					
HEADSPACE READING (ppm) AND INSTRUMENT USED: TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUF		00	0.0 P	_		
	IN FEET (II applicable)		SS	shmount		
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inche			6			
()	,		YES	NO		
LOCK PRESENT?			Χ			
LOCK FUNCTIONAL?				X		
	O (If year departies heley)			X		
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED WELL MEASURING POINT VISIBLE?	(if yes,describe below)		Χ	^		
				:		
MEASURE WELL DEPTH FROM MEASURING POINT (Feet) MEASURE DEPTH TO WATER FROM MEASURING POINT (44.45 5.00)		
			2			
WELL CASING MATERIAL:			PVC			
			GOO	D		
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY I PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIE:			-			
DESCRIBE ACCESS TO WELL: (Include accessibility to truck power lines, proximity to permanent structures, etc.); ADD SKE			ARY.			
Accessible by truck mounted rig over grass						
DESCRIBE WELL SETTING (For example, located in a field, i	n a playground, on pavement, in a gar	den, etc	.)			
AND ASSESS THE TYPE OF RESTORATION REQUIRED.						
In the grassy area around side of laundromat						
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTA	AMINATION, IF PRESENT					
(e.g. Gas station, salt pile, etc.):						
creek and parking lot						
REMARKS:						
1/4" OD poly tubing left in well. New bolts needed						



SITE NAME:Dzus FastenersSITE ID.: 1-52-033INSPECTOR:CF/RP

MONITORING WELL FIELD INSPECTION LOG

DATE/TIME: 3/17/2015 1400 WELL ID.: MW-23A

WEEE 15 1 <u>v</u>	100 207	•	
WELL MODE TO W		/ES	NO
	<u> </u>		ort
	See	Kep	υιι
, ,	7	/ES	NO
WELL I.D. VISIBLE? On asphalt pavement (spray paint)			Χ
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	×	(
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:			
			NO
,	X	`	
HEADSPACE READING (ppm) AND INSTRUMENT USED: Mini RAE 2000		0.0 P	
· · · · · · · · · · · · · · · · · · ·			ount
LL VISIBLE? (If not, provide directions below) LL COORDINATES? Latitude: 40° 42.402 Longitude: 73° 17.991 PDOP Reading from Trimble pathfinder: Satelites: GPS Method (circle) Trimble And/Or Magellan LL I.D. VISIBLE? On asphalt pavement (spray paint) LL LOCATION MATCH SITE MAP? (if not, sketch actual location on back) LL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL: RFACE SEAL PRESENT? RFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) DTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below) DTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below) DTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below) DEOF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) PE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) FOTECTIVE CASING MATERIAL TYPE: ASURE PROTECTIVE CASING INSIDE DIAMETER (Inches): CK PRESENT? CK FUNCTIONAL? YOU REPLACE THE LOCK? THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) LL MEASURING POINT VISIBLE? ASURE WELL DEPTH FROM MEASURING POINT (Feet): ASURE WELL DEPTH FROM MEASURING POINT (Feet): ASURE WELL DIAMETER (Inches): LL CASING MATERIAL: CSICAL CONDITION OF VISIBLE WELL CASING: ACK IN MARKER (If well ID is confirmed) and IDENTIFY MARKER TYPE DXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES SCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead rer lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSA essible by truck mounted rig SCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead rer lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSA essible by truck mounted rig SCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) D ASSESS THE TYPE OF RESTORATION REQUIRED. ement behind building (currently liquor store)		6 6	
WILHOUTE I NOTEOTIVE ORGING INCIDE DIRIVILTER (IIICHES).			NO
LOCK PRESENT?			
LOCK FUNCTIONAL?	[Χ
DID YOU REPLACE THE LOCK?			Χ
			Χ
	<u>L</u>		
		4.23	3
		.21	
		VC	
PHYSICAL CONDITION OF VISIBLE WELL CASING:	_	300	D
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	<u>Ξ</u>		
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	··· <u>-</u>		
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead			
	ESSAR	RΥ.	
Accessible by truck mounted rig			
DESCRIBE WELL SETTING (For example, located in a field, in a playground, an payament, in a gordan	o etc.)		
	1, 610.)		
pavement bening building (currently liquor store)			
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT			
(e.g. Gas station, salt pile, etc.):			
parking lot			
REMARKS:			
1/4" OD poly tubing left in well. New bolts needed			

SITE NAME:Dzus FastenersSITE ID.: 1-52-033INSPECTOR:CF/RP

MONITORING WELL FIELD INSPECTION LOG

DATE/TIME: 3/17/2015 1400 WELL ID.: MW-23B

, , ,	YES X	NO
WELL COORDINATES? Latitude: 40° 42.403 Longitude PDOP Reading from Trimble pathfinder: Sate	le: 73° 17.987 Set See Rep elites:	ort
GPS Method (circle) Trimble And/Or Magellan		l o
WELL I.D. VISIBLE? On asphalt pavement (spray paint)	YES	X
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on be	back) X	
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	IVEQ.	NO
SURFACE SEAL PRESENT?	X	NO
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below).		
HEADSPACE READING (ppm) AND INSTRUMENT USED: TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET PROTECTIVE CASING MATERIAL TYPE:		
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):		NO
LOCK PRESENT?		
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK?		X
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,de WELL MEASURING POINT VISIBLE?	escribe below)X	Χ
	44.0	
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches):		
WELL CASING MATERIAL:	PVC	
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER T		טנ
	rig natural abatruations averband	
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted r power lines, proximity to permanent structures, etc.); ADD SKETCH OF L Accessible by truck mounted rig		
DESCRIBE WELL SETTING (For example, located in a field, in a playgro	ound, on pavement, in a garden, etc.)	
AND ASSESS THE TYPE OF RESTORATION REQUIRED.		
pavement behind building (currently liquor store)		
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION (e.g. Gas station, salt pile, etc.):	N, IF PRESENT	
parking lot		
REMARKS:		
1/4" OD poly tubing left in well. New bolts needed		
		_

Appendix B

Well and Surface Water Sampling Forms

	PROJECT	PROJECT No.	SHEET		SHEETS	
WELL SAMPLING FORM	Dzus Fasteners	60135736	1	OF	1	
LOCATION		DATE WELL SAMPLED	-			
West Islip, NY	lip, NY 3/18/2015					
CLIENT		NAME OF INSPECTOR				
NYSDEC		Celeste Foster an	d Rita Par	oagian		

ONE WELL VOLUME: 1.10 gallons WELL TD: 14.2 ft PUMP INTAKE DEPTH: 9.2 ft

	Depth FIELD MEASUREMENTS								
	to								
Time	Water	Rate	Temp.		DO	рН	ORP	Turbidity	REMARKS
	(ft)	(mL/min)	(°C)	(µs/cm)	(mg/L)			(ntu)	
8:20	7.43								Static water level
8:25	7.43	250	7.36	0.215	5.20	5.92	239	413.0	pump on
8:40	7.43	250	7.69	0.214	1.08	5.92	129	90.3	
8:45	7.43	250	7.88	0.216	0.80	5.94	104	65.2	
8:50	7.43	250	8.32	0.227	0.32	5.96	77	30.5	
8:55	7.43	250	8.33	0.228	0.31	5.95	77	28.5	
9:00	7.43	250	8.34	0.228	0.31	5.96	77	28.8	
9:05									Unfiltered Sample DMW-2 Collected
9:10									Filtered Sample DMW-2F Collected
									1/4" poly tubing put back into the well.
									n i poly tabling par back line the from
	1								

Pump Type: Peristaltic Pump

	PROJECT	PROJECT No.	SHEET		SHEETS	
WELL SAMPLING FORM	Dzus Fasteners	60135736	1	OF	1	
LOCATION		DATE WELL SAMPLED				
West Islip, NY	Vest Islip, NY 3/18/2015					
CLIENT		NAME OF INSPECTOR				
NYSDEC		Celeste Foster ar	ıd Rita Pa _l	oagian		

ONE WELL VOLUME: 1.54 gallons WELL TD: 14.8 ft PUMP INTAKE DEPTH: 12 ft

REMARKS
level
ample DMW-3 Collected
ple DMW-3F Collected
ing put back into the well.
1

Pump Type: Peristaltic Pump

	PROJECT	PROJECT No.	SHEET		SHEETS			
WELL SAMPLING FORM	Dzus Fasteners	60135736	1	OF	1			
LOCATION		DATE WELL SAMPLED	-					
West Islip, NY		3/18/2015	3/18/2015					
CLIENT		NAME OF INSPECTOR						
NYSDEC		Celeste Foster an	d Rita Par	oagian				

ONE WELL VOLUME: 1.27 gallons WELL TD: 12.00 ft PUMP INTAKE DEPTH: 9 ft

	Depth			FIE	LD MEAS	SUREME	NTS		
	to	Purge							
Time	Water	Rate	Temp.		DO	рН	ORP	Turbidity	REMARKS
	(ft)	(mL/min)	(°C)	(µs/cm)	(mg/L)			(ntu)	
9:10	4.20								Static water level
9:15	5.20	250	5.62	0.233	1.46	5.58	257	4.2	pump on
9:20	5.20	250	6.56	0.233	1.06	5.63	279	0.7	
9:25	5.20	250	6.55	0.234	1.02	5.63	278	0.5	
9:30	5.20	250	6.59	0.234	1.00	5.65	274	0.6	
9:35	5.20	250	6.60	0.234	1.01	5.65	274	0.5	
9:40									Unfiltered Sample DMW-9 Collected
9:45									Filtered Sample DMW-9F Collected
									·
									1/4" poly tubing put back into the well.
									31

Pump Type: Peristaltic Pump

WELL NO. MW-9B

PROJECT PROJECT No. SHEET

Dzus Fasteners 60135736 1 of

 LOCATION
 DATE WELL SAMPLED

 West Islip, NY
 3/18/2015

 CLIENT
 NAME OF INSPECTOR

NYSDEC Celeste Foster and Rita Papagian

ONE WELL VOLUME: 6.51 gallons WELL TD: 44.0 ft PUMP INTAKE DEPTH: 42 ft

	Depth to	Purge		FIE	LD MEAS	SUREME	NTS		
Time	Water (ft)	Rate (mL/min)	Temp.	Conduct. (µs/cm)	DO (mg/L)	рН	ORP	Turbidity (ntu)	REMARKS
8:20	4.09								Static water level
8:25	4.80	250	6.40	0.133	2.40	7.14	226	28.9	pump on
8:35	4.81	250	8.10	0.131	0.73	5.94	272	20.8	
8:40	4.81	250	8.56	0.130	0.83	5.83	280	3.5	
8:45	4.81	250	8.59	0.130	0.89	5.80	289	2.6	
8:50	4.81	250	8.50	0.130	0.80	5.78	284	2.7	
8:55									Unfiltered Sample DMW-9B Collected
9:00									Filtered Sample DMW-9BF Collected
									1/4" poly tubing put back into the well.
-									
-									

Pump Type: Peristaltic Pump

Analytical Parameters: TAL Metals (Total and Field Filtered)

1

WELL NO. MW-13A

	PROJECT	PROJECT No.	SHEET		SHEETS			
WELL SAMPLING FORM	Dzus Fasteners	60135736	1	OF	1			
LOCATION		DATE WELL SAMPLED	-					
West Islip, NY		3/17/2015	3/17/2015					
CLIENT		NAME OF INSPECTOR						
NYSDEC	Celeste Foster a	Celeste Foster and Rita Papagian						

ONE WELL VOLUME: 1.35 gallons WELL TD: 10.5 ft PUMP INTAKE DEPTH: 8 ft

	Depth			FIE	LD MEAS	SUREME	NTS		
	to	Purge							
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity	REMARKS
	(ft)	(mL/min)	(°C)	(µs/cm)	(mg/L)			(ntu)	
12:35									Static water level
12:40	2.22	250							pump on, no water
13:00	2.22	250	8.06	0.360	0.03	6.56	-6	162	
13:05	2.22	250	8.10	0.360	0.02	6.56	-8	1000	
13:10	2.22	250	8.12	0.356	0.00	6.62	-15	92.1	
13:15	2.22	250	8.09	0.355	0.00	6.63	-16	78.0	
13:20		250	8.08	0.353	0.01	6.65	-19	73.5	
13:25	2.22	250	8.08	0.354	0.01	6.65	-19	71.0	
13:30									Unfiltered Sample DMW-13A Collected
13:35									Filtered Sample DMW-13AF Collected
10.00									I more d'ampie 2 mil rer il d'enceted
									1/4" poly tubing put back into the well.
									7 1 poly tubing put back into the won.

Pump Type: Peristaltic Pump

WELL NO. MW-13B

	PROJECT	PROJECT No.	SHEET		SHEETS			
WELL SAMPLING FORM	Dzus Fasteners	60135736	1	OF	1			
LOCATION		DATE WELL SAMPLED	-					
West Islip, NY		3/17/2015	3/17/2015					
CLIENT		NAME OF INSPECTOR						
NYSDEC	Celeste Foster a	Celeste Foster and Rita Papagian						

ONE WELL VOLUME: 6.87 gallons WELL TD: 44.3 ft PUMP INTAKE DEPTH: 39.4 ft

	Depth to	Purge		FIE	LD MEA	SUREME	NTS		
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity	REMARKS
111110	(ft)	(mL/min)	(°C)	(µs/cm)	(mg/L)	Pii	J OKI	(ntu)	KEMAKKO
13:45	2.15	(,,	()	(µ.c, c)	(g, =)			(,	Static water level
13:50		250	12.25	0.174	3.57	6.30	91	112.0	pump on
13:50		250	11.91	0.164	2.99	5.68	143	56.1	panip on
13:55	2.04	250	12.10	0.163	2.87	5.61	156	58.9	
14:00	2.04	250	12.31	0.162	2.93	5.56	170	42.0	
14:05		250	12.34	0.162	2.98	5.56	171	45.4	
14:10	2.04	250	12.35	0.162	3.02	5.57	173	45.8	
14:15	2.04	250	12.40	0.161	3.03	5.54	179	48.8	
	2.0.	200	12.10	0.101	0.00	0.0 1		10.0	
14:20									Unfiltered Sample DMW-13B Collected
14:25									Filtered Sample DMW-13BF Collected
0									i morea campie zimii rezi cencenca
									1/4" poly tubing put back into the well.
-									
-									
-									

Pump Type: Peristaltic Pump

WELL NO. MW-15A

[PROJECT No. | SHEET

	PROJECT	PROJECT No.	SHEET		SHEETS			
WELL SAMPLING FORM	Dzus Fasteners	60135736	1	OF	1			
LOCATION		DATE WELL SAMPLED	•					
West Islip, NY		3/17/2015	3/17/2015					
CLIENT		NAME OF INSPECTOR						
NYSDEC		Celeste Foster an	d Rita Pa _l	oagian				

ONE WELL VOLUME: 3.87 gallons WELL TD: 28.6 ft PUMP INTAKE DEPTH: 27 ft

	Depth to	Purge		FIE	LD MEAS	SUREME	NTS		
Time	Water (ft)	Rate (mL/min)	Temp.	Conduct. (µs/cm)	DO (mg/L)	рН	ORP	Turbidity (ntu)	REMARKS
10:03		, ,	` ′	., ,	`			, ,	Static water level
10:10	4.86	250	9.73	0.218	18.53	5.55	2.85	40.4	pump on
									Changed Horiba Battery while purging
10:20	4.86	250	9.99	0.210	5.16	5.52	286	33.9	
10:25	4.86	250	9.71	0.208	5.53	5.47	289	34.7	
10:30	4.86	250	9.73	0.207	5.35	5.46	291	32.5	
10:35	4.86	250	9.78	0.207	4.88	5.44	292	31.7	
10:40									Unfiltered Sample DMW-15A Collected
10:42									Filtered Sample DMW-15AF Collected
									1/4" poly tubing put back into the well.
									, , , , , , , , , , , , , , , , , , , ,

Pump Type: Peristaltic Pump

WELL NO. MW-15B

		_			
	PROJECT	PROJECT No.	SHEET		SHEETS
WELL SAMPLING FORM	Dzus Fasteners	60135736	1	OF	1
LOCATION		DATE WELL SAMPLED			
West Islip, NY		3/17/2015			
CLIENT		NAME OF INSPECTOR			
NYSDEC	Celeste Foster and	d Rita Pap	oagian		

ONE WELL VOLUME: 12.88 gallons WELL TD: 83.6 ft PUMP INTAKE DEPTH: 81.6 ft

	Depth			FIE	LD MEAS	SUREME	NTS		
	to	Purge							
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity	REMARKS
	(ft)	(mL/min)	(°C)	(µs/cm)	(mg/L)			(ntu)	
10:00	4.6								Static water level
10:05		250	10.80	0.317	1.12	5.73	247	9.2	pump on
10:20	4.90	250	10.74	0.313	0.01	4.77	302	7.0	
10:30	5.00	250	10.78	0.314	0.00	4.75	305	9	
10:35	5.00	250	10.89	0.313	0.00	4.71	310	5.9	
10:40	5.00	250	10.73	0.312	0.00	4.70	312	4.4	
10:45									Unfiltered Sample DMW-15B Collected
									+MS/MSD
10:50									Filtered Sample DMW-15BF Collected
10.00									+MS/MSD
10:55									Duplicate Unfiltered DMW-65B Collected
11:00									Dupicate Filtered DMW-65BF Collected
11.00									Dapicate i ilicica Divivi cobi Collectea
									1/4" poly tubing put back into the well.
									1/4 poly tubility put back into the well.
L									

Pump Type: Peristaltic Pump

	PROJECT	PROJECT No. SHEET						
WELL SAMPLING FORM	Dzus Fasteners	60135736	1	OF	1			
LOCATION		DATE WELL SAMPLED	-					
West Islip, NY		3/17/2015	3/17/2015					
CLIENT		NAME OF INSPECTOR						
NYSDEC		Celeste Foster ar	nd Rita Pa _l	pagian				

ONE WELL VOLUME: 1.61 gallons WELL TD*: 16.0 ft PUMP INTAKE DEPTH: 14 ft

	Depth FIELD MEASUREMENTS									
	Depth	D		FIE	LD MEAS	SUREME	NTS			
Time	to Water	Purge Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity	REMARKS	
Tille	(ft)	(mL/min)	(°C)	(µs/cm)	(mg/L)	рп	UKF	(ntu)	REWARKS	
15/;28		(1112/11111)	(0)	(μο/σιιι)	(IIIg/L)			(IIIu)	Static water level, 3' stick up	
15:35		250	5.40	0.323	7.88	7.67	112	652.0	pump on	
15:40		250	4.61	0.323	7.14	7.14	152	304	Pump on	
15:45		250	5.21	0.317	7.18	8.02	163	103.0		
15:50		250	4.94	0.327	5.56	6.94	168	39.7		
15:55		250	4.90	0.330	5.50	6.92	170	17.7		
16:00		250	4.93	0.333	5.53	6.92	171	15.0		
16:05	6.46	250	4.94	0.332	5.57	6.92	171	14.9		
16:10									Unfiltered Sample DMW-17 Collected	
16:15									Filtered Sample DMW-17F Collected	
									1/4" poly tubing put back into the well.	
<u> </u>										
<u> </u>										
		-			•				•	

Pump Type: Peristaltic Pump

	PROJECT	PROJECT No.	SHEET		SHEETS			
WELL SAMPLING FORM	Dzus Fasteners	60135736	1	OF	1			
LOCATION		DATE WELL SAMPLED	•					
West Islip, NY		3/17/2015	3/17/2015					
CLIENT		NAME OF INSPECTOR						
NYSDEC		Celeste Foster ar	nd Rita Par	oagian				

ONE WELL VOLUME: 1.48 gallons WELL TD*: 13.4 ft PUMP INTAKE DEPTH: 10 ft

	*difficult to get past 6.7 ft									
	Depth		FIELD MEASUREMENTS							
	to	Purge								
Time	Water	Rate	Temp.			рН	ORP	Turbidity	REMARKS	
	(ft)	(mL/min)	(°C)	(µs/cm)	(mg/L)			(ntu)		
16:15									Static water level	
16:30		250	9.59	0.396	7.03	6.22	196	162.0	pump on	
16:35		250	9.60	0.415	5.52	6.11	201	115		
16:40		250	9.60	0.403	4.94	6.05	206	53.2		
16:45	4.35	250	9.62	0.387	4.10	5.97	214	20.4		
16:50	4.35	250	9.63	0.384	4.12	5.97	211	21.0		
16:55	4.35	250	9.64	0.382	4.09	5.96	212	22.1		
17:00									Unfiltered Sample DMW-18 Collected	
17:05									Filtered Sample DMW-18F Collected	
									·	
									1/4" poly tubing put back into the well.	
									1 7 51	

Pump Type: Peristaltic Pump

WELL NO. MW-22A

PROJECT No. | SHEET

	PROJECT	PROJECT No.	PROJECT No. SHEET						
WELL SAMPLING FORM	Dzus Fasteners	60135736	1	OF	1				
LOCATION		DATE WELL SAMPLED							
West Islip, NY		3/17/2015	3/17/2015						
CLIENT		NAME OF INSPECTOR							
NYSDEC		Celeste Foster and	l Rita Pa _l	pagian					

ONE WELL VOLUME: 1.38 gallons WELL TD: 14.2 ft PUMP INTAKE DEPTH: 10 ft

	Depth			FIE	LD MEAS	SUREME	NTS		
	to	Purge							
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity	REMARKS
	(ft)	(mL/min)	(°C)	(µs/cm)	(mg/L)	_		(ntu)	
11:30	5.72								Static water level
11:35		250	8.72	0.361	3.99	6.00	219	300	pump on
11:40	5.72	250	8.43	0.353	2.99	6.17	175	73.6	
11:45	5.72	250	8.40	0.353	2.61	6.17	160	43.5	
11:50	5.72	250	8.40	0.357	2.03	6.16	146	45.3	
11:55	5.72	250	8.42	0.361	2.00	6.17	133	32.0	
12:00	5.72	250	8.44	0.374	1.62	6.19	112	20.6	
12:05	5.72	250	8.44	0.375	1.53	6.19	111	21.4	
12:10	5.72	250	8.45	0.375	1.49	6.19	111	21.7	
12:15									Unfiltered Sample DMW-22A Collected
12:20									Filtered Sample DMW-22AF Collected
									•
									1/4" poly tubing put back into the well.
									3 1 3 1 1 1 1 1 1 1

Pump Type: Peristaltic Pump

WELL NO. MW-22B

	PROJECT	PROJECT No.	SHEET		SHEETS
WELL SAMPLING FORM	Dzus Fasteners	60135736	1	OF	1
LOCATION		DATE WELL SAMPLED			
West Islip, NY		3/17/2015			
CLIENT		NAME OF INSPECTOR			
NYSDEC		Celeste Foster	and Rita Pa	pagian	1

ONE WELL VOLUME: 6.43 gallons WELL TD: 44.45 ft PUMP INTAKE DEPTH: 40 ft

	Depth to	Purge		FIELD MEASUREMENTS					
Time	Water	Purge Rate	Temp.	Conduct.	DO	рН	ORP	Tumbiality	DEMARKS
Time	(ft)	(mL/min)	(°C)	(µs/cm)	(mg/L)	рп	UKP	Turbidity (ntu)	REMARKS
11:30		(11112/111111)	(0)	(με/σιι)	(IIIg/L)			(IIIu)	Static water level
		250	11.27	0.247	6.70	5.49	206	1.1	
		250			6.79		286		pump on
11:45		250	11.35		5.62	5.45	284	0.4	
11:50		250	11.36		5.55	5.45	284	0.7	
11:55		250	11.36	0.319	5.45	5.46	284	0.7	
12:00	5.50	250	11.34	0.319	5.40	5.46	283	0.7	
12:02									Unfiltered Sample DMW-22B Collected
12:05									Filtered Sample DMW-22BF Collected
									1/4" poly tubing put back into the well.
									7 31

Pump Type: Peristaltic Pump

WELL NO. MW-23A

	PROJECT	PROJECT No. SHEET						
WELL SAMPLING FORM	Dzus Fasteners	60135736	1	OF	1			
LOCATION		DATE WELL SAMPLED	•					
West Islip, NY		3/17/2015						
CLIENT		NAME OF INSPECTOR						
NYSDEC		Celeste Foster a	nd Rita Pa	pagian	ı			

ONE WELL VOLUME: 1.65 gallons WELL TD: 14.33 ft PUMP INTAKE DEPTH: 12 ft

	Depth			FIE	LD MEAS	SUREME	NTS		
	to	Purge							
Time	Water	Rate	Temp.		DO	рН	ORP	Turbidity	REMARKS
	(ft)	(mL/min)	(°C)	(µs/cm)	(mg/L)			(ntu)	
13:35									Static water level
13:40		250	8.26	1.16	0.00	5.93	111	12.0	pump on
13:45		250	8.31	1.15	0.00	5.99	107	12.0	
13:50	5.01	250	8.23	1.10	0.00	6.01	84	8.9	
13:55	5.01	250	8.28	1.09	0.00	6.01	83	8.6	
14:00	5.01	250	8.30	1.03	0.00	6.03	79	8.2	
14:05									Unfiltered Sample DMW-23A Collected
14:10									Filtered Sample DMW-23AF Collected
									1/4" poly tubing put back into the well.
									7 1 poly tubing put back into the won.

Pump Type: Peristaltic Pump

WELL NO. MW-23B

	PROJECT	PROJECT No.	SHEET		SHEETS			
WELL SAMPLING FORM	Dzus Fasteners	60135736	1	OF	1			
LOCATION		DATE WELL SAMPLED	•					
West Islip, NY		3/17/2015						
CLIENT		NAME OF INSPECTOR						
NYSDEC		Celeste Foster an	d Rita Pa _l	oagian				

ONE WELL VOLUME: 6.50 gallons WELL TD: 44.0 ft PUMP INTAKE DEPTH: 42 ft

	Depth		FIELD MEASUREMENTS						
	to	Purge							
Time	Water	Rate	Temp.		DO	рН	ORP	Turbidity	REMARKS
	(ft)	(mL/min)	(°C)	(µs/cm)	(mg/L)			(ntu)	
12:30									Static water level
12:40	5.00	250	11.40	0.206	4.77	6.33	252	99.0	pump on
12:50	5.00	250	11.43	0.188	4.60	6.32	254	91.7	
13:05	5.00	250	11.43	0.185	5.20	6.26	242	58.4	
13:10	5.00	250	11.47	0.189	4.99	6.56	241	47.1	
13:15	5.00	250	11.47	0.190	4.97	6.57	241	48.0	
13:20	5.00	250	11.49		4.95	6.54	243	47.3	
13:22									Unfiltered Sample DMW-23B Collected
13:25									Filtered Sample DMW-23BF Collected
10120									
									1/4" poly tubing put back into the well.
									7 1 poly tubing put buok into the won.

Pump Type: Peristaltic Pump

Appendix C

Laboratory Data Packages

175 ROUTE 46 WEST, UNIT D · FAIRFIELD, NJ 07004 2 MADISON ROAD, FAIRFIELD, NJ 07004 800-426-9992 · 973-244-9770

> FAX: 973-244-9787 WWW.HCVLAB.COM

Analytical & Field Services

Project: Dzus

Client PO: 60277021 02.01

Report To: AECOM

100 Red School House Rd.

Suite B-1

Chestnut Ridge, NY 10977

Attn: Paul Kareth

Received Date: 3/18/2015

Report Date: 3/31/2015

Deliverables: NYDOH-CATB

Lab ID: AC83807

Lab Project No: 5031810

This report is a true report of results obtained from our tests of this material. The report relates only to those samples received and analyzed by the laboratory. All results meet the requirements of the NELAC Institute standards. Laboratory reports may not be reproduced, except in full, without the written approval of the laboratory.

In lieu of a formal contract document, the total aggregate liability of Hampton-Clarke to all parties shall not exceed Hampton-Clarke's total fee for analytical services rendered.

Robin Cousineau - Quality Assurance Director

OR

Jean Revolus - Laboratory Director

NJ (07071) PA (68-00463) NY (ELAP11408) KY (90124) CT (PH-0671)

Table of Contents

SDG Narrative	1
Reporting Limit Definitions	4
Data Package Summary Forms	6
Chain of Custody Forms	115
Metal Data	124

SDG Narrative

HC Case Narrative

Client: AECOM

HC Project: 5031810

Project: Dzus

Hampton-Clarke (HC) received the following samples on 3/18/2015:

Client ID	HC Sample ID	<u>Matrix</u>	Analysis
DMW-15A	AC83807-001	Aqueous	Metals (6010C/6020A), Mercury (7470A)
DMW-15AF	AC83807-002	Aqueous	Metals (6010C/6020A), Mercury (7470A)
DMW-15B	AC83807-003	Aqueous	Metals (6010C/6020A), Mercury (7470A)
DMW-15BF	AC83807-004	Aqueous	Metals (6010C/6020A), Mercury (7470A)
DMW-65B	AC83807-005	Aqueous	Metals (6010C/6020A), Mercury (7470A)
DMW-65BF	AC83807-006	Aqueous	Metals (6010C/6020A), Mercury (7470A)
DMW-22B	AC83807-007	Aqueous	Metals (6010C/6020A), Mercury (7470A)
DMW-22BF	AC83807-008	Aqueous	Metals (6010C/6020A), Mercury (7470A)
DMW-22A	AC83807-009	Aqueous	Metals (6010C/6020A), Mercury (7470A)
DMW-22AF	AC83807-010	Aqueous	Metals (6010C/6020A), Mercury (7470A)
DMW-13A	AC83807-011	Aqueous	Metals (6010C/6020A), Mercury (7470A)
DMW-13AF	AC83807-012	Aqueous	Metals (6010C/6020A), Mercury (7470A)
DMW-13B	AC83807-013	Aqueous	Metals (6010C/6020A), Mercury (7470A)
DMW-13BF	AC83807-014	Aqueous	Metals (6010C/6020A), Mercury (7470A)
DMW-23A	AC83807-015	Aqueous	Metals (6010C/6020A), Mercury (7470A)
DMW-23AF	AC83807-016	Aqueous	Metals (6010C/6020A), Mercury (7470A)
DMW-23B	AC83807-017	Aqueous	Metals (6010C/6020A), Mercury (7470A)
DMW-23BF	AC83807-018	Aqueous	Metals (6010C/6020A), Mercury (7470A)
DMW-18	AC83807-019	Aqueous	Metals (6010C/6020A), Mercury (7470A)
DMW-18F	AC83807-020	Aqueous	Metals (6010C/6020A), Mercury (7470A)
DMW-17	AC83807-021	Aqueous	Metals (6010C/6020A), Mercury (7470A)
DMW-17F	AC83807-022	Aqueous	Metals (6010C/6020A), Mercury (7470A)
DMW-9B	AC83807-023	Aqueous	Metals (6010C/6020A), Mercury (7470A)
DMW-9BF	AC83807-024	Aqueous	Metals (6010C/6020A), Mercury (7470A)
DFB	AC83807-025	Aqueous	Metals (6010C/6020A), Mercury (7470A)
DFB-F	AC83807-026	Aqueous	Metals (6010C/6020A), Mercury (7470A)
DMW-2	AC83807-027	Aqueous	Metals (6010C/6020A), Mercury (7470A)
DMW-2F	AC83807-028	Aqueous	Metals (6010C/6020A), Mercury (7470A)
DMW-9	AC83807-029	Aqueous	Metals (6010C/6020A), Mercury (7470A)
DMW-9F	AC83807-030	Aqueous	Metals (6010C/6020A), Mercury (7470A)
DMW-3	AC83807-031	Aqueous	Metals (6010C/6020A), Mercury (7470A)
DMW-3F	AC83807-032	Aqueous	Metals (6010C/6020A), Mercury (7470A)
DMW-15B MS	AC83807-033	Aqueous	Metals (6010C/6020A), Mercury (7470A)
DMW-15B MSD	AC83807-034	Aqueous	Metals (6010C/6020A), Mercury (7470A)
DMW-15BF MS	AC83807-035	Aqueous	Metals (6010C/6020A), Mercury (7470A)
DMW-15BF MSD	AC83807-036	Aqueous	Metals (6010C/6020A), Mercury (7470A)

This case narrative is in the form of an exception report. Method specific and/or QA/QC anomalies related to this report only are detailed below.

Metals Analysis:

The serial dilution for batches 42348 and 42349 are outside QC limits for one or more analytes. Please refer to the applicable Form 6/9 for the recoveries.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Robin Cousineau

Quality Assurance Director

Or

Jean Revolus Laboratory Director 3 31 2015

Date

Reporting Limit Definitions

HC Reporting Limit Definitions/Data Qualifiers

REPORTING DEFINITIONS

DF = Dilution Factor

MDL = Method Detection Limit

RL* = Reporting Limit

ND = Not Detected

RT = Retention Time

NA = Not Applicable

DATA QUALIFIERS

- **B-** Indicates analyte was present in the Method Blank and sample.
- **d-** For Pesticide and PCB analysis, the concentration between primary and secondary columns is greater than 40%. The lower concentration is generally reported.
- **E-** Indicates the concentration exceeded the upper calibration range of the instrument.
- J- Indicates the value is estimated because it is either a Tentatively Identified Compound (TIC) or the reported concentration is greater than the MDL but less than the RL. For samples results between the MDL and RL there is a possibility of false positives or misidentification at the quantitation levels. Additionally, the acceptance criteria for QC samples may not be met.

^{*}Samples with elevated Reporting Limits (RLs) as a result of a dilution may not achieve client reporting limits in some cases. The elevated RLs are unavoidable consequences of sample dilution required to quantitate target analytes that exceed the calibration range of the instrument.

Data Package Summary Forms

HC Report of Analysis

Client: AECOM

HC Project #: 5031810

Project: Dzus

Sample ID: DMW-15A

Lab#: AC83807-001

Matrix: Aqueous

Collection Date: 3/17/2015

Receipt Date: 3/18/2015

Mercury (Water) 7470A

			The second secon
Mercury - 1	ug/l	0.70	ND

TAL Metals 6010

Analyte	DF	Units	RL	Result
Aluminum	1	ug/l	200	820
Barium	1	ug/l	50	ND
Calcium	1 .	ug/l	5000	12000
Chromium	. 1	ug/i	50	ND ·
Copper	1	ug/I	50	ND
Iron	1	ug/l	300	1100
Magnesium	1	ug/l	5000	ND
Manganese	· 1	ug/l	40	150
Nickel	. 1	ug/l	50	ND
Potassium	1	ug/l	5000	ND
Silver	1	ug/l	20	ND
Sodium	1	ug/l	5000	20000
Vanadium	1	ug/l	50	ND
Zinc	1	ug/l	50	ND

Analyte	DF	Units	RL	Result	
Antimony	1	ug/l	3.0	ND	
Arsenic	1	ug/l	2.0	ND	
Beryllium	1	ug/l	1.0	ND	
Cadmium	. 1	ug/l	2.0	17	
Cobalt	1	ug/l	2.0	ND	
Lead	1	ug/l	3.0	6.3	
Selenium	1	ug/l	10	ND	
Thallium	1	ug/l	2.0	ND	

Sample ID: DMW-15AF Lab#: AC83807-002

Matrix: Aqueous

Collection Date: 3/17/2015 Receipt Date: 3/18/2015

Mercury (Water) 7470A

Analyte	DF	Units	RL	Result
Mercury	1	ug/l	0.70	ND
AL Metals 6010				
Analyte	DF	Units	RL	Result
Aluminum	1	ug/l	200	ND
Barium	. 1	ug/l	50	ND .
Calcium	1	ug/l	5000	14000
Chromium	1	ug/l	50	ND
Copper	1	ug/l	50	ND
Iron	1	ug/l	300	ND
Magnesium	1	ug/l	5000	ND
Manganese	1	ug/l	40	ND
Nickel	1	ug/l	50	ND
Potassium	1	ug/l	5000	ND
Silver	1	ug/i	20	ND
Sodium	1	ug/l	5000	23000
Vanadium	1	ug/l	50	ND
Zinc	1	ug/l	50	ND
AL Metals 6020				
Analyte	DF	Units	RL	Result
Antimony	1	ug/l	3.0	ND .
Arsenic	1	ug/I	2.0	ND
Beryllium	1	ug/l	1.0	ND
Cadmium	1	ug/l	2.0	8.2
Cobalt	1	ug/l	2.0	ND
Lead	1	ug/l	3.0	ND
Selenium	1	ug/I	10	ND
Thallium	1	ug/i	2.0	ND

Sample ID: DMW-15B Lab#: AC83807-003

Matrix: Aqueous

Collection Date: 3/17/2015 Receipt Date: 3/18/2015

ND

ND

ND

ND

32000

5000

5000

20

50

50

Mercury (Water) 7470A

Analyte	DF	Units	RL	Result
Mercury	1	ug/l	0.70	ND
AL Metals 6010				
Analyte	DF	Units	RL	Result
Aluminum	1	ug/l	200	ND
Barium	. 1	ug/l	50	ND
Calcium	1	ug/l	5000	9900
Chromium	1	ug/l	50	ND
Copper	1	ug/l	50	ND
Iron	1	ug/l	300	1500
Magnesium	1	ug/l	5000	ND
Manganese	1,	ug/l	40	94
Nickel	1	ug/l	50	ND

ug/l

ug/l

ug/l

ug/l

Zinc TAL Metals 6020

Potassium

Silver

Sodium

Vanadium

Analyte	DF	Units	RL	Result	
Antimony	1	ug/l	3.0	ND	
Arsenic	1	ug/l	2.0	ND	
Beryllium	1	ug/l	1.0	ND	
Cadmium	1	ug/l	2.0	ND	
Cobalt	1	u g/l	2.0	ND	
Lead	1	ug/l	3.0	11	
Selenium	1	ug/I	10	ND	
Thallium	1	. u g /l .	2.0	ND	

Sample ID: DMW-15BF Lab#: AC83807-004

Matrix: Aqueous

Collection Date: 3/17/2015 Receipt Date: 3/18/2015

Mercury (Water) 7470A

Analyte	DF	Units	RL	Result	
Mercury	 1	ug/l	0.70	ND	
TAL Metals 6010					
Analyte	DF	Units	RL	Result	
Aluminum	1 .	ug/l	200	ND	
Barium	1	ug/l	50	ND	
Calcium	1	ug/l	5000	11000	
Chromium	1	ug/l	50	ND	
Copper	1	ug/l	50	ND	
Iron	1	ug/l	300	ND	
Magnesium	1	ug/l	5000	ND	
Manganese	1	ug/l	40	ND	
Nickel	1	ug/i	50	ND	
Potassium	1	ug/l	5000	ND	
Silver	1	ug/l	20	ND	
Sodium	1	ug/l	5000	36000	
Vanadium	1	ug/l	50	ND	
Zinc	1	ug/l	50	ND	

Analyte	DF	Units	RL	Result	
Antimony	1	ug/l	3.0	ND	
Arsenic	1	ug/l	2.0	ND	
Beryllium	1	ug/I	1.0	ND	
Cadmium	1	ug/l	2.0	ND	
Cobalt	1	ug/l	2.0	ND	
Lead	1	ug/l	3.0	ND	
Selenium	. 1 -	ug/l	10	ND .	
Thallium	1	ug/l	2.0	ND	

Sample ID: DMW-65B Lab#: AC83807-005

Matrix: Aqueous

Collection Date: 3/17/2015 Receipt Date: 3/18/2015

Mercury (Water) 7470A

	Analyte	DF	Units	RL	Result
1	Mercury	1	ug/l	0.70	ND
AL Me	etals 6010				
-	Analyte	DF	Units	RL	Result
,	Aluminum	1	ug/l	200	ND
ı	Barium	1.	ug/i	50	ND
	Calcium	1 .	ug/l	5000	11000
(Chromium	1	ug/l	50	ND
(Copper	1	ug/l	50	ND
ı	Iron	1	ug/l	300	1600
:	Magnesium	1	ug/l	5000	ND
ı	Manganese	1	ug/l	40	63
1	Nickel	1	ug/l	50	ND
1	Potassium	1	ug/l	5000	ND
:	Silver	1	u g /l	20	ND
:	Sodium	1	ug/l	5000	33000
	Vanadium	1	ug/l	50	ND
	Zinc	1	ug/l	50	ND

Analyte	DF	Units	RL	Result
Antimony	1	ug/l	3.0	ND
Arsènic	1	ug/l	2.0	ND
Beryllium	1	ug/l	1.0	ND
Cadmium	1	ug/l	2.0	ND
Cobalt	1	ug/l	2.0	ND
Lead	1	ug/l	3.0	ND
Selenium	1	ug/l	10	ND
Thallium	1 .	ug/l	2.0	ND

Sample ID: DMW-65BF Lab#: AC83807-006 Matrix: Aqueous

AC83807-006

Collection Date: 3/17/2015 Receipt Date: 3/18/2015

Mercury (Water) 7470A

	Analyte	DF	Units	RL	Result	
	Mercury	1	ug/l	0.70	ND	
TAL	Metals 6010					
	Analyte	DF	Units	RL	Result	
	Aluminum	1	ug/l	200	ND	
	Barium	1	ug/I	50	ND	
	Calcium	1	ug/l	5000	11000	
	Chromium	1	ug/l	50	ND	
	Copper	1	ug/l	50	ND	
	Iron	1	ug/l	300	340	
	Magnesium	1	ug/l	5000	ND	
	Manganese	1	ug/l	40	45	
	Nickel	1	ug/l	50	ND	
	Potassium	1	ug/l	5000	ND	
	Silver	1	ug/l	20	ND	
	Sodium	1	ug/l	5000	35000	
	Vanadium	1	ug/l	50	ND	
	Zinc	1	ug/l	50	ND	

Analyte	DF	Units	RL	Result
Antimony	1	ug/l	3.0	ND
Arsenic	1 .	ug/l	2.0	ND
Beryllium	1	ug/l	1.0	ND
Cadmium	1	ug/l	2.0	ND
Cobalt	1	ug/l	2.0	ND
Lead	1	ug/l	3.0	ND
Selenium	1	ug/l	10	ND
Thallium	1	ug/l	2.0	ND

Sample ID: DMW-22B Lab#: AC83807-007

Matrix: Aqueous

Collection Date: 3/17/2015 Receipt Date: 3/18/2015

Mercury (Water) 7470A

Analy	yte	DF	Units	RL	Result
Mercur	у	1	ug/l	0.70	ND
AL Metals	6010				
Analy	yte	DF	Units	RL	Result
Alumin	um	1	ug/l	200	ND
Barium	<u>, </u>	1	ug/l	50	ND
Calciu	m ·	1	ug/l	5000	27000
Chromi	ium	1	ug/l	50	ND
Coppe	r .	1	ug/l	50	ND
fron		1	ug/l	300	ND
Magne	sium	1	ug/l	5000	5100
Manga	nese	1	ug/l	40	550
Nickel		1	ug/l	50	ND
Potass	ium	1	ug/I	5000	ND
Silver		1	u g /l	20	ND
Sodiu	m	1	ug/l	5000	15000
Vanadi	ium	1	ug/l	50	ND

Zinc TAL Metals 6020

Analyte	DF	Units	RL	Result	
Antimony	1	ug/l	3.0	ND	
Arsenic	1 1	ug/l	2.0	ND ,	
Beryllium	1	ug/l	1.0	ND	
Cadmium	1	ug/l	2.0	ND	
Cobalt	 1	ug/l	2.0	ND	
Lead	1	ug/l	3.0	ND	
Selenium	1	· ug/l	10	ND	
Thallium	1	ug/l	2.0	ND	

Sample ID: DMW-22BF Lab#: AC83807-008

Matrix: Aqueous

Collection Date: 3/17/2015 Receipt Date: 3/18/2015

Mercury (Water) 7470A

Analyte	DF	Units	RL	Result
Mercury	1	ug/l	0.70	ND

TAL Metals 6010

Analyte	DF	Units	RL	Result
Aluminum	1	ug/l	200	ND
Barium	1	ug/l	50	ND
Calcium	1	ug/l	5000	31000
Chromium	1	ug/I	50	ND
Copper	1	ug/l	50	ND
Iron	1	ug/l	300	ND
Magnesium	1	ug/l	5000	5900
Manganese	1	ug/l	40	590
Nickel	1	ug/l	50	ND
Potassium	1	ug/l	5000	ND
Silver	1	ug/l	20	ND
Sodium	1	ug/l	5000	17000
Vanadium	1	ug/l	50	, ND
Zinc	1	ug/i	50	ND

 Analyte	DF	Units	RL	Result
Antimony	1	ug/l	3.0	ND
Arsenic	1	ug/l	2.0	ND
Beryllium	1	ug/l	1.0	ND
Cadmium	1	ug/l	2.0	ND .
Cobalt	1	ug/l	2.0	ND
Lead	1	ug/l	3.0	ND
Selenium	1	ug/l	10	ND
Thallium	1	ug/l	2.0	ND

Sample ID: DMW-22A Lab#: AC83807-009

Matrix: Aqueous

Collection Date: 3/17/2015 Receipt Date: 3/18/2015

280

Mercury (Water) 7470A

Analyte	DF	Units	RL	Result	
Mercury	1	ug/i	0.70	ND	
. Metals 6010	 				
Analyte	 DF	Units	RL	Result	
Aluminum	 1	ug/l	200	ND	
Barium	1	ug/l	50	ND	
Calcium	1	ug/l	5000	45000	
Chromium	1	ug/l	50	ND	
Copper	1	ug/l	50	ND	
Iron	1	ug/l	300	2100	
Magnesium	1	ug/l	5000	7200	
Manganese	1	ug/l	40	220	
Nickel	1	ug/l	50	ND	
Potassium	1	ug/l	5000	ND	
Silver	1	ug/l	20	ND	
Sodium	1	ug/l	5000	28000	
Vanadium	1	ng/l	50	ND	

Zinc TAL Metals 6020

Analyte	DF	Units	RL	Result
Antimony	1,	ug/l	3.0	ND
Arsenic	1	ug/l	2.0	ND
Beryllium	1	ug/l	1.0	ND
Cadmium	1	ug/l	2.0	ND
Cobalt	1	ug/l	2.0	ND
Lead	1	ug/l	3.0	ND
Selenium	1	u g /l	10	ND
Thallium	1	ug/l	2.0	ND

ug/l

Sample ID: DMW-22AF Lab#: AC83807-010

Matrix: Aqueous

Collection Date: 3/17/2015 Receipt Date: 3/18/2015

Mercury (Water) 7470A

Analyte	DF	Units	RL	Result
Mercury	1	ug/l	0.70	ND
AL Metals 6010				
Analyte	DF	Units	RL	Result
Aluminum	1	ug/l	200	ND
Barium	1 .	ug/l	50	ND ·
Calcium	1	ug/l	5000	51000
Chromium	1	ug/l	50	ND
Соррег	1	ug/l	50	ND
Iron	1	ug/l	300	640
Magnesium	1	ug/l	5000	8200
Manganese	1	ug/l	40	260
Nickel	1	ug/l	50	ND
Potassium	1	ug/l	5000	ND
Silver	1	ug/l	20	ND
Sodium	1	ug/l	5000	34000
Vanadium	1	ug/l	50	ND
Zinc	. 1	ug/l	50	290

Analyte	DF	Units	RL	Result
	1	ug/l	3.0	ND
Arsenic	1	ug/l	2.0	ND ·
Beryllium	1	ug/l	1.0	ND
Cadmium	1	ug/l	2.0	ND
Cobalt	1	ug/I	2.0	ND
Lead	1	ug/l	3.0	ND
Selenium	1	ug/l	10	ND
Thallium	1	ug/l	2.0	ND

Sample ID: DMW-13A Lab#: AC83807-011

Matrix: Aqueous

Collection Date: 3/17/2015 Receipt Date: 3/18/2015

Mercury (Water) 7470A

Analyte	DF	Units R	
Mercury	1	ug/1 0.	70 ND

TAL Metals 6010

Analyte	DF	Units	RL	Result
Aluminum	1	ug/l	200	420
Barium	1	ug/l	50	ND
Calcium	1	ug/l	5000	20000
Chromium	1	ug/l	50	ND
Copper	1	ug/l	50	ND
Iron	1	ug/l	300	8600
Magnesium	1	ug/l	5000	ND
Manganese	1	ug/l	40	1100
Nickel	. 1	ug/l	50	ND
Potassium	1	ug/l	5000	ND
Silver	.1 ,	ug/I	20	ND
Sodium	1.	ug/l	5000	43000
Vanadium	1	ug/l	50	ND
Zinc	1	ug/l	50	ND

Analyte	DF	Units	RL	Result	
Antimony	1	ug/l	3.0	ND	
Arsenic	1	ug/l	2.0	ND	
Beryllium	1	ug/l	1.0	ND	
Cadmium	1	ug/l	2.0	9.6	
Cobalt	1	ug/l	2.0	17	
Lead	1	ug/l	3.0	ND	
Selenium	1	ug/l	10	ND	
Thallium	1	ug/l	2.0	ND	

Sample ID: DMW-13AF Lab#: AC83807-012 Collection Date: 3/17/2015 Receipt Date: 3/18/2015

Matrix: Aqueous

Mercury (Water) 7470A

Analyte	DF	Units	RL	Result
Mercury	1	ug/l	0.70	ND
TAL Metals 6010				
Analyte	DF	Units	RL	Result
Aluminum	1	ug/l	200	ND
Barium	1	ug/l	50	ND
Calcium	1	ug/l	5000	21000
Chromium	1	ug/l	50	ND
Copper	1	ug/l	50	ND
Iron	1	ug/l	300	6200
Magnesium	1	ug/l	5000	ND
Manganese	1	ug/l	40	1200
Nickel	1	ug/l	50	ND
Potassium	1	ug/l	5000	ND
Silver	1	ug/l	20	ND
Sodium	1	ug/l	5000	47000
Vanadium	1	ug/l	50	ND
Zinc	1	ug/l	50	ND

Analyte	DF	Units	RL	Result
Antimony	1	ug/l	3.0	ND
Arsenic .	1	ug/l	2.0	ND .
Beryllium	1	ug/l	1.0	ND
Cadmium	1	ug/l	2.0	9.1
Cobalt	1	ug/l	2.0	18
Lead	1	ug/I	3.0	25
Selenium	1.	ug/l	10	ND
Thallium	1	u g /l	2.0	ND

Sample ID: DMW-13B Lab#: AC83807-013

Matrix: Aqueous

Collection Date: 3/17/2015 Receipt Date: 3/18/2015

Mercury (Water) 7470A

Analyte	DF	Units	RL	Result
Mercury	1	ug/l	0.70	ND
TAL Metals 6010				
Analyte	 DF	Units	RL	Result
Aluminum	1	ug/l	200	1000
Barium	1	ug/l	50	ND
Calcium	1	ug/l	5000	12000
Chromium	1	ug/l	50	ND
Copper	1	ug/l	50	ND
Iron	1	ug/l	300	2100
Magnesium	1	ug/l	5000	ND
Manganese	1	ug/l	40	780
Nickel	1	ug/l	50	ND
Potassium	1	ug/l	5000	ND
Silver	1	ug/l	20	ND
Sodium	1	ug/l	5000	12000
V an adiu m	 1.	ug/l	50	ND
Zinc	1	ug/I	50	ND

Analyte	DF	Units	RL	Result
Antimony	1		3.0	ND
Arsenic	1,	ug/l	2.0	ND
Beryllium	1	ug/l	1.0	ND
Cadmium	1	ug/l	2.0	4.0
Cobalt	1	ug/l	2.0	3.0
Lead	1	ug/l	3.0	6.3
Selenium	1	ug/l	10	ND
Thallium	1	ug/l	2.0	ND

Sample ID: DMW-13BF Lab#: AC83807-014

Matrix: Aqueous

Collection Date: 3/17/2015 Receipt Date: 3/18/2015

Mercury (Water) 7470A

Selenium

Thallium

Analyte	DF	Units	RL	Result
Mercury	1	ug/l	0.70	ND
L Metals 6010				
Analyte	DF	Units	RL	Result
Aluminum	1	ug/l	200	ND
Barium	1	ug/l	50	ND
Calcium	1	ug/l	5000	13000
Chromium	1	ug/l	50	ND
Copper	1	ug/l	50	ND
Iron	1	ug/l	300	ND
Magnesium	1	ug/l	5000	ND
Manganese	1	ug/l	40	ND
Nickel	1	ug/l	50	ND
Potassium	. 1	ug/l	5000	ND
Silver	. 1	ug/l	20	ND
Sodium	1	ug/l	5000	13000
Vanadium	1	ug/l	50	ND
Zinc	1	u g/l	50	ND
AL Metals 6020				
Analyte	DF	Units	RL	Result
Antimony	1	ug/l	3.0	ND
Arsenic	1	ug/l	2.0	ND
Beryllium	1	ug/l	1.0	ND
Cadmium	1	ug/i	2.0	ND
Cobalt	1	ug/l	2.0	ND
Lead	1	ug/l	3.0	ND

10

2.0

ug/l

ND

ND

Sample ID: DMW-23A Lab#: AC83807-015

Matrix: Aqueous

Collection Date: 3/17/2015 Receipt Date: 3/18/2015

Mercury (Water) 7470A

Analyte	DF	Units	RL	Result
Mercury	1	ug/l	0.70	ND

Analyte	DF	Units	RL	Result
Aluminum	· 1	ug/l	200	ND
Barium	1	ug/l	50	ND
Calcium	1	ug/l	5000	41000
Chromium	1	ug/l	50	ND
Copper	1	ug/l	50	ND
Iron	1	ug/l	300	8000
Magnesium	1	u g/l	5000	8600
Manganese	1	ug/l	40	780
Nickel		ug/l	50	ND
Potassium	1	ug/i	5000	6400
Silver	1	ug/I	20	ND
Sodium	1	ug/l	5000	91000
Vanadium		ug/l	50	ND
Zinc	1	ug/l	50	ND

Analyte	DF	Units	RL	Result	•
Antimony	1	ug/l	3.0	ND	
Arsenic	1	ug/l	2.0	ND	
Beryllium	1	ug/l	1.0	ND	
Cadmium	1	ug/l	2.0	10	
Cobalt	1	ug/l	2.0	ND	
Lead	1	ug/l	3.0	ND	
Selenium	1	ug/l	10	ND	
Thallium	1	ug/l	2.0	ND	

Sample ID: DMW-23AF Lab#: AC83807-016

Matrix: Aqueous

Collection Date: 3/17/2015 Receipt Date: 3/18/2015

Mercury (Water) 7470A

Analyte	DF	Units	RL	Result
Mercury	1	ug/I	0.70	ND
. Metals 6010				
Analyte	DF	Units	RL	Result
Aluminum	1	ug/l	200	ND
Darium	1	/1	50	ND

Analyte	DF	Units	RL	Result
Aluminum	1	ug/l	200	ND
Barium	1	ug/l	50	ND
Calcium	1	ug/l	5000	40000
Chromium	1	ug/l	50	ND
Copper	1	ug/l	50	ND
Iron	1	ug/l	300	6400
Magnesium	1	ug/I	5000	8400
Manganese	1	ug/l	40	820
Nickel	1	ug/I	50	ND
Potassium	1	ug/l	5000	6800
Silver	1	ug/I	20	ND
Sodium	1	ug/l	5000	95000
Vanadium	1	ug/I	50	ND
Zinc	1	ug/l	50	ND
				and the second s

 Analyte	DF	Units	RL	Result	
Antimony	1	ug/l	3.0	ND	
Arsenic	1 .	ug/l	2.0	ND	
Beryllium	1	ug/i	1.0	ND	
Cadmium	1	ug/l	2.0	ND	
Cobalt	1	ug/l	2.0	ND	
Lead	1	ug/l	3.0	ND	
Selenium	1	ug/l	10	ND	
Thallium	1	ug/l	2.0	ND	

Sample ID: DMW-23B Lab#: AC83807-017

Matrix: Aqueous

Collection Date: 3/17/2015 Receipt Date: 3/18/2015

Mercury (Water) 7470A

 Analyte	DF	Units	RL	Result
Mercury	1	ug/l	0.70	ND
		,		

Analyte	DF	Units	RL	Result
Aluminum	1	ug/l	200	730
Barium	1	ug/l	. 50	ND
Calcium	1	ug/l	5000	8900
Chromium	1	ug/l	50	ND
Copper	1 .	ug/l	50	ND
Iron	1	ug/I	300	1600
Magnesium	1	ug/l	5000	ND
Manganese	1	ug/l	40	ND
Nickel	1	ug/l	50	ND
Potassium	1	ug/i	5000	ND
Silver	1	ug/l	20	ND
Sodium	1	ug/I	5000	25000
Vanadium	1	ug/l	50	ND
Zinc	1	ug/l	50	61

Analyte	DF	Units	RL	Result
Antimony	1	ug/i	3.0	ND
Arsenic	1	ug/l	2.0	ND
Beryllium	1	ug/l	1.0	ND
Cadmium	1	ug/l	2.0	27
Cobalt	1	ug/l	2.0	ND
Lead	1	ug/l	3.0	5.6
Selenium	1	ug/I	10	ND
Thallium	1	ug/l	2.0	ND

Sample ID: DMW-23BF Lab#: AC83807-018

Matrix: Aqueous

Collection Date: 3/17/2015 Receipt Date: 3/18/2015

Mercury (Water) 7470A

Analyte	DF	Units	RL	Result
Mercury	1	ug/l	0.70	ND

Analyte	DF	Units	RL	Result
Aluminum	1	ug/l	200	ND
Barium	1	ug/l	50	ND
Calcium	1	ug/l	5000	9900
Chromium	1	ug/l	50	ND
Copper	1	ug/l	50	ND
Iron	1	ug/l	300	ND
Magnesium	1	ug/l	5000	ND
Manganese	1	ug/l	40	ND
Nickel	1	ug/l	50	ND
Potassium	1	ug/l	5000	ND
Silver	1	ug/l	20	ND
Sodium	1	ug/l	5000	27000
Vanadium	1	ug/l	50	ND
Zinc	1 .	ug/l	50	ND

Analyte	DF	Units	RL	Result
Antimony	1	ug/l	3.0	ŇD
Arsenic	1	ug/I	2.0	ND
Beryllium	1	ug/l	1.0	ND
Cadmium	1	ug/I	2.0	31
Cobalt	1	ug/l	2.0	ND
Lead	1	ug/l	3.0	ND
Selenium	1	ug/l	10	ND
Thallium	1.	ug/l	2.0	ND

Sample ID: DMW-18 Lab#: AC83807-019

Matrix: Aqueous

Collection Date: 3/17/2015 Receipt Date: 3/18/2015

Mercury (Water) 7470A

	Analyte	DF	Units	RL	Result
1	Mercury	1	ug/l	0.70	ND

Analyte	DF	Units	RL	Result
Aluminum	1	ug/l	200	440
Barium	1	ug/l	50	ND
Calcium	1	ug/l	5000	18000
Chromium	1	ug/I	50	ND
Copper	1	ug/l	50	ND
Iron	1	ug/l	300	520
Magnesium	1	ug/l	5000	ND
Manganese	1	ug/i	40	720
Nickel	1	ug/l	50	ND
Potassium	1	ug/I	5000	ND
Silver	1	ug/l	20	ND
Sodium	1	ug/l	5000	37000
Vanadium	1	ug/l	50	ND
Zinc	1	ug/l	50	ND

Analyte	DF	Units	RL	Result
Antimony	1	ug/l	3.0	ND
Arsenic	1	ug/l	2.0	ND
Beryllium	· · 1	ug/l	1.0	ND
Cadmium	1	ug/l	2.0	ND
Cobalt	1	ug/l	2.0	ND
Lead	1	ug/l	3.0	ND
Selenium	1	ug/l	10	ND
Thallium	. 1	ug/l	2.0	ND

Sample ID: DMW-18F Lab#: AC83807-020

Matrix: Aqueous

Collection Date: 3/17/2015 Receipt Date: 3/18/2015

Mercury (Water) 7470A

Analyte	DF	Units	RL	Result
Mercury	1	ug/l	0.70	ND

TAL Metals 6010

Analyte	DF	Units	RL	Result
Aluminum	1	ug/l	200	ND
Barium	1	ug/l	50	ND
Calcium	1	ug/I	5000	19000
Chromium	1	ug/l	50	ND
Copper	1	ug/l	50	ND
Iron	1	ug/l	300	ND
Magnesium	1	ug/l	5000	ND
Manganese	1	ug/l	40	ND
Nickel	1	ug/l	50	ND
Potassium	1	ug/i	5000	ND
Silver	1	ug/l	20	ND
Sodium	1	ug/l	5000	39000
Vanadium	1	ug/I	50	ND
Zinc	1	ug/l	50	ND

Analyte	DF	Units	RL	Result	
Antimony	1	ug/l	3.0	ND	
Arsenic	1	ug/I	2.0	ND	
Beryllium	1	ug/l	1.0	ND	
Cadmium	1	ug/l	2.0	ND	
Cobalt	1	ug/l	2.0	ND	
Lead	1	ug/l	3.0	ND	
Selenium	1	ug/l	10	ND	
Thallium	1	ug/l	2.0	ND	

Sample ID: DMW-17 Lab#: AC83807-021

Matrix: Aqueous

Collection Date: 3/17/2015 Receipt Date: 3/18/2015

Mercury (Water) 7470A

Analyte	 DF	Units	RL	Result	
Mercury	1	ug/l	0.70	ND	

TAL Metals 6010

Analyte	DF	Units	RL	Result
Aluminum	1	ug/l	200	ND
Barium	1	ug/l	50	ND
Calcium	1	ug/l	5000	37000
Chromium	1	ug/l	50	ND
Copper	1	ug/l	50	ND
Iron	1	ug/l	300	880
Magnesium	1	ug/l	5000	11000
Manganese	1	ug/l	40	520
Nickel	1	ug/l	50	ND
Potassium	1	ug/l	5000	ND
Silver	1	ug/l	20	ND
Sodium	1	ug/l	5000	7100
Vanadium	1	ug/l	. 50	ND ND
Zinc	1	ug/l	50	ND

Analyte	DF	Units		Result	
Antimony	1	ug/l	3.0	ND	
Arsenic	1	ug/l	2.0	ND	
Beryllium	1	u g /l	1.0	ND	
Ca d miu m	1	ug/l	2.0	ND	
Cobalt	1	ug/l	2.0	ND	
Lead	1	ug/l	3.0	6.5	
Selenium	1	ug/l	10	ND	
Thallium	1	ug/l	2.0	ND	

Sample ID: DMW-17F Lab#: AC83807-022

Matrix: Aqueous

Collection Date: 3/17/2015 Receipt Date: 3/18/2015

Mercury (Water) 7470A

 Analyte	DF	Units	RL	Result	
Mercury	1	ug/l	0.70	ND	

TAL Metals 6010

Analyte	DF	Units	RL	Result
Aluminum	1	ug/l	200	ND
Barium	1	ug/l	50	ND
Calcium	1	ug/l	5000	41000
Chromium	1	ug/l	50	ND
Copper	1	ug/l	50	ND
Iron	1	ug/l	300	ND
Magnesium	1	ug/l	5000	12000
Manganese	1	ug/I	40	ND
Nickel	1	ug/l	50	ND
Potassium	1	ug/l	5000	ND
Silver	1	ug/l	20	ND .
Sodium	1	ug/l	5000	8400
Vanadium	1	ug/I	50	ND
Zinc	1	ug/l	50	ND

Analyte	DF	Units	RL	Result
Antimony	. 1	ug/l	3.0	ND
Arsenic	1	ug/l	2.0	ND
Beryllium	. 1	ug/l	1.0	ND
Cadmium	1	ug/l	2.0	4.1
Cobalt	1	ug/I	2.0	ND
Lead	1	ug/l	3.0	ND
Selenium	1	ug/l	10	ND
Thallium	. 1	ug/l	2.0	ND

Sample ID: DMW-9B Lab#: AC83807-023

Matrix: Aqueous

Collection Date: 3/18/2015 Receipt Date: 3/18/2015

Mercury (Water) 7470A

Analyte	DF	Units	RL	Result
Mercury	1	ug/l	0.70	ND

TAL Metals 6010

Analyte	DF	Units	RL	Result
Aluminum	1	ug/l	200	ND
Barium	1 .	ug/l	50	ND .
Calcium	1	ug/I	5000	6400
Chromium	1	ug/I	50	ND
Copper	1	ug/l	50	ND
Iron	1	ug/l	300	ND
Magnesium	1	ug/l	5000	ND
Manganese	1	ug/l	40	44
Nickel	1 .	ug/l	50	ND
Potassium	1	ug/l	5000	ND
Silver	1	ug/I	20	ND .
Sodium	1	ug/l	5000	13000
Vanadium	1	ug/i	50	ND
Zinc	1	ug/l	50	ND

1 1	ug/l ug/l	3.0	ND ND
1 1		2.0	ND
1	0		
	ug/l	1.0	ND
1	ug/I	2.0	ND
1	ug/l	2.0	ND .
1	ug/l	3.0	ND
1	ug/l	10	ND
1	ug/l	2.0	ND
	1 1 1	1 ug/l	1 ug/l 10

Sample ID: DMW-9BF Lab#: AC83807-024

Lab#: AC83807-024 Receipt D
Matrix: Aqueous

Collection Date: 3/18/2015 Receipt Date: 3/18/2015

Mercury (Water) 7470A

Analyte	DF	Units	RL	Result
Mercury	1	ug/l	0.70	ND
AL Metals 6010				
Analyte	DF	Units	RL	Result
Aluminum	1	ug/l	200	ND
Barium	1	ug/l	50	ND
Calcium	1	ug/i	5000	6700
Chromium	1	ug/l	50	ND
Copper	1	ug/l	50	ND
Iron	1	ug/l	300	ND
Magnesium	1	ug/I	5000	ND
Manganese	1	ug/l	40	ND
Nickel	1	ug/l	50	ND .
Potassium	1	ug/l	5000	ND
Silver	1	ug/l	20	ND
Sodium	1	ug/i	5000	14000
Vanadium	1	ug/l	50	ND
Zinc	1	ug/l	50	ND
AL Metals 6020				
Analyte	DF	Units	RL	Result
Antimony	1	ug/l	3.0	ND
Arsenic	1	ug/l	2.0	ND
Beryllium	1	ug/l	1.0	ND
Cadmium	1	ug/l	2.0	2.5
Cobalt	1	ug/l	2.0	ND
Lead	1	ug/l	3.0	ND
Selenium	1	ug/l	10	ND
Thallium	1	ug/I	2.0	ND

Sample ID: DFB

Lab#: AC83807-025

Matrix: Aqueous

Collection Date: 3/18/2015

Receipt Date: 3/18/2015

Mercury	(Water)	7470A

Analyte	DF	Units	RL	Result	
Mercury	1	ug/i	0.70	ND	

TAL Metals 6010

Analyte	DF	Units	RL	Result	
Aluminum	1	ug/l	200	ND	
Barium	. 1	ug/l	50	ND	
Calcium	1	ug/i	5000	ND	
Chromium	1	ug/l	50	ND	
Copper	1	ug/l	50	ND	
Iron	1	ug/l	300	ND	
Magnesium	1	ug/l	5000	ND	
Manganese	1	ug/I	40	ND	
Nickel	1 .	ug/l	50	ND	
Potassium	1	ug/l	5000	ND	
Silver	1	ug/l	20	. ND	
Sodium	1	ug/l	5000	ND	
Vanadium	1	ug/l	50	ND	
Zinc	1	ug/l	50	ND	

Analyte	DF	Units	RL	Result	
Antimony	1	ug/l	3.0	ND	
Arsenic	1	ug/l	2.0	ND	
Beryllium	1	ug/l	1.0	ND	
Cadmium	1	ug/l	2.0	ND	
Cobalt	1	ug/l	2.0	ND	
Lead	1	ug/l	3.0	ND	
Selenium	1	ug/l	10	ND	
Thallium	1	ug/l	2.0	ND	

Sample ID: DFB-F

Lab#: AC83807-026

Matrix: Aqueous

Collection Date: 3/18/2015

Receipt Date: 3/18/2015

Mercury (Water) 7470A

Analyte	DF	Units	RL	Result
Mercury	1	ug/I	0.70	ND

TAL Metals 6010

Analyte	DF	Units	RL	Result
Aluminum	, 1	ug/l	200	ND
Barium	1	ug/I	50	ND
Calcium	1	ug/l	5000	ND
Chromium	1	ug/l	50	ND
Copper	1	ug/l	50	ND
Iron	1	ug/l	300	ND
Magnesium	1	ug/l	5000	ND
Manganese	1	ug/l	40	ND
Nickel	1	ug/l	50	ND
Potassium	1	ug/l	5000	ND
Silver	1	ug/l	20	ND
Sodium	1	ug/I	5000	ND
Vanadium	1	ug/l	50	ND
Zinc	1	ug/l	50	ND

Analyte	DF	Units	RL	Result	
Antimony	1	ug/l	3.0	ND	
Arsenic	1	ug/l	2.0	ND	
Beryllium	1	ug/l	1.0	ND	
Cadmium	1	ug/i	2.0	ND	
Cobalt	1	ug/l	2.0	ND	
Lead	1	ug/l	3.0	ND	
Selenium	1	ug/l	10	ND	
Thallium	1	ug/l	2.0	ND	

Sample ID: DMW-2 Lab#: AC83807-027

Matrix: Aqueous

Collection Date: 3/18/2015

Receipt Date: 3/18/2015

Result

Mercury (Water)	7470A
Analyte	

Mercury	1	ug/l	0.70	ND	
ΓAL Metals 6010					
Analyte	DF	Units	RL	Result	
Aluminum	1	ug/i	200	7200	
Barium	1	ug/l	50	65	
Calcium	1	ug/l	5000	21000	
Chromium	1	ug/I	50	ND	
Copper	1	ug/l	50	ND	
Iron	1	ug/l	300	98000	
Magnesium	1	ug/l	5000	ND	
Manganese	1	ug/I	40	410	
Nickel	1	ug/l	50	ND	
Potassium	1	ug/l	5000	ND	
Silver	1	ug/l	20	ND	
Sodium	1	ug/l	5000	19000	
Vanadium	1	ug/i	50	ND	
Zinc	1	ug/l	50	210	

DF

Units

RL

Analyte	DF	Units	RL	Result	
Antimony	1	ug/l	3.0	ND	
Arsenic	1	ug/l	2.0	21	
Beryllium	1	ug/l	1.0	ND	
Cadmium	1	ug/l	2.0	15	
Cobalt	1	ug/l	2.0	13	
Lead	1	ug/l	3.0	29	
Selenium	1	ug/l	10	ND	
Thallium	1	ug/l	2.0	ND	

Sample ID: DMW-2F Lab#: AC83807-028

Matrix: Aqueous

Collection Date: 3/18/2015 Receipt Date: 3/18/2015

Mercury (Water) 7470A

Analyte	DF	Units	RL	Result
Mercury	1	ug/l	0.70	ND
Metals 6010				
Analyte	DF	Units	RL	Result
Aluminum	1 .	ug/l	200	ND
B		- 4		

Analyte	DF	Units	RL	Result
Aluminum	1 .	ug/l	200	ND
Barium	1	ug/l	50	ND
Calcium	1	ug/l	5000	20000
Chromium	1	ug/l	50	ND
Copper	1	ug/l	50	ND
Iron	1	ug/l	300	4200
Magnesium	1	ug/l	5000	ND
Manganese	1	ug/l	40	240
Nickel	1	ug/l	50	ND
Potassium	1	ug/l	5000	ND
Silver	1	ug/i	20	ND
Sodium	1	ug/l	5000	20000
Vanadium	1	ug/l	50	ND
Zinc	1	ug/l	50	ND

Analyte	DF	Units	RL	Result
Antimony	. 1	- 4	3.0	ND
Arsenic	1	ug/l	2.0	ND
Beryllium	1 -	ug/l	1.0	ND
Cadmium	1	ug/l	2.0	2.6
Cobalt	1	ug/l	2.0	3.8
Lead	1	ug/l	3.0	ND
Selenium	1	ug/l	10	ND
Thallium	1	ug/l	2.0	ND

Sample ID: DMW-9 Lab#: AC83807-029

Matrix: Aqueous

Collection Date: 3/18/2015 Receipt Date: 3/18/2015

Analyte	DF	Units	RL	Result	
Mercury	1	ug/l	0.70	ND	
. Metals 6010					
Analyte	DF	Units	RL	Result	
Aluminum	1	ug/l	200	ND	
Barium	1	ug/l	50	ND	
Calcium	1	ug/l	5000	13000	
Chromium	1	ug/l	50	ND	
Copper	1	ug/l	50	ND	
Iron	1	ug/l	300	550	
Magnesium	1	ug/l	5000	ND	
Manganese	. 1	ug/l	40	ND	
Nickel	1	ug/l	50	ND	
Potassium	1	ug/l	5000	ND	
Silver	1	ug/l	20	ND	
Sodium	1	ug/l	5000	18000	
Vanadium	1	ug/l	50	ND	
Zinc	1	ug/i	50	ND	
. Metals 6020					
Analyte	DF	Units	RL .	Result	
Antimony	1	ug/l	3.0	ND	
Arsenic	1 :	ug/l	2.0	ND	
Beryllium	1	ug/l	1.0	ND	
Cadmium	1	ug/l	2.0	ND	
Cobalt	1	ug/l	2.0	ND	
Lead	1	ug/l	3.0	ND	
Selenium	1	ug/l	10	ND	
Thallium	1	ug/l	2.0	ND	

Sample ID: DMW-9F Lab#: AC83807-030

Matrix: Aqueous

Collection Date: 3/18/2015 Receipt Date: 3/18/2015

Mercury (Water) 7470A

Analyte	DF	Units	RL	Result
Mercury	1	ug/l	0.70	ND

TAL Metals 6010

Analyte	DF	Units	RL	Result
Aluminum	1	ug/l	200	ND
Barium	1	ug/l	50	ND .
Calcium	1	ug/l	5000	14000
Chromium	1	ug/l	50	ND
Copper	1	ug/l	50	ND
Iron ·	1	ug/l	300	ND
Magnesium	1	ug/l	5000	ND
Manganese	1	ug/l	40	ND
Nickel	1	ug/l	50	ND
Potassium	1	ug/l	5000	ND
Silver	1	ug/I	20	ND
Sodium	1	ug/l	5000	21000
Vanadium	1	ug/l	50	ND
Zinc	1	ug/I	50	ND

TAL Metals 6020

Analyte	DF	Units	RL	Result	
Antimony	1	ug/l	3.0	ND	
Arsenic	1	ug/l	2.0	ND	
Beryllium	1	ug/I	1.0	ND	
Cadmium	1	ug/l	2.0	2.4	
Cobalt	1	ug/l	2.0	ND	
Lead	1	ug/I	3.0	ND	
Selenium	1	ug/I	10	ND	
Thallium	1	ug/l	2.0	ND	

Sample ID: DMW-3 Lab#: AC83807-031

Matrix: Aqueous

Collection Date: 3/18/2015 Receipt Date: 3/18/2015

ND

ND

Mercury (Water) 7470A

Analyte	DF	Units	RL	Result
Mercury	1	ug/l	0.70	ND
AL Metals 6010		THE PARTY OF THE P		
Analyte	DF	Units	RL	Result
Aluminum	1	ug/l	200	490
Barium	1	ug/l	50	ND
Calcium	1	ug/l	5000	9300
Chromium	1	ug/1	50	ND
Copper	1	ug/l	50	ND
Iron	, 1	ug/l	300	510
Magnesium	1	ug/I	5000	ND
Manganese	1	ug/l	40	64
Nickel	1	u g /l	50	ND
Potassium	1	ug/l	5000	ND
Silver	1	ug/l	20	ND
Sodium	1	ug/l	5000	18000

Zinc TAL Metals 6020

Vanadium

Analyte	DF	Units	RL	Result	
Antimony	1	ug/l	3.0	ND	
Arsenic	1	ug/l	2.0	ND	
Beryllium	1	ug/l	1.0	ND.	
Cadmium	1	ug/l	2.0	20	
Cobalt	1	ug/l	2.0	ND	
Lead	1	ug/l	3.0	ND	
Selenium	1	ug/l	10	ND	
Thallium	1	ug/l	2.0	ND	

ug/l

ug/l

50

50

Sample ID: DMW-3F Lab#: AC83807-032

Matrix: Aqueous

Collection Date: 3/18/2015 Receipt Date: 3/18/2015

Mercury (Water) 7470A

Analyte	DF	Units	RL	Result	
Mercury	1	ug/l	0.70	ND	

TAL Metals 6010

Analyte	DF	Units	RL	Result
Aluminum	1	ug/l	200	ND
Barium	1	ug/l	50	ND
Calcium	1	ug/l	5000	9300
Chromium	1	ug/l	50	ND
Copper	1	ug/l	50	ND
Iron	. 1	ug/l	300	ND
Magnesium	1	ug/l	5000	ND
Manganese	1	ug/l	40	ND
Nickel	1	ug/l	50	ND
Potassium	1	ug/l	5000	ND
Silver	1	ug/l	20	ND
Sodium	1	ug/I	5000	18000
Vanadium	1	ug/l	50	ND
Zinc	1	ug/l	50	ND

TAL Metals 6020

Analyte	DF	Units	RL	Result	
Antimony	1		3.0	ND	
Arsenic	1	ug/l	2.0	ND	
Beryllium	1	ug/l	1.0	ND	
Cadmium	1	ug/l	2.0	14	
Cobalt	1	ug/l	2.0	ND	
Lead	1	ug/l	3.0	ND	
Selenium	1	ug/l	10	, ND	
Thallium	1	ug/l	2.0	ND	

Sample ID: DMW-15B MS Lab#: AC83807-033

Matrix: Aqueous

Collection Date: 3/17/2015 Receipt Date: 3/18/2015

Mercury (Water) 7470A

Analyte	DF	Units	RL	Result
Mercury	1	ug/l	0.70	9.3
L Metals 6010				
Analyte	DF	Units	RL	Result
Aluminum	. 1	ug/l	200	4600
Barium	ì	ug/l	50	490
Calcium	1	ug/l	5000	56000
Chromium	1	ug/l	50	460
Copper	1	ug/l	50	460
Iron	1	ug/l	300	6100
Magnesium	1	ug/l	5000	49000
Manganese	1	ug/l	40	540
Nickel	1	ug/l	50	460
Potassium	1	ug/l	5000	49000
Silver	1	ug/l	20	86
Sodium	1	ug/l	5000	78000
Vanadium	1	ug/l	50	450
Zinc	1	ug/l	50	480
AL Metals 6020				
Analyte	DF	Units	RL	Result
Antimony	1	ug/l	3.0	500
Arsenic	1 :	ug/l	2.0	490
Beryllium	1 ,	ug/l	1.0	500
Cadmium	1	ug/l	2.0	480
Cobalt	1	ug/l	2.0	490
Lead	1	ug/l	3.0	490
Selenium	1	ug/l	10	470
Thallium	1	ug/l	2.0	470

Sample ID: DMW-15B MSD Lab#: AC83807-034 Matrix: Aqueous

V-15B MSD Collection Date: 3/17/2015 3807-034 Receipt Date: 3/18/2015

Mercury (Wa	ter) 7470A
-------------	------------

Analyte	DF	Units	RL	Result
Mercury	1	ug/l	0.70	10
The state of the s				

TAL Metals 6010

Analyte	DF	Units	RL	Result
Aluminum	1	ug/l	200	4600
3arium -	1	ug/l	50	490
Calcium	1	ug/i	5000	57000
Chromium	1	ug/l	50	460
Copper	1	ug/l	50	460
ron	1	ug/l	300	6000
Magnesium	1	ug/l	5000	50000
Manganese	1	ug/l	40	520
Nickel	1	ug/l	50	460
Potassium	1	ug/I	5000	49000
Silver	1	ug/l	20	86
Sodium	1	ug/l	5000	77000
/anadium	1	ug/l	50	450
Zinc	1	ug/l	50	490

TAL Metals 6020

Analida		lluite.		Desuit	
Analyte	טר	Units	KL	Result	
Antimony	1	ug/l	3.0	490	
Arsenic	1	ug/l	2.0	470	
Beryllium	1	ug/l	1.0	490	
Cadmium	1	ug/l	2.0	460	
Cobalt	1	ug/l	2.0	460	
Lead	1	ug/l	3.0	470	
Selenium	1 .	ug/t	10	460	
Thallium	1	ug/l	2.0	440	

Sample ID: DMW-15BF MS Lab#: AC83807-035

Matrix: Aqueous

Collection Date: 3/17/2015 Receipt Date: 3/18/2015

Mercury (Water) 7470A

Analyte	DF	Units	RL	Result
Mercury	1	ug/l	0.70	10
Metals 6010				
Analyte	DF	Units	RL	Result
Aluminum	1	ug/l	200	4900
Barium	1	ug/l	50	530
Calcium	1	ug/l	5000	58000
Chromium	1	ug/l	50	490
Copper	· 1	ug/l	50	500
Iron	, 1	ug/l	300	5100
Magnesium	1	ug/l	5000	51000
Manganese	1	ug/l	40	520
Nickel	1	ug/l	50	490
Potassium	· 1	ug/I	5000	48000
Silver	1	ug/l	20	98
Sodium	1	ug/l	5000	84000
Vanadium	1	ug/l	50	490
Zinc	1	ug/l	50	510

Analyte	DF	Units	RL	Result	
Antimony	1	ug/l	3.0	520	
Arsenic	1	ug/l	2.0	490	
Beryllium	1	ug/l	1.0	490	
Cadmium	1	ug/l	2.0	480	
Cobalt	1	ug/l	2.0	470	
Lead	1	ug/l	3.0	500	
Selenium	1	ug/i	10	480	
Thallium	1	ug/l	2.0	460	

Sample ID: DMW-15BF MSD

Lab#: AC83807-036

Collection Date: 3/17/2015 Receipt Date: 3/18/2015

Matrix: Aqueous

Maraur	· /Matar	74704
Mercury	(water	1/4/UA

Analyte	DF	Units	RL	Result
Mercury	1	ug/l	0.70	10
L Metals 6010				
Analyte	DF	Units	RL	Result
Aluminum	1	ug/l	200	5000
Barium	1	ug/l	50	530
Calcium	1	ug/l	5000	61000
Chromium	1	ug/l	50	500
Copper	1	ug/l	50	510
Iron	1	ug/l	300	5100
Magnesium	1	ug/l	5000	53000
Manganese	1	ug/l	40	540
Nickel	1	ug/l	50	500
Potassium	. 1	ug/l	5000	49000
Silver	1	ug/l	20	100
Sodium	1	ug/I	5000	84000
Vanadium	1	ug/l	50	500
Zinc	1	ug/l	50	520

TAL Metals 6020

Analyte	DF	Units	RL	Result	
Antimony	1	ug/l	3.0	520	
Arsenic	1	ug/l	2.0	480	
Beryllium	1	ug/l	1.0	490	
Cadmium	1	ug/l	2.0	480	
Cobalt	1	ug/l	2.0	470	
Lead	1	ug/l	3.0	500	
Selenium	1	ug/l	10	480	
Thallium	1	ug/l	2.0	440	

Sample ID: AC83807-001

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: DMW-15A Matrix: AQUEOUS Units: UG/L

Date Rec: 3/18/2015

Lab Code: Contract: Sdg No:

Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7440-36-0	Antimony	3.0	ND	1	50	100	03/25/15	42348	SW32415A	29	MS	MS2_7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/25/15	42348	SW32415A	29	MS	MS2_7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	03/25/15	42348	SW32415A	29	MS	MS2_7500SWA
7440-43-9	Cadmium	2.0	17	1	50	100	03/25/15	42348	SW32415A	29	MS	MS2_7500SWA
7440-48-4	Cobalt	2.0	ND	1	50	100	03/25/15	42348	SW32415A	29	MS	MS2_7500SWA
7439-92-1	Lead	3.0	6.3	1	50	100	03/25/15	42348	SW32415A	29	MS	MS2_7500SWA
7782-49-2	Selenium	10	ND	1	50	100	03/25/15	42348	SW32415A	29	MS	MS2_7500SW
7440-28-0	Thallium	2.0	ND	1	50	100	03/25/15	42348	SW32415A	29	MS	MS2_7500SW

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-001

Client Id: DMW-15A

% Solid: 0 Units: UG/L Lab Name: Veritech

Nras No:

Date Rec: 3/18/2015

Lab Code: Contract:

Sdg No: Case No:

Matrix: AQUEOUS Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7429-90-5	Aluminum	200	820	1	50	50	03/24/15	42348	W17586A2	24	Р	PEICP2A
7440-39-3	Barium	50	ND	1	50	50	03/24/15	42348	W17586A2	24	Р	PEICP2A
7440-70-2	Calcium	5000	12000	1	50	50	03/24/15	42348	W17586A2	24	Р	PEICP2A
7440-47-3	Chromium	50	ND	1	50	50	03/24/15	42348	W17586A2	24	Р	PEICP2A
7440-50-8	Copper	50	ND	1	50	50	03/24/15	42348	W17586A2	24	Р	PEICP2A
7439-89-6	Iron	300	1100	1	50	50	03/24/15	42348	W17586A2	24	Р	PEICP2A
7439-95-4	Magnesium	5000	ND	1	50	50	03/24/15	42348	W17586A2	24	Р	PEICP2
7439-96-5	Manganese	40	150	1	50	50	03/24/15	42348	W17586A2	24	Р	PEICP2
7439-97-6	Mercury	0.70	ND	1	25	25	03/20/15	42348	17586SWB	18	CV	HGCV1
7440-02-0	Nickel	50	ND	1	50	50	03/24/15	42348	W17586A2	24	Р	PEICP2
7440-09-7	Potassium	5000	ND	1	50	50	03/24/15	42348	W17586B2	23	Р	PEICPRAD2
7440-22-4	Silver	20	ND	1.	50	50	03/24/15	42348	W17586A2	24	Р	PEICP2/
440-23-5	Sodium	5000	20000	1	50	50	03/24/15	42348	W17586B2	23	Р	PEICPRAD2/
7440-62 - 2	Vanadium	50	ND	1	50	50	03/24/15	42348	W17586A2	24	Ρ	PEICP2
7440-66-6	Zinc	50	ND	1	50	50	03/24/15	42348	W17586A2	24	Р	PEICP2

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID:

AC83807-002

Analyte

Arsenic

Beryllium

Cadmium

Selenium

Thallium

Cobalt

Lead

Antimony

% Solid:

Lab Name: Veritech Nras No:

Client Id: Matrix:

Cas No.

7440-36-0

7440-38-2

7440-41-7

7440-43-9

7440-48-4

7439-92-1

7782-49-2

7440-28-0

DMW-15AF **AQUEOUS**

0 Units: UG/L Date Rec: 3/18/2015

Lab Code: Contract:

50

50

100

100

Sdg No: Case No:

42349 SW32715A

42349 SW32315B

29

29

MSMS2_7500SWA MSMS2_7500SWA

Level: LOW

RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol			File:	Seq Num	M	Instr
3.0	ND	1	50	100	03/27/15	42349	SW32715A	29	MS	MS2_7500SWA
2.0	ND	1	50	100	03/27/15	42349	SW32715A	29	MS	MS2_7500SWA
1.0	ND	1	50	100	03/27/15	42349	SW32715A	29	MS	MS2_7500SWA
2.0	8.2	1	50	100	03/27/15	42349	SW32715A	29	MS	MS2_7500SWA
2.0	ND	1	50	100	03/27/15	42349	SW32715A	29	MS	MS2_7500SWA
3.0	ND	1	50	100	03/27/15	42349	SW32715A	29	MS	MS2 7500SWA

03/27/15

03/24/15

Comments:	

ND

ND

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES

10

2.0

CV -ColdVapor

Sample ID: AC83807-002

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: Matrix: DMW-15AF **AQUEOUS**

Units: UG/L Date Rec: 3/18/2015 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Cons	Dil Fact	Initial	Final		Prep	File	Seq	м	Instr
	Analyte		Conc	Diract	Wt/Vol		Date	Batch	File:	Num		
7429-90-5	Aluminum	200	ND	1	50	50	03/23/15	42349	W17587A2	26	Р	PEICP2A
7440-39-3	Barium	50	ND	1	50	50	03/23/15	42349	W17587A2	26	Ρ	PEICP2A
7440-70-2	Calcium	5000	14000	1	50	50	03/23/15	42349	W17587A2	26	Р	PEICP2A
7440-47-3	Chromium	50	ND	1	50	50	03/23/15	42349	W17587A2	26	Р	PEICP2A
7440-50-8	Copper	50	ND	1	50	50	03/23/15	42349	W17587A2	26	Ρ	PEICP2A
7439-89-6	Iron	300	ND	1	50	50	03/23/15	42349	W17587A2	26	Р	PEICP2A
7439-95 - 4	Magnesium	5000	ND	1	50	50	03/23/15	42349	W17587A2	26	Ρ	PEICP2A
7439-96-5	Manganese	40	ND	1	50	50	03/23/15	42349	W17587A2	26	Ρ	PEICP2A
7439-97-6	Mercury	0.70	ND	1	25	25	03/23/15	42349	17587SWB	18	CV	HGCV1A
7440-02-0	Nickel	50	ND	1	50	50	03/23/15	42349	W17587A2	26	Р	PEICP2A
7440-09-7	Potassium	5000	ND	1	50	50	03/23/15	42349	W17587B2	23	Р	PEICPRAD2A
7440-22-4	Silver	20	ND	1	50	50	03/23/15	42349	W17587A2	26	Ρ	PEICP2A
7440-23-5	Sodium	5000	23000	1	50	50	03/23/15	42349	W17587B2	23	Р	PEICPRAD2A
7440-62-2	Vanadium	50	ND	1	50	50	03/23/15	42349	W17587A2	26	P	PEICP2A
7440-66-6	Zinc	50	ND	1	50	50	03/23/15	42349	W17587A2	26	Р	PEICP2A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES CV -ColdVapor MS - ICP-MS

Sample ID: AC83807-003

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: DMW-15B Matrix: AQUEOUS

Units: UG/L Date Rec: 3/18/2015 Lab Code:

Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol		Analysis Date	Prep Batch	File:	Seq Num	М	Inst
7440-36-0	Antimony	3.0	ND	1	100	200	03/25/15	42348	SW32415A	19	MS	MS2_7500SWA
7440-38-2	Arsenic	2.0	ND	1	100	200	03/25/15	42348	SW32415A	19	MS	MS2_7500SW
7440-41-7	Beryllium	1.0	ND	1	100	200	03/25/15	42348	SW32415A	19	MS	MS2_7500SW
7440-43-9	Cadmium	2.0	ND	1	100	200	03/25/15	42348	SW32415A	19	MS	MS2_7500SW
7440-48-4	Cobalt	2.0	ND	1	100	200	03/25/15	42348	SW32415A	19	MS	MS2_7500SW
7439-92-1	Lead	3.0	11	1	100	200	03/25/15	42348	SW32415A	19	MS	MS2_7500SW
7782-49-2	Selenium	10	ND	1	100	200	03/25/15	42348	SW32415A	19	MS	MS2_7500SW
7440-28-0	Thallium	2.0	ND	1	100	200	03/25/15	42348	SW32415A	19	MS	MS2_7500SW

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-003

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client Id: DMW-15B

Units: UG/L Date Rec: 3/18/2015 Lab Code:

Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	M	Instr
7429-90-5	Aluminum	200	ND	1	100	100	03/24/15	42348	W17586A2	15	Р	PEICP2A
7440-39-3	Barium	50	ND	1	100	100	03/24/15	42348	W17586A2	15	Р	PEICP2A
7440-70-2	Calcium	5000	9900	1	100	100	03/24/15	42348	W17586A2	15	Р	PEICP2A
7440-47-3	Chromium	50	ND	1	100	100	03/24/15	42348	W17586A2	15	Р	PEICP2A
7440-50-8	Copper	50	ND	1	100	100	03/24/15	42348	W17586A2	15	Р	PEICP2A
7439-89-6	Iron	300	1500	1	100	100	03/24/15	42348	W17586A2	15	Р	PEICP2A
7439-95-4	Magnesium	5000	ND	1	100	100	03/24/15	42348	W17586A2	15	Р	PEICP2A
7439-96-5	Manganese	40	94	1	100	100	03/24/15	42348	W17586A2	15	Р	PEICP2A
7439-97-6	Mercury	0.70	ND	1	25	25	03/20/15	42348	17586SWB	14	CV	HGCV1A
7440-02-0	Nickel	50	ND	1	100	100	03/24/15	42348	W17586A2	15	Р	PEICP2A
7440-09-7	Potassium	5000	ND	1	100	100	03/24/15	42348	W17586B2	14	Р	PEICPRAD2A
7440-22-4	Silver	20	ND	1	100	100	03/24/15	42348	W17586A2	15	Р	PEICP2A
7440-23-5	Sodium	5000	32000	1	100	100	03/24/15	42348	W17586B2	14	Р	PEICPRAD2A
7440-62-2	Vanadium	50	ND	1	100	100	03/24/15	42348	W17586A2	15	Р	PEICP2A
7440-66-6	Zinc	50	ND	1	100	100	03/24/15	42348	W17586A2	15	Р	PEICP2A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-004

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: DMW-15BF Matrix: AQUEOUS

Units: UG/L Date Rec: 3/18/2015 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	M	Inst
7440-36-0	Antimony	3.0	ND	1	50	100	03/27/15	42349	SW32715A	19	MS	MS2_7500SWA
440-38-2	Arsenic	2.0	ND	1	50	100	03/27/15	42349	SW32715A	19	MS	MS2_7500SW/
440-41-7	Beryllium	1.0	ND	1	50	100	03/27/15	42349	SW32715A	19	MS	MS2_7500SW/
7440-43-9	Cadmium	2.0	ND	. 1	50	100	03/27/15	42349	SW32715A	19	MS	MS2_7500SW/
7440-48-4	Cobalt	2.0	ND	1	50	100	03/27/15	42349	SW32715A	19	MS	MS2_7500SW
7439-92-1	Lead	3.0	ND	1	50	100	03/27/15	42349	SW32715A	19	MS	MS2_7500SW
7782-49-2	Selenium	10	ND	1	50	100	03/27/15	42349	SW32715A	19	MS	MS2_7500SW
7440-28-0	Thallium	2.0	ND	1	50	100	03/24/15	42349	SW32315B	19	MS	MS2_7500SW

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES CV -ColdVapor MS - ICP-MS

Sample ID: AC83807-004

Client Id: DMW-15BF

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Units: UG/L Date Rec: 3/18/2015 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
429-90-5	Aluminum	200	ND	1	100	100	03/23/15	42349	W17587A2	15	Р	PEICP2A
440-39-3	Barium	50	ND	1	100	100	03/23/15	42349	W17587A2	15	Р	PEICP2A
440-70-2	Calcium	5000	11000	1	100	100	03/23/15	42349	W17587A2	15	Р	PEICP2A
440-47-3	Chromium	50	ND	1	100	100	03/23/15	42349	W17587A2	15	Р	PEICP2A
440-50-8	Copper	50	ND	1	100	100	03/23/15	42349	W17587A2	15	Р	PEICP2A
439-89-6	Iron	300	ND	1	100	100	03/23/15	42349	W17587A2	15	Р	PEICP2A
439-95-4	Magnesium	5000	ND	1	100	100	03/23/15	42349	W17587A2	15	Р	PEICP2A
439-96-5	Manganese	40	ND	1	100	100	03/23/15	42349	W17587A2	15	Р	PEICP2A
439-97-6	Mercury	0.70	ND	1	25	25	03/23/15	42349	17587SWB	14	CV	HGCV1A
440-02-0	Nickel	50	ND	1	100	100	03/23/15	42349	W17587A2	15	Р	PEICP2
440-09-7	Potassium	5000	ND	1	100	100	03/23/15	42349	W17587B2	14	Р	PEICPRAD2A
440-22-4	Silver	20	ND	1	100	100	03/23/15	42349	W17587A2	15	Р	PEICP2
440-23-5	Sodium	5000	36000	1	100	100	03/23/15	42349	W17587B2	14	Р	PEICPRAD2/
440-62-2	Vanadium	50	ND	1	100	100	03/23/15	42349	W17587A2	15	Р	PEICP2
440-66-6	Zinc	50	ND	1	100	100	03/23/15	42349	W17587A2	15	Р	PEICP2/

Comments:	
	· · · · · · · · · · · · · · · · · · ·

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-005

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: DMW-65B Matrix: AQUEOUS

Units: UG/L Date Rec: 3/18/2015 Lab Code:

Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	м	Instr
7440-36-0	Antimony	3.0	ND	1	50	100	03/25/15	42348	SW32415A	30	MS	MS2_7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/25/15	42348	SW32415A	30	MS	MS2_7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	03/25/15	42348	SW32415A	30	MS	MS2_7500SWA
7440-43-9	Cadmium	2.0	ND	1.	50	100	03/25/15	42348	S W32415A	30	MS	MS2_7500SWA
7440-48-4	Cobalt	2.0	ND	1	50	100	03/25/15	42348	SW32415A	30	MS	MS2_7500SWA
7439-92-1	Lead	3.0	ND	1	50	100	03/25/15	42348	SW32415A	30	MS	MS2_7500SWA
7782-49-2	Selenium	10	ND	1	50	100	03/25/15	42348	SW32415A	30	MS	MS2_7500SWA
7440-28-0	Thallium	2.0	ND	1	50	100	03/25/15	42348	SW32415A	30	MS	MS2_7500SWA

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-005

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: DMW-65B Matrix: AQUEOUS

Units: UG/L Date Rec: 3/18/2015 Lab Code:

Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Inst
7429-90-5	Aluminum	200	ND	1	50	50	03/24/15	42348	W17586A2	25	Р	PEICP2A
7440-39-3	Barium	50	ND	1	50	50	03/24/15	42348	W17586A2	25	Р	PEICP2A
7440-70-2	Calcium	5000	11000	1	50	50	03/24/15	42348	W17586A2	25	Р	PEICP2A
7440-47-3	Chromium	50	ND	1	50	50	03/24/15	42348	W17586A2	25	Ρ	PEICP2
7440-50-8	Copper	50	ND	1	50	50	03/24/15	42348	W17586A2	25	Р	PEICP2
7439-89-6	Iron	300	1600	1	50	50	03/24/15	42348	W17586A2	25	Ρ	PEICP2
7439-95-4	Magnesium	5000	ND	1	50	50	03/24/15	42348	W17586A2	25	Р	PEICP2
7439-96-5	Manganese	40	63	1	50	50	03/24/15	42348	W17586A2	25	Р	PEICP2
7439-97-6	Mercury	0.70	ND	1	25	25	03/20/15	42348	17586 S WB	19	CV	HGCV1/
7440-02-0	Nickel	50	ND	1	50	50	03/24/15	42348	W17586A2	25	Р	PEICP2
7440-09-7	Potassium	5000	ND	1	50	50	03/24/15	42348	W17586B2	24	Р	PEICPRAD2
7440-22-4	Silver	20	ND	1	50	50	03/24/15	42348	W17586A2	25	Р	PEICP2/
7440-23-5	Sodium	5000	33000	1	50	50	03/24/15	42348	W17586B2	24	Р	PEICPRAD2
7440-62-2	Vanadium	50	ND	1	50	50	03/24/15	42348	W17586A2	25	Р	PEICP2
7440-66-6	Zinc	50	ND	1	50	50	03/24/15	42348	W17586A2	25	Р	PEICP2

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-006

Client Id: DMW-65BF

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Units: UG/L Date Rec: 3/18/2015

Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Inst
7440-36-0	Antimony	3.0	ND	1	50	100	03/27/15	42349	SW32715A	30	MS	MS2_7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/27/15	42349	SW32715A	30	MS	MS2_7500SWA
7440-41-7	Beryllium	1.0	ND	.1	50	100	03/27/15	42349	SW32715A	30	MS	M\$2_7500SWA
7440-43-9	Cadmium	2.0	ND	1	50	100	03/27/15	42349	SW32715A	30	MS	MS2_7500SW/
7440-48-4	Cobalt	2.0	ND	1	50	100	03/27/15	42349	SW32715A	30	MS	MS2_7500SW
7439-92-1	Lead	3.0	ND	1	50	100	03/27/15	42349	SW32715A	30	MS	MS2_7500SW/
7782-49-2	Selenium	10	ND	1	50	100	03/27/15	42349	SW32715A	30	MS	MS2_7500SW
7440-28-0	Thallium	2.0	ND	1,	50	100	03/24/15	42349	SW32315B	30	MS	MS2_7500SW

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-006

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix:

Client Id: DMW-65BF AQUEOUS

Units: UG/L Date Rec: 3/18/2015 Lab Code: Contract: Sdg No:

Case No:

LOW Level:

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol		Analysis Date		File;	Seq Num	М	Instr
7429-90-5	Aluminum	200	ND	1	50	50	03/23/15	42349	W17587A2		Р	PEICP2A
7440-39-3	Barium	50	ND	1	50	50	03/23/15	42349	W17587A2	27	Р	PEICP2A
7440-70-2	Calcium	5000	11000	1	50	50	03/23/15	42349	W17587A2	27	Р	PEICP2A
7440-47-3	Chromium	50	ND	1	50	50	03/23/15	42349	W17587A2	27	Р	PEICP2A
7440-50-8	Copper	50	ND	1	50	50	03/23/15	42349	W17587A2	27	Р	PEICP2A
7439-89-6	Iron	300	340	1	50	50	03/23/15	42349	W17587A2	27	Р	PEICP2A
7439-95-4	Magnesium	5000	ND	1	50	50	03/23/15	42349	W17587A2	27	Р	PEICP2A
7439-96-5	Manganese	40	45	1	50	50	03/23/15	42349	W17587A2	27	Ρ	PEICP2A
7439-97-6	Mercury	0.70	ND	1	25	25	03/23/15	42349	17587SWB	19	CV	HGCV1A
7440-02-0	Nickel	50	ND	1	50	50	03/23/15	42349	W17587A2	27	Р	PEICP2A
7440-09-7	Potassium	5000	ND	1	50	50	03/23/15	42349	W17587B2	24	Р	PEICPRAD2A
7440-22-4	Silver	20	ND	1	50	50	03/23/15	42349	W17587A2	27	Р	PEICP2A
7440-23-5	Sodium	5000	35000	1	50	50	03/23/15	42349	W17587B2	24	Р	PEICPRAD2A
7440-62-2	Vanadium	50	ND	1	50	50	03/23/15	42349	W17587A2	27	Р	PEICP2A
7440-66-6	Zinc	50	ND	1	50	50	03/23/15	42349	W17587A2	27	Р	PEICP2A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-007

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client Id: DMW-22B

Units: UG/L
Date Rec: 3/18/2015

Lab Code:

Contract:

Sdg No:

Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol		Prep Batch	File:	Seq Num	М	Instr
7440-36-0	Antimony	3.0	ND	1	50	100	03/25/15	42348	SW32415A	31	MS	VIS2_7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/25/15	42348	SW32415A	31	MS	MS2_7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	03/25/15	42348	SW32415A	31	MS	MS2_7500SWA
7440-43-9	Cadmium	2.0	ND	1	50	100	03/25/15	42348	SW32415A	31	MS	MS2_7500SWA
7440-48-4	Cobalt	2.0	ND	1	50	100	03/25/15	42348	SW32415A	31	мѕ	VIS2_7500SWA
7439-92-1	Lead	3.0	ND	1	50	100	03/25/15	42348	SW32415A	31	MS	MS2_7500SWA
7782-49-2	Selenium	10	ND	1	50	100	03/25/15	42348	SW32415A	31	MS	MS2_7500SWA
7440-28-0	Thallium	2.0	ND	1	50	100	03/25/15	42348	SW32415A	31	MS	MS2 7500SW

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-007

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: DMW-22B Matrix: AQUEOUS

Units: UG/L

Date Rec: 3/18/2015

Lab Code: Contract:

Sdg No: Case No:

Level: LOW

M Ir		Seq Num	File:		Analysis Date	Final Wt/Vol	Initial Wt/Vol	Dil Fact	Conc	RL	Analyte	Cas No.
P PEICE	26 P	26	W17586A2	42348	03/24/15	50	50	1	ND	200	Aluminum	7429-90-5
P PEICE	26 P	26	W17586A2	42348	03/24/15	50	50	1	ND	50	Barium	7440-39-3
P PEICE	26 P	26	W17586A2	42348	03/24/15	50	50	1	27000	5000	Calcium	7440-70-2
P PEICE	26 P	26	W17586A2	42348	03/24/15	50	50	1	ND	50	Chromium	7440-47-3
P PEICE	26 P	26	W17586A2	42348	03/24/15	50	50	1	ND	50	Copper	7440-50-8
P PEICE	26 P	26	W17586A2	42348	03/24/15	50	50	1	ND	300	Iron	7439-89-6
P PEICE	26 P	26	W17586A2	42348	03/24/15	50	50	1	5100	5000	Magnesium	7439-95-4
P PEICE	26 P	26	W17586A2	42348	03/24/15	50	50	1	550	40	Manganese	7439-96-5
CV HGCV	0 CV	20	17586SWB	42348	03/20/15	25	25	1	ND	0.70	Mercury	7439-97-6
P PEICE	26 P	26	W17586A2	42348	03/24/15	50	50	1	ND	50	Nickel	7440-02-0
PEICPRAD	25 P	25	W17586B2	42348	03/24/15	50	50	1	ND	5000	Potassium	7440-09-7
P PEICE	26 P	26	W17586A2	42348	03/24/15	50	50	1	ND	20	Silver	7440-22-4
PEICPRAD	25 P	25	W17586B2	42348	03/24/15	50	50	1	15000	5000	Sodium	7440-23-5
P PEICE	26 P	26	W17586A2	42348	03/24/15	50	50	1	ND	50	Vanadium	7440-62-2
P PEICE	26 P	26	W17586A2	42348	03/24/15	50	50	1	ND	50	Zinc	7440-66-6

Comments:		

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-008

Client ld: DMW-22BF

% Solid: 0 Units: UG/L Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Date Rec: 3/18/2015

Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7440-36-0	Antimony	3.0	ND	1	50	100	03/27/15	42349	SW32715A	31	MS	MS2_7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/27/15	42349	SW32715A	31	MS	MS2_7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	03/27/15	42349	SW32715A	31	MS	MS2_7500SWA
7440-43-9	Cadmium	2.0	ND	1	50	100	03/27/15	42349	SW32715A	31	MS	MS2_7500SWA
7440-48-4	Cobalt	2.0	ND	1	50	100	03/27/15	42349	SW32715A	31	MS	MS2_7500SWA
7439-92-1	Lead	3.0	ND	1	50	100	03/27/15	42349	SW32715A	31	MS	MS2_7500SWA
7782-49-2	Selenium	10	ND	1	50	100	03/27/15	42349	SW32715A	31	MS	MS2_7500SWA
7440-28-0	Thallium	2.0	ND	1	50	100	03/24/15	42349	SW32315B	31	MS	MS2_7500SWA

Comments:	
-----------	--

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-008

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: Matrix: AQUEOUS

DMW-22BF

Units: UG/L Date Rec: 3/18/2015 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Instr	М	Num	File:	Batch	Analysis	Wt/Vol	Unitial Wt/Vol	Dil Fact	Conc	RL	Analyte	Cas No.
PEICP2A	Р	28	W17587A2	42349	03/23/15	50	50	1	ND	200	Aluminum	7429-90-5
PEICP2A	Р	28	W17587A2	42349	03/23/15	50	50	1	ND	50	Barium	7440-39-3
PEICP2A	Р	28	W17587A2	42349	03/23/15	50	50	1	31000	5000	Calcium	7440-70-2
PEICP2A	Р	28	W17587A2	42349	03/23/15	50	50	1	ND	50	Chromium	7440-47-3
PEICP2A	Р	28	W17587A2	42349	03/23/15	50	50	1	ND	50	Copper	7440-50-8
PEICP2A	Р	28	W17587A2	42349	03/23/15	50	50	1	ND	300	Iron	7439-89-6
PEICP2A	Р	28	W17587A2	42349	03/23/15	50	50	1	5900	5000	Magnesium	7439-95-4
PEICP2A	Р	28	W17587A2	42349	03/23/15	50	50	1	590	40	Manganese	7439-96-5
HGCV1A	CV	20	17587SWB	42349	03/23/15	25	25	1	ND	0.70	Mercury	7439-97-6
PEICP2A	Ρ	28	W17587A2	42349	03/23/15	50	50	1	ND	50	Nickel	7440-02-0
PEICPRAD2A	Р	25	W17587B2	42349	03/23/15	50	50	1	ND	5000	Potassium	7440-09-7
PEICP2A	Р	28	W17587A2	42349	03/23/15	50	50	1	ND	20	Silver	7440-22-4
PEICPRAD2A	Р	25	W17587B2	42349	03/23/15	50	50	1	17000	5000	Sodium	7440-23-5
PEICP2A	Р	28	W17587A2	42349	03/23/15	50	50	1	ND	50	Vanadium	7440-62-2
PEICP2A	Р	28	W17587A2	42349	03/23/15	50	50	1	ND	50	Zinc	7440-66-6

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES CV -ColdVapor MS - ICP-MS

Sample ID: AC83807-009

Client Id: DMW-22A

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Units: UG/L Date Rec: 3/18/2015 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol		Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7440-36-0	Antimony	3.0	ND	1	50	100	03/25/15	42348	SW32415A	32	MSV	1S2_7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/25/15	42348	SW32415A	32	MS	1S2_7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	03/25/15	42348	SW32415A	32	MS	1S2_7500SWA
7440-43-9	Cadmium	2.0	ND	1	50	100	03/25/15	42348	SW32415A	32	MS	1S2_7500SW
7440-48-4	Cobalt	2.0	ND	1	50	100	03/25/15	42348	SW32415A	32	MS	1S2_7500SW
7439-92-1	Lead	3.0	ND	1	50	100	03/25/15	42348	SW32415A	32	MS	1S2_7500SW
7782-49-2	Selenium	10	ND	1	50	100	03/25/15	42348	SW32415A	32	MS	1S2_7500SW
7440-28-0	Thallium	2.0	ND	1	50	100	03/25/15	42348	SW32415A	32	MS	1S2 7500SW

Comments:	 			

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-009

% Solid: 0 Units: UG/L Lab Name: Veritech

Nras No:

Client Id: DMW-22A Matrix: AQUEOUS

Date Rec: 3/18/2015

Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Inst
429-90-5	Aluminum	200	ND	1	50	50	03/24/15	42348	W17586A2	27	Р	PEICP2A
440-39-3	Barium	50	ND	1	50	50	03/24/15	42348	W17586A2	27	Ρ	PEICP2
440-70-2	Calcium	5000	45000	1	50	50	03/24/15	42348	W17586A2	27	Ρ	PEICP2/
440-47-3	Chromium	50	ND	1	50	50	03/24/15	42348	W17586A2	27	Ρ	PEICP2/
440-50-8	Copper	50	ND	1	50	50	03/24/15	42348	W17586A2	27	Р	PEICP2/
7439-89-6	Iron	300	2100	1	50	50	03/24/15	42348	W17586A2	27	Р	PEICP2
7439-95-4	Magnesium	5000	7200	1	50	50	03/24/15	42348	W17586A2	27	Ρ	PEICP2
439-96-5	Manganese	40	220	1	50	50	03/24/15	42348	W17586A2	27	Р	PEICP2
7439-97-6	Mercury	0.70	ND	1	25	25	03/20/15	42348	17586SWB	23	CV	HGCV1
7440-02-0	Nickel	50	ND	1	50	50	03/24/15	42348	W17586A2	27	Р	PEICP2
7440-09-7	Potassium	5000	ND	1	50	50	03/24/15	42348	W17586B2	26	Р	PEICPRAD2
7440-22-4	Silver	20	ND	1	50	50	03/24/15	42348	W17586A2	27	Р	PEICP2
7440-23-5	Sodium	5000	28000	1	50	50	03/24/15	42348	W17586B2	26	Р	PEICPRAD2
440-62-2	Vanadium	50	ND	1	50	50	03/24/15	42348	W17586A2	27	Ρ	PEICP2
7440-66-6	Zinc	50	280	1	50	50	03/24/15	42348	W17586A2	27	Р	PEICP2

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-010

Client Id: DMW-22AF

% Solid: 0

Lab Name: Veritech

Nras No:

Level: LOW

Matrix: AQUEOUS

Units: UG/L Date Rec: 3/18/2015 Lab Code:

Contract:

Sdg No:

Case No:

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Inst
7440-36-0	Antimony	3.0	ND	1	50	100	03/27/15	42349	SW32715A	32	MS	MS2_7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/27/15	42349	SW32715A	32	MS	MS2_7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	03/27/15	42349	SW32715A	32	MS	MS2_7500SWA
7440-43-9	Cadmium	2.0	ND	1	50	100	03/27/15	42349	SW32715A	32	MS	MS2_7500SWA
7440-48-4	Cobalt	2.0	ND	1	50	100	03/27/15	42349	SW32715A	32	мѕ	MS2_7500SW/
7439-92-1	Lead	3.0	ND	1	50	100	03/27/15	42349	SW32715A	32	MS	MS2_7500SW/
7782-49-2	Selenium	10	ND	1	50	100	03/27/15	42349	SW32715A	32	MS	MS2_7500SW
7440-28-0	Thallium	2.0	ND	1	50	100	03/24/15	42349	SW32315B	32	MS	MS2_7500SW

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-010

Client Id: DMW-22AF

% Solid: 0 Units: UG/L Lab Name: Veritech

Nras No:

Matrix: AQUEOUS Level: LOW

Date Rec: 3/18/2015

Lab Code: Contract: Sdg No:

Case No:

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7429-90-5	Aluminum	200	ND	1	50	50	03/23/15	42349	W17587A2	34	Р	PEICP2A
7440-39-3	Barium	50	ND	1	50	50	03/23/15	42349	W17587A2	34	Р	PEICP2A
7440-70-2	Calcium	5000	51000	1	50	50	03/23/15	42349	W17587A2	34	Ρ	PEICP2A
7440-47-3	Chromium	50	ND	1	50	50	03/23/15	42349	W17587A2	34	Р	PEICP2A
7440-50-8	Copper	50	ND	1	50	50	03/23/15	42349	W17587A2	34	Р	PEICP2A
7439-89-6	Iron	300	640	1	50	50	03/23/15	42349	W17587A2	34	Р	PEICP2A
7439-95-4	Magnesium	5000	8200	1	50	50	03/23/15	42349	W17587A2	34	Р	PEICP2A
7439-96-5	Manganese	40	260	1	50	50	03/23/15	42349	W17587A2	34	Р	PEICP2A
7439-97-6	Mercury	0.70	ND	1	25	25	03/23/15	42349	17587SWB	23	CV	HGCV1A
7440-02-0	Nickel	50	ND	1	50	50	03/23/15	42349	W17587A2	34	Р	PEICP2A
7440-09-7	Potassium	5000	ND	1	50	50	03/24/15	42349	W17587C2	11	Р	PEICPRAD2A
7440-22-4	Silver	20	ND	1	50	50	03/23/15	42349	W17587A2	34	P	PEICP2A
7440-23-5	Sodium	5000	34000	1	50	50	03/24/15	42349	W17587C2	11	Ρ	PEICPRAD2A
7440-62-2	Vanadium	50	ND	1	50	50	03/23/15	42349	W17587A2	34	Р	PEICP2A
7440-66-6	Zinc	50	290	1	50	50	03/23/15	42349	W17587A2	34	Р	PEICP2A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-011

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client Id: DMW-13A

Units: UG/L

Date Rec: 3/18/2015

Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7440-36-0	Antimony	3.0	ND	1	50	100	03/25/15	42348	SW32415A	33	MSMS	2_7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/25/15	42348	SW32415A	33	MSMS	2_7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	03/25/15	42348	SW32415A	33	MSMS	2_7500SWA
7440-43-9	Cadmium	2.0	9.6	1	50	100	03/25/15	42348	SW32415A	33	MSMS	2_7500 S WA
7440-48-4	Cobalt	2.0	17	1	50	100	03/25/15	42348	SW32415A	33	MSMS	2_7500SWA
7439-92-1	Lead	3.0	ND	1	50	100	03/25/15	42348	SW32415A	33	мѕмѕ	2_7500SWA
7782-49-2	Selenium	10	ND	1	50	100	03/25/15	42348	SW32415A	33	MSMS	2_7500SWA
7440-28-0	Thallium	2.0	ND	1	50	100	03/25/15	42348	SW32415A	33	MSMS	2_7500SWA

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-011

% Solid: 0

Lab Name: Veritech Nras No:

Client ld: Matrix:

DMW-13A AQUEOUS

Vanadium

Zinc

Units: UG/L Date Rec: 3/18/2015 Lab Code: Contract:

Sdg No: Case No:

Р

P

PEICP2A

PEICP2A

42348 W17586A2 28

42348 W17586A2 28

Level:

LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	м	Instr
7429-90-5	Aluminum	200	420	1	50	50	03/24/15	42348	W17586A2	28	Р	PEICP2A
7440-39-3	Barium	50	ND	1	50	50	03/24/15	42348	W17586A2	28	Р	PEICP2A
7440-70-2	Calcium	5000	20000	1	50	50	03/24/15	42348	W17586A2	28	Р	PEICP2A
7440-47-3	Chromium	50	ND	1	50	50	03/24/15	42348	W17586A2	28	Р	PEICP2A
7440-50-8	Copper	50	ND	1	50	50	03/24/15	42348	W17586A2	28	Р	PEICP2A
7439-89-6	Iron	300	8600	1	50	50	03/24/15	42348	W17586A2	28	Р	PEICP2A
7439-95-4	Magnesium	5000	ND	1	50	50	03/24/15	42348	W17586A2	28	Р	PEICP2A
7439-96-5	Manganese	40	1100	1	50	50	03/24/15	42348	W17586A2	28	Р	PEICP2A
7439-97-6	Mercury	0.70	ND	1	25	25	03/20/15	42348	17586SWB	24	CV	HGCV1A
7440-02-0	Nickel	50	ND	1	50	50	03/24/15	42348	W17586A2	28	Р	PEICP2A
7440-09-7	Potassium	5000	ND	1	50	50	03/24/15	42348	W17586B2	27	Р	PEICPRAD2A
7440-22-4	Silver	20	ND	1	50	50	03/24/15	42348	W17586A2	28	Р	PEICP2A
7440-23-5	Sodium	5000	43000	1	50	50	03/24/15	42348	W17586B2	27	Р	PEICPRAD2A

50

50

50 03/24/15

50 03/24/15

Comments:	

ND

ND

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

50

50

P - ICP-AES

CV -ColdVapor

7440-62-2

7440-66-6

Sample ID: AC83807-012

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: Matrix:

DMW-13AF AQUEOUS

Units: UG/L Date Rec: 3/18/2015 Lab Code: Contract:

Sdg No: Case No:

LOW Level:

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	M	Instr
7440-36-0	Antimony	3.0	ND	1	50	100	03/27/15	42349	SW32715A	33	MS	MS2_7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/27/15	42349	SW32715A	33	MS	MS2_7500 S WA
7440-41-7	Beryllium	1.0	ND	1	50	100	03/27/15	42349	SW32715A	33	MS	MS2_7500SWA
7440-43-9	Cadmium	2.0	9.1	1	50	100	03/27/15	42349	SW32715A	33	MS	MS2_7500SWA
7440-48-4	Cobalt	2.0	18	1	50	100	03/27/15	42349	SW32715A	33	MS	MS2_7500SWA
7439-92-1	Lead	3.0	25	1	50	100	03/27/15	42349	SW32715A	33	MS	MS2_7500SWA
7782-49-2	Selenium	10	ND	1	50	100	03/27/15	42349	SW32715A	33	MS	MS2_7500SW/
7440-28-0	Thallium	2.0	ND	1	50	100	03/24/15	42349	SW32315B	33	MS	MS2_7500SW

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-012

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client Id: DMW-13AF

Units: UG/L Date Rec: 3/18/2015 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7429-90-5	Aluminum	200	ND	1	50	50	03/23/15	42349	W17587A2	35	Р	PEICP2A
7440-39-3	Barium	50	ND	1	50	50	03/23/15	42349	W17587A2	35	Р	PEICP2/
7440-70-2	Calcium	5000	21000	1	50	50	03/23/15	42349	W17587A2	35	Р	PEICP2/
7440-47-3	Chromium	50	ND	1	50	50	03/23/15	42349	W17587A2	35	Р	PEICP2
7440-50-8	Copper	50	ND	1	50	50	03/23/15	42349	W17587A2	35	Р	PEICP2
7439-89-6	Iron	300	6200	1	50	50	03/23/15	42349	W17587A2	35	Р	PEICP2
7439-95-4	Magnesium	5000	ND	1	50	50	03/23/15	42349	W17587A2	35	Р	PEICP2
7439-96-5	Manganese	40	1200	1	50	50	03/23/15	42349	W17587A2	35	Р	PEICP2
7439-97-6	Mercury	0.70	ND	-1	25	25	03/23/15	42349	17587SWB	24	C۷	HGCV1
7440-02-0	Nickel	50	ND	1	50	50	03/23/15	42349	W17587A2	35	Р	PEICP2
7440-09-7	Potassium	5000	ND	1	50	50	03/24/15	42349	W17587C2	12	Ρ	PEICPRAD2
7440-22-4	Silver	20	ND	1	50	50	03/23/15	42349	W17587A2	35	Р	PEICP2
7440-23-5	Sodium	5000	47000	1	50	50	03/24/15	42349	W17587C2	12	Р	PEICPRAD2
7440-62-2	Vanadium	50	ND	1	50	50	03/23/15	42349	W17587A2	35	Ρ	PEICP2
7440-66-6	Zinc	50	ND	1	50	50	03/23/15	42349	W17587A2	35	Р	PEICP2

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-013

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id:

DMW-13B Matrix: AQUEOUS

Units: UG/L Date Rec: 3/18/2015 Lab Code:

Contract:

Sdg No:

Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol		Prep Batch	File:	Seq Num	М	Instr
7440-36-0	Antimony	3.0	ND	1	50	100	03/25/15	42348	SW32415A	34	MS	MS2_7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/25/15	42348	SW32415A	34	MS	VIS2_7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	03/25/15	42348	SW32415A	34	MS	MS2_7500SWA
7440-43-9	Cadmium	2.0	4.0	1	50	100	03/25/15	42348	SW32415A	34	MS	MS2_7500SWA
7440-48-4	Cobalt	2.0	3.0	1	50	100	03/25/15	42348	SW32415A	34	MS	MS2_7500SWA
7439-92-1	Lead	3.0	6.3	1	50	100	03/25/15	42348	SW32415A	34	MS	VIS2_7500SWA
7782-49-2	Selenium	10	ND	1	50	100	03/25/15	42348	SW32415A	34	MS	VIS2_7500SWA
7440-28-0	Thallium	2.0	ND	1	50	100	03/25/15	42348	SW32415A	34	MS	MS2_7500SWA

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-013

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: DMW-13B Matrix: AQUEOUS Units: UG/L

Date Rec: 3/18/2015

Lab Code: Contract: Sdg No:

Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7429-90-5	Aluminum	200	1000	1	50	50	03/24/15	42348	W17586A2	34	Р	PEICP2A
7440-39-3	Barium	50	ND	1	50	50	03/24/15	42348	W17586A2	34	Ρ	PEICP2A
7440-70-2	Calcium	5000	12000	1	50	50	03/24/15	42348	W17586A2	34	Р	PEICP2A
7440-47-3	Chromium	50	ND	1	50	50	03/24/15	42348	W17586A2	34	Р	PEICP2A
7440-50-8	Copper	50	ND	1	50	50	03/24/15	42348	W17586A2	34	Р	PEICP2A
7439-89-6	Iron	300	2100	1	50	50	03/24/15	42348	W17586A2	34	Р	PEICP2A
7439-95-4	Magnesium	5000	ND	1	50	50	03/24/15	42348	W17586A2	34	Ρ	PEICP2A
7439-96-5	Manganese	40	780	1	50	50	03/24/15	42348	W17586A2	34	Р	PEICP2A
7439-97-6	Mercury	0.70	ND	1	25	25	03/20/15	42348	17586 S WB	25	CV	HGCV1A
7440-02-0	Nickel	50	ND	1	50	50	03/24/15	42348	W17586A2	34	Р	PEICP2A
7440-09-7	Potassium	5000	ND	1	50	50	03/24/15	42348	W17586B2	33	Ρ	PEICPRAD2A
7440-22-4	Silver	20	ND	1	50	50	03/24/15	42348	W17586A2	34	Р	PEICP2A
7440-23-5	Sodium	5000	12000	1	50	50	03/24/15	42348	W17586B2	33	Р	PEICPRAD2A
7440-62-2	Vanadium	50	ND	1	50	50	03/24/15	42348	W17586A2	34	Р	PEICP2A
7440-66-6	Zinc	50	ND	1	50	50	03/24/15	42348	W17586A2	34	Р	PEICP2A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-014

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Level: LOW

Client Id: DMW-13BF

Units: UG/L

Lab Code:

Sdg No:

Date Rec: 3/18/2015

Contract:

Case No:

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol				File:	Seq Num	М	Instr
7440-36-0	Antimony	3.0	ND	1	50	100	03/27/15	42349	SW32715A	34	MS	MS2_7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/27/15	42349	SW32715A	. 34	MS	MS2_7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	03/27/15	42349	SW32715A	34	MS	MS2_7500SWA
7440-43-9	Cadmium	2.0	ND	1	50	100	03/27/15	42349	SW32715A	34	MS	MS2_7500SWA
7440-48-4	Cobalt	2.0	ND	1	50	100	03/27/15	42349	SW32715A	34	MS	MS2_7500SWA
7439-92-1	Lead	3.0	ND	1	50	100	03/27/15	42349	SW32715A	34	MS	MS2_7500SWA
7782-49-2	Selenium	10	ND	1	50	100	03/27/15	42349	SW32715A	34	MS	MS2_7500SWA
7440-28-0	Thallium	2.0	ND	1	50	100	03/24/15	42349	SW32315B	34	MS	MS2_7500SWA

Comments:					

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-014

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client Id: DMW-13BF

Units: UG/L Date Rec: 3/18/2015 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol		Analysis Date	Prep Batch	File:	Seq Num	м	Inst
7429-90-5	Aluminum	200	ND	1	50	50	03/23/15	42349	W17587A2	36	Р	PEICP2A
7440-39-3	Barium	50	ND	1	50	50	03/23/15	42349	W17587A2	36	Р	PEICP2
7440-70-2	Calcium	5000	13000	1	50	50	03/23/15	42349	W17587A2	36	Р	PEICP2/
7440-47-3	Chromium	50	ND	1	50	50	03/23/15	42349	W17587A2	36	Р	PEICP2
7440-50-8	Copper	50	ND	1	50	50	03/23/15	42349	W17587A2	36	Р	PEICP2/
7439-89-6	Iron	300	ND	1	50	50	03/23/15	42349	W17587A2	36	P	PEICP2
7439-95-4	Magnesium	5000	ND	1	50	50	03/23/15	42349	W17587A2	36	Р	PEICP2
7439-96-5	Manganese	40	ND	1	50	50	03/23/15	42349	W17587A2	36	Р	PEICP2
7439-97-6	Mercury	0.70	ND	1	25	25	03/23/15	42349	17587SWB	25	CV	HGCV1
7440-02-0	Nickel	50	ND	1	50	.50	03/23/15	42349	W17587A2	36	Р	PEICP2
7440-09-7	Potassium	5000	ND	1	50	50	03/24/15	42349	W17587C2	13	Р	PEICPRAD2
7440-22-4	Silver	20	ND	1	50	50	03/23/15	42349	W17587A2	36	Р	PEICP2
7440-23-5	Sodium	5000	13000	1	50	50	03/24/15	42349	W17587C2	13	Р	PEICPRAD2
7440-62-2	Vanadium	50	ND	1	50	50	03/23/15	42349	W17587A2	36	Р	PEICP2
7440-66-6	Zinc	50	ND	1	50	50	03/23/15	42349	W17587A2	36	Р	PEICP2

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-015

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Level: LOW

Client Id: DMW-23A

Units: UG/L

Date Rec: 3/18/2015

Lab Code:

Sdg No:

Contract:

Case No:

					Initial	Final	Analysis	Prep		Seq		
Cas No.	Analyte	RL	Conc	Dil Fact	Wt/Vol	Wt/Vol	Date	Batch	File:	Num	М	Instr
7440-36-0	Antimony	3.0	ND	1	50	100	03/25/15	42348	SW32415A	35	MS	/IS2_7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/25/15	42348	SW32415A	35	MS	/IS2_7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	03/25/15	42348	SW32415A	35	MS	MS2_7500SW
7440-43-9	Cadmium	2.0	10	1	50	100	03/25/15	42348	SW32415A	35	MS	MS2_7500SW/
7440-48-4	Cobalt	2.0	ND	1	50	100	03/25/15	42348	SW32415A	35	MS	MS2_7500SW
7439-92-1	Lead	3.0	ND	1	50	100	03/25/15	42348	SW32415A	35	MS	MS2_7500SW
7782-49-2	Selenium	10	ND	1	50	100	03/25/15	42348	SW32415A	35	MS	MS2_7500SW
7440-28-0	Thallium	2.0	ND	1	50	100	03/25/15	42348	SW32415A	35	MS	MS2 7500SW

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-015

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: DMW-23A Matrix: AQUEOUS

Units: UG/L Date Rec: 3/18/2015 Lab Code:

Contract:

Sdg No: Case No:

Level: LOW

М	eq ım M		File:		Analysis Date	Final Wt/Vol	Initial Wt/Vol	Dil Fact	Conc	RL	Analyte	Cas No.
P PE	5 P	2 ;	W17586A2	42348	03/24/15	50	50	1	ND	200	Aluminum	7429-90-5
P PE	5 P	2 :	W17586A2	42348	03/24/15	50	50	1	ND	50	Barium	440-39-3
P PE	85 P	2 :	W17586A2	42348	03/24/15	50	50	1	41000	5000	Calcium	440-70-2
P PE	5 P	2 ;	W17586A2	42348	03/24/15	50	50	1	ND	50	Chromium	440-47-3
P PE	5 P	2 ;	W17586A2	42348	03/24/15	50	50	1	ND	50	Copper	440-50-8
P PE	5 P	2 ;	W17586A2	42348	03/24/15	50	50	1	8000	300	Iron	439-89-6
P PE	5 P	2 :	W17586A2	42348	03/24/15	50	50	1	8600	5000	Magnesium	439-95-4
P PE	85 P	2 ;	W17586A2	42348	03/24/15	50	50	1	780	40	Manganese	439-96-5
CV H	6 CV	3 2	17586SWB	42348	03/20/15	25	25	1	ND	0.70	Mercury	439-97-6
P PE	85 P	2 :	W17586A2	42348	03/24/15	50	50	1	ND	50	Nickel	440-02-0
P PEICP	84 P	2 :	W17586B2	42348	03/24/15	50	50	1	6400	5000	Potassium	440-09-7
P PE	85 P	2 :	W17586A2	42348	03/24/15	50	50	1	ND	20	Silver	440-22-4
P PEICP	84 P	2 ;	W17586B2	42348	03/24/15	50	50	1	91000	5000	Sodium	440-23-5
P PE	85 P	2 ;	W17586A2	42348	03/24/15	50	50	1	ND	50	Vanadium	440-62-2
P PE	5 P	2 :	W17586A2	42348	03/24/15	50	50	1	ND	50	Zinc	440-66-6

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-016

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id:

DMW-23AF Matrix: AQUEOUS

Units: UG/L Lab Code:

Sdg No:

Date Rec: 3/18/2015

Contract:

Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol		Analysis Date	Prep Batch	File:	Seq Num	М	Inst
7440-36-0	Antimony	3.0	ND	1	50	100	03/27/15	42349	SW32715A	35	MSMS2	_7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/27/15	42349	SW32715A	35	MSMS2	_7500SW/
7440-41-7	Beryllium	1.0	ND	1	50	100	03/27/15	42349	SW32715A	35	MS/MS2	_7500SW/
7440-43-9	Cadmium	2.0	ND	1	50	100	03/27/15	42349	SW32715A	35	MS/MS2	_7500SW
7440-48-4	Cobalt	2.0	ND	1	50	100	03/27/15	42349	SW32715A	35	MSMS2	_7500SW
7439-92-1	Lead	3.0	ND	1	50	100	03/27/15	42349	SW32715A	35	MS/MS2	_7500SW
7782-49-2	Selenium	10	ND	1	50	100	03/27/15	42349	SW32715A	35	MSMS2	_7500SW
7440-28-0	Thallium	2.0	ND	1	50	100	03/24/15	42349	SW32315B	35	MSMS2	_7500SW

Comments:		

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor MS - ICP-MS

Sample ID: AC83807-016

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client Id: DMW-23AF

Units: UG/L

Date Rec: 3/18/2015

Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Insti
429-90-5	Aluminum	200	ND	1	50	50	03/23/15	42349	W17587A2	37	Р	PEICP2A
440-39-3	Barium	50	ND	1	50	50	03/23/15	42349	W17587A2	37	Р	PEICP2
7440-70-2	Calcium	5000	40000	1	50	50	03/23/15	42349	W17587A2	37	Р	PEICP2
7440-47-3	Chromium	50	ИD	1	50	50	03/23/15	42349	W17587A2	37	Р	PEICP2/
7440-50-8	Copper	50	ND	1	50	50	03/23/15	42349	W17587A2	37	Р	PEICP2
7439-89-6	Iron	300	6400	1	50	50	03/23/15	42349	W17587A2	37	Р	PEICP2
7439-95-4	Magnesium	5000	8400	1	50	50	03/23/15	42349	W17587A2	37	Р	PEICP2
7439-96-5	Manganese	40	820	1	50	50	03/23/15	42349	W17587A2	37	Р	PEICP2
7439-97-6	Mercury	0.70	ND	1	25	25	03/23/15	42349	17587SWB	26	CV	HGCV1
7440-02-0	Nickel	50	ND	1	50	50	03/23/15	42349	W17587A2	37	Р	PEICP2
7440-09-7	Potassium	5000	6800	1	50	50	03/24/15	42349	W17587C2	14	Р	PEICPRAD2
7440-22-4	Silver	20	ND	1	50	50	03/23/15	42349	W17587A2	37	Р	PEICP2
7440-23-5	Sodium	5000	95000	1	50	50	03/24/15	42349	W17587C2	14	Р	PEICPRAD2
7440-62-2	Vanadium	50	ND	1	50	50	03/23/15	42349	W17587A2	37	Р	PEICP2
7440-66-6	Zinc	50	ND	1	50	50	03/23/15	42349	W17587A2	37	Р	PEICP2

Comments:	 	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-017

% Solid: 0

Lab Name: Veritech

Nras No:

Level: LOW

Client Id: DMW-23B Matrix: AQUEOUS

Units: UG/L Date Rec: 3/18/2015

Lab Code:

Sdg No:

Contract:

Case No:

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7440-36-0	Antimony	3.0	ND	1:	50	100	03/25/15	42348	SW32415A	36	MS	MS2_7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/25/15	42348	SW32415A	36	MS	MS2_7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	03/25/15	42348	SW32415A	36	MS	MS2_7500SWA
7440-43-9	Cadmium	2.0	27	1	50	100	03/25/15	42348	S W32415A	36	MS	MS2_7500SWA
7440-48-4	Cobalt	2.0	ND	1	50	100	03/25/15	42348	SW32415A	36	MS	VIS2_7500SWA
7439-92-1	Lead	3.0	5.6	1	50	100	03/25/15	42348	SW32415A	36	MS	MS2_7500SWA
7782-49-2	Selenium	10	ND	1	50	100	03/25/15	42348	SW32415A	36	MS	MS2_7500SWA
7440-28-0	Thallium	2.0	ND	1	50	100	03/25/15	42348	SW32415A	36	MS	MS2_7500SWA

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-017

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: DMW-23B

Matrix: AQUEOUS

Units: UG/L Date Rec: 3/18/2015 Lab Code:

Sdg No:

Contract:

Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol		Prep Batch	File:	Seq Num	М	Instr
7429-90-5	Aluminum	200	730	1	50	50	03/24/15	42348	W17586A2	36	Р	PEICP2A
7440-39-3	Barium	50	ND	1	50	50	03/24/15	42348	W17586A2	36	Р	PEICP2A
7440-70-2	Calcium	5000	8900	1	50	50	03/24/15	42348	W17586A2	36	Ρ	PEICP2A
7440-47-3	Chromium	50	ND	1	50	50	03/24/15	42348	W17586A2	36	Р	PEICP2A
7440-50-8	Copper	50	ND	1	50	50	03/24/15	42348	W17586A2	36	Р	PEICP2A
7439-89-6	Iron	300	1600	1	50	50	03/24/15	42348	W17586A2	36	Р	PEICP2A
7439-95-4	Magnesium	5000	ND	1	50	50	03/24/15	42348	W17586A2	36	Р	PEICP2A
7439-96-5	Manganese	40	ND	1	50	50	03/24/15	42348	W17586A2	36	Р	PEICP2A
7439-97-6	Mercury	0.70	ND	1	25	25	03/20/15	42348	17586SWB	27	CV	HGCV1A
7440-02-0	Nickel	50	ND	1	50	50	03/24/15	42348	W17586A2	36	Р	PEICP2
7440-09-7	Potassium	5000	ND	1	50	50	03/24/15	42348	W17586B2	35	Р	PEICPRAD2A
7440-22-4	Silver	20	ND	1	50	50	03/24/15	42348	W17586A2	36	Р	PEICP2
7440-23-5	Sodium	5000	25000	1	50	50	03/24/15	42348	W17586B2	35	Р	PEICPRAD2
7440-62-2	Vanadium	50	ND	1	50	50	03/24/15	42348	W17586A2	36	Ρ	PEICP2/
7440-66-6	Zinc	50	61	1	50	50	03/24/15	42348	W17586A2	36	Р	PEICP2

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-018

% Solid:

Lab Name:

Veritech

Nras No:

Client Id: Matrix: DMW-23BF **AQUEOUS**

Units: UG/L Date Rec: 3/18/2015 Lab Code: Contract:

Sdg No: Case No:

Level:

LOW

									,			
Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	м	Instr
7440-36-0	Antimony	3.0	ND	. 1,	50	100	03/27/15	42349	SW32715A	36	MS	MS2_7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/27/15	42349	SW32715A	36	MS	MS2_7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	03/27/15	42349	SW32715A	36	MS	MS2_7500SWA
7440-43-9	Cadmium	2.0	31	1	50	100	03/27/15	42349	SW32715A	36	MS	MS2_7500SWA
7440-48-4	Cobalt	2.0	ND	1	50	100	03/27/15	42349	SW32715A	36	MS	MS2_7500SWA
7439-92-1	Lead	3.0	ND	1	50	100	03/27/15	42349	SW32715A	36	MS	MS2_7500SWA
7782-49-2	Selenium	10	ND	1	50	100	03/27/15	42349	SW32715A	36	MS	MS2_7500SWA
7440-28-0	Thallium	2.0	ND	1	50	100	03/24/15	42349	SW32315B	36	MS	MS2_7500SWA

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-018

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client ld: DMW-23BF

Units: UG/L

Date Rec: 3/18/2015

Lab Code: Contract: Sdg No:

Case No:

Levei:	LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	м	Instr
7429-90-5	Aluminum	200	ND	1	50	50	03/23/15	42349	W17587A2	38	Р	PEICP2A
7440-39-3	Barium	50	ND	1	50	50	03/23/15	42349	W17587A2	38	Р	PEICP2A
7440-70-2	Calcium	5000	9900	1	50	50	03/23/15	42349	W17587A2	38	Р	PEICP2A
7440-47-3	Chromium	50	ND	1	50	50	03/23/15	42349	W17587A2	38	Ρ	PEICP2A
7440-50-8	Copper	50	ND	1	50	50	03/23/15	42349	W17587A2	38	Р	PEICP2A
7439-89-6	Iron	300	ND	1	50	50	03/23/15	42349	W17587A2	38	Р	PEICP2A
7439-95-4	Magnesium	5000	ND	1	50	50	03/23/15	42349	W17587A2	38	Р	PEICP2A
7439-96-5	Manganese	40	ND	1	50	50	03/23/15	42349	W17587A2	38	Р	PEICP2A
7439-97-6	Mercury	0.70	ND	1	25	25	03/23/15	42349	17587SWB	27	CV	HGCV1A
7440-02-0	Nickel	50	ND	1	50	50	03/23/15	42349	W17587A2	38	Р	PEICP2A
7440-09-7	Potassium	5000	ND	1	50	50	03/24/15	42349	W17587C2	15	Р	PEICPRAD2A
7440-22-4	Silver	20	ND	1	50	50	03/23/15	42349	W17587A2	38	Р	PEICP2A
7440-23-5	Sodium	5000	27000	1	50	50	03/24/15	42349	W17587C2	15	Р	PEICPRAD2A
7440-62-2	Vanadium	50	ND	1	50	50	03/23/15	42349	W17587A2	38	Р	PEICP2
7440-66-6	Zinc	50	ND	1	50	50	03/23/15	42349	W17587A2	38	Р	PEICP2A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

MSMS2_7500SWA

Form1 Inorganic Analysis Data Sheet

Sample ID: AC83807-019

Thallium

% Solid: 0

Lab Name:

Veritech

Nras No:

Client Id: Matrix: AQUEOUS

DMW-18

Units: UG/L

Date Rec: 3/18/2015

Lab Code: Contract: Sdg No:

42348 SW32415A 37

Case No:

Level: LOW

					Initial	Final	Analysis	Prep		Seq		
Cas No.	Analyte	RL	Conc	Dil Fact	Wt/Vol	Wt∕Vol	Date	Batch	File:	Num	М	Instr
7440-36-0	Antimony	3.0	ND	1	50	100	03/25/15	42348	SW32415A	37	MS	/IS2_7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/25/15	42348	SW32415A	37	MS	/IS2_7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	03/25/15	42348	SW32415A	37	MS	/IS2_7500SWA
7440-43-9	Cadmium	2.0	ND	1	50	100	03/25/15	42348	SW32415A	37	MS	/IS2_7500SWA
7440-48-4	Cobalt	2.0	ND	1	50	100	03/25/15	42348	SW32415A	37	MS	/IS2_7500SWA
7439-92-1	Lead	3.0	ND	1	50	100	03/25/15	42348	SW32415A	37	MS	/IS2_7500SWA
7782-49-2	Selenium	10	ND	1	50	100	03/25/15	42348	SW32415A	37	MS	/S2 7500SWA

50

100 03/25/15

Comments:	

ND

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

2.0

P - ICP-AES

CV -ColdVapor

7440-28-0

Sample ID: AC83807-019

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client Id: DMW-18

Units: UG/L Date Rec: 3/18/2015 Lab Code:

Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol			Prep Batch	File:	Seq Num	М	Instr
7429-90-5	Aluminum	200	440	1	50	50	03/24/15	42348	W17586A2	37	Р	PEICP2A
7440-39-3	Barium	50	ND	1	50	50	03/24/15	42348	W17586A2	37	Р	PEICP2A
7440-70-2	Calcium	5000	18000	1	50	50	03/24/15	42348	W17586A2	37	Р	PEICP2
7440-47-3	Chromium	50	ND	1	50	50	03/24/15	42348	W17586A2	37	Р	PEICP2
7440-50-8	Copper	50	ND	1	50	50	03/24/15	42348	W17586A2	37	Р	PEICP2
7439 - 89-6	Iron	300	520	1	50	50	03/24/15	42348	W17586A2	37	Р	PEICP2/
7439-95-4	Magnesium	5000	ND	1	50	50	03/24/15	42348	W17586A2	37	Ρ	PEICP2
7439-96-5	Manganese	40	720	1	50	50	03/24/15	42348	W17586A2	37	Р	PEICP2
7439-97-6	Mercury	0.70	ND	1	25	25	03/20/15	42348	17586SWB	28	CV	HGCV1
7440-02-0	Nickel	50	ND	1	50	50	03/24/15	42348	W17586A2	37	Р	PEICP2/
7440-09-7	Potassium	5000	ND	1	50	50	03/24/15	42348	W17586B2	36	Р	PEICPRAD2
7440-22-4	Silver	20	ND	1	50	50	03/24/15	42348	W17586A2	37	Р	PEICP2/
7440-23-5	Sodium	5000	37000	1	50	50	03/24/15	42348	W17586B2	36	Р	PEICPRAD2
7440-62-2	Vanadium	50	ND	1	50	50	03/24/15	42348	W17586A2	37	Р	PEICP2
7440-66-6	Zinc	50	ND	1	50	50	03/24/15	42348	W17586A2	37	Р	PEICP2

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-020

Client Id: DMW-18F

% Solid: 0 Units: UG/L Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Level: LOW

Date Rec: 3/18/2015

Lab Code: Contract: Sdg No:

Case No:

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol		Prep Batch	File;	Seq Num	м	Inst
7440-36-0	Antimony	3.0	ND	1	50	100	03/27/15	42349	SW32715A	37	MS/MS2	_7500SW
7440-38-2	Arsenic	2.0	ND	1	50	100	03/27/15	42349	SW32715A	37	MSMS2	_7500SW
7440-41-7	Beryllium	1.0	ND	1	50	100	03/27/15	42349	SW32715A	37	MSMS2	_7500SW
7440-43-9	Cadmium	2.0	ND	1	50	100	03/27/15	42349	SW32715A	37	MSMS2	_7500 \$ W
7440-48-4	Cobalt	2.0	ND	1	50	100	03/27/15	42349	SW32715A	37	MSMS2	_7500SW
7439-92-1	Lead	3.0	ND	1	50	100	03/27/15	42349	SW32715A	37	MS/MS2	_7500SW
7782-49-2	Selenium	10	ND	1	50	100	03/27/15	42349	SW32715A	37	MS/MS2	_7500SW
7440-28-0	Thallium	2.0	ND	1	50	100	03/24/15	42349	SW32315B	37	MSMS2	7500SW

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-020

DMW-18F

% Solid: Units:

Lab Code:

Lab Name: Veritech

Nras No:

Client Id: Matrix: AQUEOUS

Level:

LOW

Date Rec:

UG/L 3/18/2015

0

Contract:

Sdg No:

Case No:

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7429-90-5	Aluminum	200	ND	1	50	50	03/23/15	42349	W17587A2	39	Р	PEICP2A
7440-39-3	Barium	50	ND	1	50	50	03/23/15	42349	W17587A2	39	Р	PEICP2A
7440-70-2	Calcium	5000	19000	1	50	50	03/23/15	42349	W17587A2	39	Р	PEICP2A
7440-47-3	Chromium	50	ND	1	50	50	03/23/15	42349	W17587A2	39	Р	PEICP2A
7440-50-8	Copper	50	ND	1	50	50	03/23/15	42349	W17587A2	39	Р	PEICP2A
7439-89-6	Iron	300	ND	1	50	50	03/23/15	42349	W17587A2	39	Р	PEICP2A
7439-95-4	Magnesium	5000	ND	1	50	50	03/23/15	42349	W17587A2	39	Ρ	PEICP2A
7439-96-5	Manganese	40	ND	1	50	50	03/23/15	42349	W17587A2	39	Р	PEICP2A
7439-97-6	Mercury	0.70	ND	1	25	25	03/23/15	42349	17587SWB	28	CV	HGCV1A
7440-02-0	Nickel	50	ND	1	50	50	03/23/15	42349	W17587A2	39	Р	PEICP2A
7440-09-7	Potassium	5000	ND	1	50	50	03/24/15	42349	W17587C2	16	Р	PEICPRAD2A
7440-22-4	Silver	20	ND	1	50	50	03/23/15	42349	W17587A2	39	Р	PEICP2A
7440-23-5	Sodium	5000	39000	1	50	50	03/24/15	42349	W17587C2	16	Р	PEICPRAD2A
7440-62-2	Vanadium	50	ND	1	50	50	03/23/15	42349	W17587A2	39	Ρ	PEICP2A
7440-66-6	Zinc	50	ND	1	50	50	03/23/15	42349	W17587A2	39	Р	PEICP2A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-021

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client Id: DMW-17

Units: UG/L Date Rec: 3/18/2015 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7440-36-0	Antimony	3.0	ND	1	50	100	03/25/15	42348	SW32415A	42	MSMS	2_7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/25/15	42348	SW32415A	42	MSMS2	2_7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	03/25/15	42348	SW32415A	42	MSMS2	2_7500SWA
7440-43-9	Cadmium	2.0	ND	1	50	100	03/25/15	42348	SW32415A	42	MSMS2	2_7500SWA
7440-48-4	Cobalt	2.0	ND	1	50	100	03/25/15	42348	SW32415A	42	MSMS	2_7500SWA
7439-92-1	Lead	3.0	6.5	1	50	100	03/25/15	42348	SW32415A	42	MSMS	2_7500SWA
7782-49-2	Selenium	10	ND	1	50	100	03/25/15	42348	SW32415A	42	MSMS	2_7500SW
7440-28-0	Thallium	2.0	ND	1	50	100	03/25/15	42348	SW32415A	42	MSMS	2_7500SW

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-021

% Solid: 0

Lab Name:

Veritech

Nras No:

Matrix: AQUEOUS

Client Id: DMW-17

Units: UG/L Date Rec: 3/18/2015 Lab Code:

Contract:

Sdg No:

Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol		Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7429-90-5	Aluminum	200	ND	1	50	50	03/24/15	42348	W17586A2	38	Р	PEICP2A
7440-39-3	Barium	50	ND	1	50	50	03/24/15	42348	W17586A2	38	Р	PEICP2
7440-70-2	Calcium	5000	37000	1	50	50	03/24/15	42348	W17586A2	38	Р	PEICP2
7440-47-3	Chromium	50	ND	1	50	50	03/24/15	42348	W17586A2	38	Р	PEICP2/
7440-50-8	Copper	50	ND	1	50	50	03/24/15	42348	W17586A2	38	Р	PEICP2
7439-89-6	Iron	300	880	1	50	50	03/24/15	42348	W17586A2	38	Р	PEICP2
7439-95-4	Magnesium	5000	11000	1	50	50	03/24/15	42348	W17586A2	38	Р	PEICP2
7439-96-5	Manganese	40	520	1	50	50	03/24/15	42348	W17586A2	38	Р	PEICP2
7439-97-6	Mercury	0.70	ND	1	25	25	03/20/15	42348	17586SWB	29	CV	HGCV1
7440-02-0	Nickel	50	ND	. 1	50	50	03/24/15	42348	W17586A2	38	Р	PEICP2
7440-09-7	Potassium	5000	ND	1	50	50	03/24/15	42348	W17586B2	37	Р	PEICPRAD2
7440-22-4	Silver	20	ND	1	50	50	03/24/15	42348	W17586A2	38	Р	PEICP2
7440-23-5	Sodium	5000	7100	1	50	50	03/24/15	42348	W17586B2	37	Р	PEICPRAD2
7440-62-2	Vanadium	50	ND	1	50	50	03/24/15	42348	W17586A2	38	Р	PEICP2
7440-66-6	Zinc	50	ND	1	50	50	03/24/15	42348	W17586A2	38	Р	PEICP2

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-022

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client Id: DMW-17F

Units: UG/L Date Rec: 3/18/2015 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol			File:	Seq Num	М	Instr
7440-36-0	Antimony	3.0	ND	1	50	100	03/25/15	42349	SW32515A	16	MS	MS2_7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/25/15	42349	SW32515A	16	MS	MS2_7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	03/25/15	42349	SW32515A	16	MS	MS2_7500SWA
7440-43-9	Cadmium	2.0	4.1	1	50	100	03/25/15	42349	SW32515A	16	MS	MS2_7500SWA
7440-48-4	Cobalt	2.0	ND	1	50	100	03/25/15	42349	SW32515A	16	MS	MS2_7500SWA
7439-92-1	Lead	3.0	ND	1	50	100	03/25/15	42349	SW32515A	16	MS	MS2_7500SWA
7782-49-2	Selenium	10	ND	1	50	100	03/25/15	42349	SW32515A	16	MS	MS2_7500SWA
7440-28-0	Thallium	2.0	ND	1	50	100	03/24/15	42349	SW32315B	42	MS	MS2_7500SWA

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-022

% Solid: 0

Lab Name: Veritech

Nras No:

Client ld: Matrix:

DMW-17F AQUEOUS

Date Rec: 3/18/2015

Units: UG/L

Lab Code: Contract:

Sdg No:

Case No:

LOW Level:

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Insti
429-90-5	Aluminum	200	ND	1	50	50	03/23/15	42349	W17587A2	40	Р	PEICP2A
440-39-3	Barium	50	ND	1	50	50	03/23/15	42349	W17587A2	40	P	PEICP2/
440-70-2	Calcium	5000	41000	1	50	50	03/23/15	42349	W17587A2	40	Р	PEICP2
440-47-3	Chromium	50	ND	1	50	50	03/23/15	42349	W17587A2	40	Р	PEICP2
440-50-8	Copper	50	ND	1	50	50	03/23/15	42349	W17587A2	40	Р	PEICP2
439-89-6	Iron	300	ND	1	50	50	03/23/15	42349	W17587A2	40	Р	PEICP2
439-95-4	Magnesium	5000	12000	1	50	50	03/23/15	42349	W17587A2	40	Р	PEICP2
439-96-5	Manganese	40	ND	1	50	50	03/23/15	42349	W17587A2	40	Р	PEICP2
439-97-6	Mercury	0.70	ND	1	25	25	03/23/15	42349	17587SWB	29	CV	HGCV1
440-02-0	Nickel	50	ND	1	50	50	03/23/15	42349	W17587A2	40	Р	PEICP2
440-09-7	Potassium	5000	ND	1	50	50	03/24/15	42349	W17587C2	17	Р	PEICPRAD2
440-22-4	Silver	20	ND	1	50	50	03/23/15	42349	W17587A2	40	Р	PEICP2
440-23-5	Sodium	5000	8400	1	50	50	03/24/15	42349	W17587C2	17	Р	PEICPRAD2
440-62-2	Vanadium	50	ND	1	50	50	03/23/15	42349	W17587A2	40	Р	PEICP2
440-66-6	Zinc	50	ND	1	50	50	03/23/15	42349	W17587A2	40	Р	PEICP2

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-023

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client Id: DMW-9B

Units: UG/L
Date Rec: 3/18/2015

Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol		Prep Batch	File:	Seq Num	M	Inst
7440-36-0	Antimony	3.0	ND	1	50	100	03/25/15	42348	SW32415A	43	MSMS	S2_7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/25/15	42348	SW32415A	43	MSMS	S2_7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	03/25/15	42348	SW32415A	43	MSMS	S2_7500SWA
7440-43-9	Cadmium	2.0	ND	1	50	100	03/25/15	42348	SW32415A	43	MSMS	S2_7500SWA
7440-48-4	Cobalt	2.0	ND	1	50	100	03/25/15	42348	SW32415A	43	MSMS	S2_7500SWA
7439-92-1	Lead	3.0	ND	1	50	100	03/25/15	42348	SW32415A	43	MSMS	S2_7500SWA
7782-49-2	Selenium	10	ND	1	50	100	03/25/15	42348	SW32415A	43	MSMS	S2_7500SWA
7440-28-0	Thallium	2.0	ND	1	50	100	03/25/15	42348	SW32415A	43	MSMS	S2 7500SW/

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-023

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client Id: DMW-9B

Units: UG/L

Date Rec: 3/18/2015

Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Ins	М	Seq Num	File:	Prep Batch	Analysis Date	Final Wt/Vol	Initial Wt/Vol	Dil Fact	Conc	RL	Analyte	Cas No.
PEICP2	Р	42	W17586A2	42348	03/24/15	50	50	1	ND	200	Aluminum	7429-90-5
PEICP2	Р	42	W17586A2	42348	03/24/15	50	50	1	ND	50	Barium	7440-39-3
PEICP2	Р	42	W17586A2	42348	03/24/15	50	50	1	6400	5000	Calcium	440-70-2
PEICP2	Р	42	W17586A2	42348	03/24/15	50	50	1	ND	50	Chromium	440-47-3
PEICP2	Ρ	42	W17586A2	42348	03/24/15	50	50	1	ND	50	Copper	440-50-8
PEICP2	Р	42	W17586A2	42348	03/24/15	50	50	1	ND	300	Iron	439-89-6
PEICP2	Р	42	W17586A2	42348	03/24/15	50	50	1	ND	5000	Magnesium	439-95-4
PEICP2	Р	42	W17586A2	42348	03/24/15	50	50	1	44	40	Manganese	439-96-5
HGCV1	CV	30	17586SWB	42348	03/20/15	25	25	1	ND	0.70	Mercury	439-97-6
PEICP2	Р	42	W17586A2	42348	03/24/15	50	50	1	ND	50	Nickel	440-02-0
PEICPRAD2	Р	41	W17586B2	42348	03/24/15	50	50	1	ND	5000	Potassium	440-09-7
PEICP2	Р	42	W17586A2	42348	03/24/15	50	50	1	ND	20	Silver	440-22-4
PEICPRAD2	Р	41	W17586B2	42348	03/24/15	50	50	1	13000	5000	Sodium	440-23-5
PEICP2	Ρ	42	W17586A2	42348	03/24/15	50	50	1	ND	50	Vanadium	440-62-2
PEICP2	Р	42	W17586A2	42348	03/24/15	50	50	1	ND	50	Zinc	440-66-6

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-024

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id:

DMW-9BF

Units: UG/L

Lab Code:

Matrix: AQUEOUS

Contract:

Sdg No:

Level: LOW

Date Rec:	3/18/2015	

Case No:

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol		Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7440-36-0	Antimony	3.0	ND	1	50	100	03/25/15	42349	SW32515A	17	MS	MS2_7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/25/15	42349	SW32515A	17	MS	MS2_7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	03/25/15	42349	SW32515A	17	MS	MS2_7500SWA
7440-43-9	Cadmium	2.0	2.5	1	50	100	03/25/15	42349	SW32515A	17	MS	MS2_7500SWA
7440-48-4	Cobalt	2.0	ND	1	50	100	03/25/15	42349	SW32515A	17	MS	MS2_7500SWA
7439-92-1	Lead	3.0	ND	1	50	100	03/25/15	42349	SW32515A	17	MS	MS2_7500SWA
7782-49-2	Selenium	10	ND	1	50	100	03/25/15	42349	SW32515A	17	MS	MS2_7500SWA
7440-28-0	Thallium	2.0	ND	1	50	100	03/24/15	42349	SW32315B	43	мѕ	MS2_7500SWA

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID:

AC83807-024

% Solid:

Lab Name: Veritech

Nras No:

Client Id: Matrix: DMW-9BF AQUEOUS

Sodium

Zinc

Vanadium

Units: UG/L Date Rec: 3/18/2015 Lab Code: Contract: Sdg No: Case No:

42349 W17587C2

42349 W17587A2

42349 W17587A2

21

44

44

Р

Р

PEICPRAD2A

PEICP2A

PEICP2A

Level:

LOW

Initial Final Analysis Prep Seq Cas No. Analyte RL Conc Dil Fact Wt/Vol Wt/Vol Date Batch File: Num М Instr 7429-90-5 Aluminum 200 ND 50 50 03/23/15 42349 W17587A2 Р 44 PEICP2A 7440-39-3 Barium 50 ND 1 50 50 03/23/15 42349 W17587A2 Р PEICP2A 44 7440-70-2 Calcium 5000 6700 50 03/23/15 42349 W17587A2 44 Р PEICP2A 7440-47-3 Chromium 50 ND 1 50 50 03/23/15 42349 W17587A2 44 Р PEICP2A 7440-50-8 50 ND 1 Copper 50 50 03/23/15 42349 W17587A2 Р PEICP2A 44 7439-89-6 300 Iron ND 1 50 50 03/23/15 42349 W17587A2 44 Ρ PEICP2A 7439-95-4 5000 Magnesium ND 1 50 50 03/23/15 42349 W17587A2 44 Р PEICP2A 7439-96-5 Manganese 40 ND 1 50 50 03/23/15 42349 W17587A2 44 Р PEICP2A 7439-97-6 Mercury 0.70 ND 1 25 25 03/23/15 4234917587SWB 30 CV HGCV1A 7440-02-0 Nickel 50 ND 1 50 50 03/23/15 42349 W17587A2 44 Ρ PEICP2A 7440-09-7 5000 Potassium ND 1 50 50 03/24/15 42349 W17587C2 21 Р PEICPRAD2A 7440-22-4 Silver 20 ND 1 50 50 03/23/15 42349 W17587A2 44 Р PEICP2A

Comments:	

14000

ND

ND

Flag Codes:

1

1

1

50

50

50

50 03/24/15

50 03/23/15

50 03/23/15

U or ND - Indicates Compound was not found above the detection/reporting limit

5000

50

50

P - ICP-AES CV -ColdVapor

7440-23-5

7440-62-2

7440-66-6

Sample ID: AC83807-025

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: DFB Matrix: AQUEOUS

Units: UG/L

Date Rec: 3/18/2015

Lab Code:

Sdg No:

Level: LOW

Contract:

Case No:

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7440-36-0	Antimony	3.0	ND	1	50	100	03/25/15	42348	SW32415A	44	MSM	S2_7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/25/15	42348	SW32415A	44	мѕм	S2_7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	03/25/15	42348	SW32415A	44	MSM	S2_7500SWA
7440-43-9	Cadmium	2.0	ND	1	50	100	03/25/15	42348	SW32415A	44	MSM	S2_7500SWA
7440-48-4	Cobalt	2.0	ND	1	50	100	03/25/15	42348	SW32415A	44	MSM	S2_7500SWA
7439-92-1	Lead	3.0	ND	1	50	100	03/25/15	42348	SW32415A	44	MSM	S2_7500SWA
7782-49-2	Selenium	10	ND	1	50	100	03/25/15	42348	SW32415A	44	мѕм	S2_7500SWA
7440-28-0	Thallium	2.0	ND	1	50	100	03/25/15	42348	SW32415A	44	MSM	S2_7500SWA

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-025

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: Matrix: AQUEOUS

DFB

Units: UG/L Date Rec: 3/18/2015 Lab Code:

Contract:

Sdg No:

Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7429-90-5	Aluminum	200	ND	1	50	50	03/24/15	42348	W17586A2	43	Р	PEICP2A
7440-39-3	Barium	50	ND	1	50	50	03/24/15	42348	W17586A2	43	Р	PEICP2A
440-70-2	Calcium	5000	ND	1	50	50	03/24/15	42348	W17586A2	43	Р	PEICP2A
440-47-3	Chromium	50	ND	1	50	50	03/24/15	42348	W17586A2	43	Р	PEICP2A
7440-50-8	Copper	50,	ND	1	50	50	03/24/15	42348	W17586A2	43	Р	PEICP2A
439-89-6	Iron	300	ND	1	50	50	03/24/15	42348	W17586A2	43	Р	PEICP2A
439-95-4	Magnesium	5000	ND	1	50	50	03/24/15	42348	W17586A2	43	Р	PEICP2A
439-96-5	Manganese	40	ND	1	50	50	03/24/15	42348	W17586A2	43	Р	PEICP2A
7439-97-6	Mercury	0.70	ND	1	25	25	03/20/15	42348	17586SWB	31	CV	HGCV1A
440-02-0	Nickel	50	ND	1	50	50	03/24/15	42348	W17586A2	43	Р	PEICP2A
440-09-7	Potassium	5000	ND	1	50	50	03/24/15	42348	W17586B2	42	Р	PEICPRAD2A
440-22-4	Silver	20	ND	1	50	50	03/24/15	42348	W17586A2	43	Р	PEICP2A
7440-23-5	Sodium	5000	ND	1	50	50	03/24/15	42348	W17586B2	42	Р	PEICPRAD2A
440-62-2	Vanadium	50	ND	1	50	50	03/24/15	42348	W17586A2	43	Р	PEICP2
440-66-6	Zinc	50	ND	1	50	50	03/24/15	42348	W17586A2	43	Р	PEICP2A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-026

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: Matrix: AQUEOUS

DFB-F

Units: UG/L Date Rec: 3/18/2015 Lab Code:

Sdg No:

Level: LOW

Contract:

Case No:

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol		Prep Batch	File:	Seq Num	М	Instr
7440-36-0	Antimony	3.0	ND	1	50	100	03/25/15	42349	SW32515A	18	MS	MS2_7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/25/15	42349	SW32515A	18	MS	MS2_7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	03/25/15	42349	SW32515A	18	MS	MS2_7500SWA
7440-43-9	Cadmium	2.0	ND	1	50	100	03/25/15	42349	SW32515A	18	MS	MS2_7500SWA
7440-48-4	Cobalt	2.0	ND	. 1	50	100	03/25/15	42349	SW32515A	18	MS	MS2_7500SWA
7439-92-1	Lead	3.0	ND	1	50	100	03/25/15	42349	SW32515A	18	MS	MS2_7500SWA
7782-49-2	Selenium	10	ND	1	50	100	03/25/15	42349	SW32515A	18	MS	MS2_7500SWA
7440-28-0	Thallium	2.0	ND	1	50	100	03/24/15	42349	SW32315B	44	MS	MS2_7500SWA

Comments:	Maria Province	 	 	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID:

AC83807-026

DFB-F

% Solid:

Lab Name:

Veritech

Nras No:

Client Id: Matrix: Level:

AQUEOUS LOW

Vanadium

Zinc

UG/L Units: Date Rec: 3/18/2015

0

Lab Code:

Contract:

Sdg No:

Case No:

Р

Р

45

PEICP2A

PEICP2A

42349 W17587A2

42349 W17587A2 45

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol		Analysis Date	Prep Batch	File:	Seq Num		Instr
7429-90-5	Aluminum	200	ND	1	50	50	03/23/15	42349	W17587A2	45	Р	PEICP2A
7440-39-3	Barium	50	ND	1	50	50	03/23/15	42349	W17587A2	45	Р	PEICP2A
7440-70-2	Calcium	5000	ND	1	50	50	03/23/15	42349	W17587A2	45	Р	PEICP2
7440-47-3	Chromium	50	ND	1	50	50	03/23/15	42349	W17587A2	45	Р	PEICP2
7440-50-8	Copper	50	ND	1	50	50	03/23/15	42349	W17587A2	45	Р	PEICP2/
7439-89-6	Iron	300	ND	1	50	50	03/23/15	42349	W17587A2	45	P	PEICP2/
439-95-4	Magnesium	5000	ND	1	50	50	03/23/15	42349	W17587A2	45	Р	PEICP2/
439-96-5	Manganese	40	ND	1	50	50	03/23/15	42349	W17587A2	45	Р	PEICP2/
7439-97-6	Mercury	0.70	ND	1	25	25	03/23/15	42349	17587SWB	31	CV	HGCV1/
7440-02-0	Nickel	50	ND	1	50	50	03/23/15	42349	W17587A2	45	Р	PEICP2/
440-09-7	Potassium	5000	ND	1	50	50	03/24/15	42349	W17587C2	22	Р	PEICPRAD2/
440-22-4	Silver	20	ND	1	50	50	03/23/15	42349	W17587A2	45	Р	PEICP2
7440-23-5	Sodium	5000	ND	1	50	50	03/24/15	42349	W17587C2	22	Р	PEICPRAD2
									1			

Comments:	

ND

ND

1

1

50

50

50 03/23/15

50 03/23/15

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

50

50

P - ICP-AES

CV -ColdVapor

7440-62-2

7440-66-6

Sample ID: AC83807-027

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client Id: DMW-2

Units: UG/L

Date Rec: 3/18/2015

Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Insti
7440-36-0	Antimony	3.0	ND	1	50	100	03/25/15	42348	SW32415A	45	MSMS2_	7500SWA
7440-38-2	Arsenic	2.0	21	1	50	100	03/25/15	42348	SW32415A	45	MSMS2_	7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	03/25/15	42348	SW32415A	45	MSMS2_	7500SWA
7440-43-9	Cadmium	2.0	15	1	50	100	03/25/15	42348	SW32415A	45	MSMS2_	7500SWA
7440-48-4	Cobalt	2.0	13	1	50	100	03/25/15	42348	SW32415A	45	MSMS2_	7500SWA
7439-92-1	Lead	3.0	29	1	50	100	03/25/15	42348	SW32415A	45	MSMS2_	7500SWA
7782-49-2	Selenium	10	ND	1	50	100	03/25/15	42348	SW32415A	45	MSMS2_	7500SWA
7440-28-0	Thallium	2.0	ND	1	50	100	03/25/15	42348	SW32415A	45	MS MS2_	7500SW/

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-027

% Solid: 0

Lab Name: Veritech

Nras No:

Client ld: Matrix: AQUEOUS

DMW-2

Units: UG/L Date Rec: 3/18/2015 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	•	File:	Seq Num	М	Instr
7429-90-5	Aluminum	200	7200	1	50	50	03/24/15	42348	W17586A2	44	Р	PEICP2A
7440-39-3	Barium	50	65	1	50	50	03/24/15	42348	W17586A2	44	Р	PEICP2A
7440-70-2	Calcium	5000	21000	1	50	50	03/24/15	42348	W17586A2	44	Р	PEICP2A
7440-47-3	Chromium	50	ND	1	50	50	03/24/15	42348	W17586A2	44	Ρ	PEICP2A
7440-50-8	Copper	50	ND	1	50	50	03/24/15	42348	W17586A2	44	Р	PEICP2A
7439-89-6	Iron	300	98000	1	50	50	03/24/15	42348	W17586A2	44	Р	PEICP2A
7439-95-4	Magnesium	5000	ND	1	50	50	03/24/15	42348	W17586A2	44	Р	PEICP2A
7439-96-5	Manganese	40	410	1	50	50	03/24/15	42348	W17586A2	44	Р	PEICP2A
7439-97-6	Mercury	0.70	ND	1	25	25	03/20/15	42348	17586SWB	32	Ç٧	HGCV1A
7440-02-0	Nickel	50	ND	1	50	50	03/24/15	42348	W17586A2	44	Ρ	PEICP2A
7440-09-7	Potassium	5000	ND	1	50	50	03/24/15	42348	W17586B2	43	Р	PEICPRAD2A
7440-22-4	Silver	20	ND	1	50	50	03/24/15	42348	W17586A2	44	Ρ	PEICP2A
7440-23-5	Sodium	5000	19000	1	50	50	03/24/15	42348	W17586B2	43	Р	PEICPRAD2A
7440-62-2	Vanadium	50	ND	1	50	50	03/24/15	42348	W17586A2	44	Р	PEICP2A
7440-66-6	Zinc	50	210	1	50	50	03/24/15	42348	W17586A2	44	Р	PEICP2A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-028

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: DMW-2F

Matrix: AQUEOUS

Units: UG/L Date Rec: 3/18/2015 Lab Code:

Sdg No:

Level: LOW

Contract:

Case No:

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Inst
440-36-0	Antimony	3.0	ND	1	50	100	03/25/15	42349	SW32515A	19	MS	MS2_7500SWA
7440-38 - 2	Arsenic	2.0	ND	1	50	100	03/25/15	42349	SW32515A	19	MS	MS2_7500SW
7440-41-7	Beryllium	1.0	ND	1	50	100	03/25/15	42349	SW32515A	19	MS	MS2_7500SW
7440-43-9	Cadmium	2.0	2.6	1	50	100	03/25/15	42349	SW32515A	19	мѕ	MS2_7500SW
440-48-4	Cobalt	2.0	3.8	1	50	100	03/25/15	42349	SW32515A	19	мѕ	MS2_7500SW
439-92-1	Lead	3.0	ND	1	50	100	03/25/15	42349	SW32515A	19	MS	MS2_7500SW
782-49-2	Selenium	10	ND	1	50	100	03/25/15	42349	SW32515A	19	мѕ	MS2_7500SW
440-28-0	Thallium	2.0	ND	1	50	100	03/24/15	42349	SW32315B	45	MS	MS2_7500SW

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID:

AC83807-028

DMW-2F

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: Matrix:

AQUEOUS

Units: UG/L

Date Rec: 3/18/2015

Lab Code:

Sdg No:

Level: LOW

Contract:

Case No:

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol		Analysis Date	Prep Batch	File:	Seq Num	м	Instr
7429-90-5	Aluminum	200	ND	1	50	50	03/23/15	42349	W17587A2	46	Р	PEICP2A
7440-39-3	Barium	50	ND	1	50	50	03/23/15	42349	W17587A2	46	Р	PEICP2A
7440-70-2	Calcium	5000	20000	1	50	50	03/23/15	42349	W17587A2	46	Р	PEICP2A
7440-47-3	Chromium	50	ND	1	50	50	03/23/15	42349	W17587A2	46	Р	PEICP2A
7440-50-8	Copper	50	ND	1	50	50	03/23/15	42349	W17587A2	46	Р	PEICP2A
7439-89-6	Iron	300	4200	1	50	50	03/23/15	42349	W17587A2	46	Р	PEICP2A
7439-95-4	Magnesium	5000	ND	1	50	50	03/23/15	42349	W17587A2	46	Р	PEICP2A
7439-96-5	Manganese	40	240	1	50	50	03/23/15	42349	W17587A2	46	Р	PEICP2A
7439-97-6	Mercury	0.70	ND	1	25	25	03/23/15	42349	17587SWB	32	CV	HGCV1A
7440-02-0	Nickel	50	ND	1	50	50	03/23/15	42349	W17587A2	46	Р	PEICP2A
7440-09-7	Potassium	5000	ND	1	50	50	03/24/15	42349	W17587C2	23	Р	PEICPRAD2A
7440-22-4	Silver	20	ND	1	50	50	03/23/15	42349	W17587A2	46	Р	PEICP2A
7440-23-5	Sodium	5000	20000	1	50	50	03/24/15	42349	W17587C2	23	Р	PEICPRAD2A
7440-62-2	Vanadium	50	ND	1	50	50	03/23/15	42349	W17587A2	46	Р	PEICP2A
7440-66-6	Zinc	50	ND	1	50	50	03/23/15	42349	W17587A2	46	Р	PEICP2A

Comments:	
	·

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-029

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: Matrix: AQUEOUS

DMW-9

Units: UG/L Date Rec: 3/18/2015 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol		Prep Batch	File:	Seq Num	M	Inst
7440-36-0	Antimony	3.0	ND	1	50	100	03/25/15	42348	SW32415A	46	MSMS2_	7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/25/15	42348	SW32415A	46	MSMS2_	_7500SW/
7440-41-7	Beryllium	1.0	ND	1	50	100	03/25/15	42348	SW32415A	46	MSMS2_	_7500SWA
7440-43-9	Cadmium	2.0	ND	1	50	100	03/25/15	42348	SW32415A	46	MSMS2_	_7500SWA
7440-48-4	Cobalt	2.0	ND	1	50	100	03/25/15	42348	SW32415A	46	MSMS2_	_7500SWA
7439-92-1	Lead	3.0	ND	1	50	100	03/25/15	42348	SW32415A	46	MSMS2	_7500SW/
7782-49-2	Selenium	10	ND	1	50	100	03/25/15	42348	SW32415A	46	MSMS2_	_7500SW/
7440-28-0	Thallium	2.0	ND	1	50	100	03/25/15	42348	SW32415A	46	MSMS2	7500SW

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-029

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client Id: DMW-9

Units: UG/L

Date Rec: 3/18/2015

Lab Code:

Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Ins
7429-90-5	Aluminum	200	ND	1	50	50	03/24/15	42348	W17586A2	45	Р	PEICP2
7440-39-3	Barium	50	ND	1	50	50	03/24/15	42348	W17586A2	45	Р	PEICP2
7440-70-2	Calcium	5000	13000	1	50	50	03/24/15	42348	W17586A2	45	Р	PEICP2
7440-47-3	Chromium	50	ND	1	50	50	03/24/15	42348	W17586A2	45	Р	PEICP2
7440-50-8	Copper	50	ND	1	50	50	03/24/15	42348	W17586A2	45	Ρ	PEICP2
7439-89-6	Iron	300	550	1	50	50	03/24/15	42348	W17586A2	45	Р	PEICP2
7439-95-4	Magnesium	5000	ND	1	50	50	03/24/15	42348	W17586A2	45	Р	PEICP
7439-96-5	Manganese	40	ND	1	50	50	03/24/15	42348	W17586A2	45	Р	PEICP
7439-97-6	Mercury	0.70	ND	1	25	25	03/20/15	42348	17586SWB	35	CV	HGCV
7440-02-0	Nickel	50	ND	1	50	50	03/24/15	42348	W17586A2	45	Р	PEICP
7440-09-7	Potassium	5000	ND	1	50	50	03/24/15	42348	W17586B2	44	Р	PEICPRAD
7440-22-4	Silver	20	ND	1	50	50	03/24/15	42348	W17586A2	45	Р	PEICP
7440-23-5	Sodium	5000	18000	1	50	50	03/24/15	42348	W17586B2	44	Р	PEICPRAD
7440-62-2	Vanadium	50	ND	1	50	50	03/24/15	42348	W17586A2	45	Р	PEICP
7440-66-6	Zinc	50	ND	1	50	50	03/24/15	42348	W17586A2	45	Р	PEICP:

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-030

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client ld: DMW-9F

Units: UG/L Date Rec: 3/18/2015 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol		Prep Batch	File:	Seq Num	М	Instr
7440-36-0	Antimony	3.0	ND	1	50	100	03/26/15	42349	SW32515A	20	MS	MS2_7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/26/15	42349	SW32515A	20	MS	MS2_7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	03/26/15	42349	SW32515A	20	MS	MS2_7500SWA
7440-43-9	Cadmium	2.0	2.4	1	50	100	03/26/15	42349	SW32515A	20	MS	MS2_7500SWA
7440-48-4	Cobalt	2.0	ND	1	50	100	03/26/15	42349	SW32515A	20	MS	MS2_7500SWA
7439-92-1	Lead	3.0	ND	1	50	100	03/26/15	42349	SW32515A	20	MS	MS2_7500SWA
7782-49-2	Selenium	10	ND	1	50	100	03/26/15	42349	SW32515A	20	MS	MS2_7500SWA
7440-28-0	Thallium	2.0	ND	1	50	100	03/24/15	42349	SW32315B	46	MS	MS2_7500SWA

Comments:		 		

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor MS - ICP-MS

Sample ID: AC83807-030

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: Matrix:

DMW-9F **AQUEOUS**

Units: UG/L Date Rec: 3/18/2015 Lab Code:

Sdg No:

Level:

LOW

Contract:

Case No:

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	м	Instr
7429-90-5	Aluminum	200	ND	1	50	50	03/23/15	42349	W17587A2	47	Р	PEICP2A
7440-39-3	Barium	50	ND	1	50	50	03/23/15	42349	W17587A2	47	Р	PEICP2A
7440-70-2	Calcium	5000	14000	1	50	50	03/23/15	42349	W17587A2	47	Р	PEICP2A
7440-47-3	Chromium	50	ND	1	50	50	03/23/15	42349	W17587A2	47	Ρ	PEICP2A
7440-50-8	Copper	50	ND	1	50	50	03/23/15	42349	W17587A2	47	Ρ	PEICP2A
7439-89-6	Iron	300	ND	1	50	50	03/23/15	42349	W17587A2	47	Ρ	PEICP2A
7439-95-4	Magnesium	5000	ND	1	50	50	03/23/15	42349	W17587A2	47	Ρ	PEICP2A
7439-96-5	Manganese	40	ND	1	50	50	03/23/15	42349	W17587A2	47	Ρ	PEICP2A
7439-97-6	Mercury	0.70	ND	1	25	25	03/23/15	42349	17587SWB	35	CV	HGCV1A
7440-02-0	Nickel	50	ND	1	50	50	03/23/15	42349	W17587A2	47	Р	PEICP2A
7440-09-7	Potassium	5000	ND	1	50	50	03/24/15	42349	W17587C2	24	Р	PEICPRAD2A
7440-22-4	Silver	20	ND	1	50	50	03/23/15	42349	W17587A2	47	Р	PEICP2A
7440-23-5	Sodium	5000	21000	1	50	50	03/24/15	42349	W17587C2	24	Ρ	PEICPRAD2A
7440-62-2	Vanadium	50	ND	1	50	50	03/23/15	42349	W17587A2	47	Р	PEICP2/
7440-66-6	Zinc	50	ND	1	50	50	03/23/15	42349	W17587A2	47	Р	PEICP2A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES CV -ColdVapor MS - ICP-MS

Sample ID: AC83807-031

% Solid: 0

Lab Name:

Veritech

Nras No:

Matrix: AQUEOUS

Client Id: DMW-3

Units: UG/L Date Rec: 3/18/2015 Lab Code:

Sdg No:

Contract:

Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol		Prep Batch	File:	Seq Num	м	Instr
7440-36-0	Antimony	3.0	ND	1	50	100	03/25/15	42348	SW32415A	47	MSMS	2_7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/25/15	42348	SW32415A	47	MSMS	2_7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	03/25/15	42348	SW32415A	47	мѕиѕ	2_7500SWA
7440-43-9	Cadmium	2.0	20	1	50	100	03/25/15	42348	SW32415A	47	MSMS	2_7500SWA
7440-48-4	Cobalt	2.0	ND	1	50	100	03/25/15	42348	SW32415A	47	MSMS	2_7500SWA
7439-92-1	Lead	3.0	ND	1,	50	100	03/25/15	42348	SW32415A	47	MSMS	2_7500SWA
7782-49-2	Selenium	10	ND	1	50	100	03/25/15	42348	SW32415A	47	MSMS	2_7500SWA
7440-28-0	Thallium	2.0	ND	1	50	100	03/25/15	42348	SW32415A	47	мѕиѕ	2_7500SWA

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-031

% Solid: 0

Lab Name:

Veritech

Nras No:

Client Id: DMW-3 Matrix: AQUEOUS

Units: UG/L

Date Rec: 3/18/2015

Lab Code: Contract:

Sdg No: Case No:

Level: LOW

					Initial					Seq		
Cas No.	Analyte	RL	Conc	Dil Fact	Wt/Vol	Wt/Vol	Date	Batch	File:	Num	М	Instr
7429-90-5	Aluminum	200	490	1	50	50	03/24/15	42348	W17586A2	46	Р	PEICP2A
7440-39-3	Barium	50	ND	1	50	50	03/24/15	42348	W17586A2	46	Р	PEICP2A
7440-70-2	Calcium	5000	9300	1	50	50	03/24/15	42348	W17586A2	46	Р	PEICP2A
7440-47-3	Chromium	50	ND	1	50	50	03/24/15	42348	W17586A2	46	Р	PEICP2A
7440-50-8	Copper	50	ND	1	50	50	03/24/15	42348	W17586A2	46	Р	PEICP2A
7439-89-6	Iron	300	510	1	50	50	03/24/15	42348	W17586A2	46	Р	PEICP2A
7439-95-4	Magnesium	5000	ND	1	50	50	03/24/15	42348	W17586A2	46	Р	PEICP2A
7439-96-5	Manganese	40	64	1	50	50	03/24/15	42348	W17586A2	46	Р	PEICP2A
7439-97-6	Mercury	0.70	ND	1	25	25	03/20/15	42348	17586SWB	36	CV	HGCV1A
7440-02-0	Nickel	50	ND	1	50	50	03/24/15	42348	W17586A2	46	Р	PEICP2A
7440-09-7	Potassium	5000	ND	1	50	50	03/24/15	42348	W17586B2	45	Ρ	PEICPRAD2A
7440-22-4	Silver	20	ND	1	50	50	03/24/15	42348	W17586A2	46	Р	PEICP2A
7440-23-5	Sodium	5000	18000	1	50	50	03/24/15	42348	W17586B2	45	Р	PEICPRAD2A
7440-62-2	Vanadium	50	ND	1	50	50	03/24/15	42348	W17586A2	46	Р	PEICP2A
7440-66-6	Zinc	50	ND	1	50	50	03/24/15	42348	W17586A2	46	Р	PEICP2A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-032

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: DMW-3F

Matrix: AQUEOUS

Units: UG/L

Date Rec: 3/18/2015

Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol			Prep Batch	File:	Seq Num	М	Instr
7440-36-0	Antimony	3.0	ND	1	50	100	03/26/15	42349	SW32515A	21	MS	MS2_7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/26/15	42349	SW32515A	21	MS	VIS2_7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	03/26/15	42349	SW32515A	21	MS	MS2_7500SWA
7440-43-9	Cadmium	2.0	14	1	50	100	03/26/15	42349	SW32515A	21	MS	MS2_7500SWA
7440-48-4	Cobalt	2.0	ND	1	50	100	03/26/15	42349	SW32515A	21	MS	MS2_7500SWA
7439-92-1	Lead	3.0	ND	1	50	100	03/26/15	42349	SW32515A	21	MS	MS2_7500SWA
7782-49-2	Selenium	10	ND	1	50	100	03/26/15	42349	SW32515A	21	MS	MS2_7500SW
7440-28-0	Thallium	20	ND	1	50	100	03/24/15	42349	SW32315R	47	MS	MS2 7500SW

Comments:		

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-032

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: Matrix:

DMW-3F **AQUEOUS** Units: UG/L

Lab Code:

Sdg No:

Level: LOW

Date Rec: 3/18/2015 Contract: Case No:

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
429-90-5	Aluminum	200	ND	1	50	50	03/23/15	42349	W17587A2	48	Р	PEICP2A
440-39-3	Barium	50	ND	1	50	50	03/23/15	42349	W17587A2	48	Р	PEICP2A
440-70-2	Calcium	5000	9300	1	50	50	03/23/15	42349	W17587A2	48	Р	PEICP2
440-47-3	Chromium	50	ND	1	50	50	03/23/15	42349	W17587A2	48	Р	PEICP2
440-50-8	Copper	50	ND	1	50	50	03/23/15	42349	W17587A2	48	Р	PEICP2
439-89-6	Iron	300	ND	1	50	50	03/23/15	42349	W17587A2	48	Р	PEICP2/
439-95-4	Magnesium	5000	ND	1	50	50	03/23/15	42349	W17587A2	48	Р	PEICP2
439-96-5	Manganese	40	ND	1	50	50	03/23/15	42349	W17587A2	48	Р	PEICP2
439-97-6	Mercury	0.70	ND	1	25	25	03/23/15	42349	17587SWB	36	C۷	HGCV1
440-02-0	Nickel	50	ND	1	50	50	03/23/15	42349	W17587A2	48	Р	PEICP2/
440-09-7	Potassium	5000	ND	1	50	50	03/24/15	42349	W17587C2	25	Ρ	PEICPRAD2
440-22-4	Silver	20	ND	1	50	50	03/23/15	42349	W17587A2	48	Р	PEICP2/
440-23-5	Sodium	5000	18000	1	50	50	03/24/15	42349	W17587C2	25	Р	PEICPRAD2
440-62-2	Vanadium	50	ND	1	50	50	03/23/15	42349	W17587A2	48	Р	PEICP2
440-66-6	Zinc	50	ND	1	50	50	03/23/15	42349	W17587A2	48	Р	PEICP2/

Comments:	
	Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES CV -ColdVapor

Sample ID: AC83807-033 Client Id: DMW-15B MS

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Units: UG/L Date Rec: 3/18/2015 Lab Code:

Contract:

Sdg No:

Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7440-36-0	Antimony	3.0	500	1	50	100	03/25/15	42348	SW32415A	22	MS	MS2_7500SWA
7440-38-2	Arsenic	2.0	490	1	50	100	03/25/15	42348	SW32415A	22	MS	MS2_7500SWA
7440-41-7	Beryllium	1.0	500	1	50	100	03/25/15	42348	SW32415A	22	MS	MS2_7500SWA
7440-43-9	Cadmium	2.0	480	1	50	100	03/25/15	42348	SW32415A	22	MS	MS2_7500SWA
7440-48-4	Cobalt	2.0	490	1	50	100	03/25/15	42348	SW32415A	22	MS	MS2_7500SWA
7439-92-1	Lead	3.0	490	1	50	100	03/25/15	42348	SW32415A	22	MS	MS2_7500SWA
7782-49-2	Selenium	10	470	1	50	100	03/25/15	42348	SW32415A	22	MS	MS2_7500SWA
7440-28-0	Thallium	2.0	470	1	50	100	03/25/15	42348	SW32415A	22	MS	MS2_7500SWA

Comments:	
Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-033

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client Id: DMW-15B MS

Units: UG/L Date Rec: 3/18/2015 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
429-90-5	Aluminum	200	4600	1	50	50	03/24/15	42348	W17586A2	17	Р	PEICP2A
440-39-3	Barium	50	490	1	50	50	03/24/15	42348	W17586A2	17	Р	PEICP2
440-70-2	Calcium	5000	56000	1	50	50	03/24/15	42348	W17586A2	17	Р	PEICP2/
440-47-3	Chromium	50	460	1	50	50	03/24/15	42348	W17586A2	17	P	PEICP2/
440-50-8	Copper	50	460	1	50	50	03/24/15	42348	W17586A2	17	Р	PEICP2
439-89-6	Iron	300	6100	1	50	50	03/24/15	42348	W17586A2	17	Р	PEICP2
439-95-4	Magnesium	5000	49000	1	50	50	03/24/15	42348	W17586A2	17	Р	PEICP2
439-96-5	Manganese	40	540	1	50	50	03/24/15	42348	W17586A2	17	P	PEICP2
439-97-6	Mercury	0.70	9.3	1	25	25	03/20/15	42348	17586SWB	16	CV	HGCV1
440-02-0	Nickel	50	460	1	50	50	03/24/15	42348	W17586A2	17	Р	PEICP2
440-09-7	Potassium	5000	49000	1	50	50	03/24/15	42348	W17586B2	16	Р	PEICPRAD2
440-22-4	Silver	20	86	1	50	50	03/24/15	42348	W17586A2	17	Р	PEICP2
440-23-5	Sodium	5000	78000	1	50	50	03/24/15	42348	W17586B2	16	Р	PEICPRAD2
440-62-2	Vanadium	50	450	1	50	50	03/24/15	42348	W17586A2	17	Р	PEICP2
440-66-6	Zinc	50	480	1	50	50	03/24/15	42348	W17586A2	17	Р	PEICP2

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-034

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: DMW-15B MSD Matrix: AQUEOUS

Units: UG/L Date Rec: 3/18/2015 Lab Code: Contract:

Sdg No:

Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7440-36-0	Antimony	3.0	490	1	50	100	03/25/15	42348	SW32415A	23	MSV	\$2_7500SWA
7440-38-2	Arsenic	2.0	470	1	50	100	03/25/15	42348	SW32415A	23	MSM	S2_7500SWA
7440-41-7	Beryllium	1.0	490	1	50	100	03/25/15	42348	SW32415A	23	MSV	S2_7500SWA
7440-43-9	Cadmium	2.0	460	1	50	100	03/25/15	42348	SW32415A	23	MSV	S2_7500SWA
7440-48-4	Cobalt	2.0	460	1	50	100	03/25/15	42348	SW32415A	23	MSV	S2_7500SWA
7439-92-1	Lead	3.0	470	1	50	100	03/25/15	42348	SW32415A	23	MSV	IS2_7500SWA
7782-49-2	Selenium	10	460	1	50	100	03/25/15	42348	SW32415A	23	MSV	S2_7500SWA
7440-28-0	Thallium	2.0	440	1	50	100	03/25/15	42348	SW32415A	23	MSV	S2_7500SWA

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-034

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id:

DMW-15B MSD AQUEOUS

Units: UG/L Date Rec: 3/18/2015 Lab Code: Contract:

Sdg No: Case No:

Matrix: Level:

LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7429-90-5	Aluminum	200	4600	1	50	50	03/24/15	42348	W17586A2	18	Р	PEICP2A
7440-39-3	Barium	50	490	1	50	50	03/24/15	42348	W17586A2	18	Р	PEICP2
7440-70-2	Calcium	5000	57000	1	50	50	03/24/15	42348	W17586A2	18	Ρ	PEICP2
7440-47-3	Chromium	50	460	1	50	50	03/24/15	42348	W17586A2	18	Ρ	PEICP2
7440-50-8	Copper	50	460	1	50	50	03/24/15	42348	W17586A2	18	Р	PEICP2
7439-89-6	Iron	300	6000	1	50	50	03/24/15	42348	W17586A2	18	Р	PEICP2
7439-95-4	Magnesium	5000	50000	1	50	50	03/24/15	42348	W17586A2	18	Р	PEICP2
7439-96-5	Manganese	40	520	1	50	50	03/24/15	42348	W17586A2	18	Р	PEICP2
7439-97-6	Mercury	0.70	10	1	25	25	03/20/15	42348	17586SWB	17	CV	HGCV1
7440-02-0	Nickel	50	460	1	50	50	03/24/15	42348	W17586A2	18	Р	PEICP2
7440-09-7	Potassium	5000	49000	1	50	50	03/24/15	42348	W17586B2	17	Р	PEICPRAD2
7440-22-4	Silver	20	86	1	50	50	03/24/15	42348	W17586A2	18	Р	PEICP2
7440-23-5	Sodium	5000	77000	1	50	50	03/24/15	42348	W17586B2	17	Р	PEICPRAD2
7440-62-2	Vanadium	50	450	1	50	50	03/24/15	42348	W17586A2	18	Р	PEICP2
7440-66-6	Zinc	50	490	1	50	50	03/24/15	42348	W17586A2	18	Р	PEICP2

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-035

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client Id: DMW-15BF MS

Units: UG/L Date Rec: 3/18/2015 Lab Code:

Sdg No:

Level: LOW

Contract:

Case No:

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	,	Analysis Date		File:	Seq Num	М	Instr
7440-36-0	Antimony	3.0	520	1	50	100	03/27/15	42349	SW32715A	22	MS	MS2_7500 S WA
7440-38-2	Arsenic	2.0	490	1	50	100	03/27/15	42349	SW32715A	22	MS	MS2_7500 S WA
7440-41-7	Beryllium	1.0	490	1	50	100	03/27/15	42349	SW32715A	22	MS	MS2_7500SWA
7440-43-9	Cadmium	2.0	480	1	50	100	03/27/15	42349	SW32715A	22	MS	MS2_7500SWA
7440-48-4	Cobalt	2.0	470	1	50	100	03/27/15	42349	SW32715A	22	MS	MS2_7500SWA
7439-92-1	Lead	3.0	500	1	50	100	03/27/15	42349	SW32715A	22	MS	MS2_7500SWA
7782-49-2	Selenium	10	480	1	50	100	03/27/15	42349	SW32715A	22	MS	MS2_7500SWA
7440-28-0	Thallium	2.0	460	1	50	100	03/24/15	42349	SW32315B	22	MS	MS2_7500SWA

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES CV -ColdVapor MS - ICP-MS

Sample ID: AC83807-035

% Solid: 0

Lab Name: Veritech

Nras No:

Client ld: DMW-15BF MS Matrix: AQUEOUS

Units: UG/L Date Rec: 3/18/2015 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
429-90-5	Aluminum	200	4900	1	50	50	03/23/15	42349	W17587A2	17	Р	PEICP2A
440-39-3	Barium	50	530	1	50	50	03/23/15	42349	W17587A2	17	Р	PEICP2
440-70-2	Calcium	5000	58000	1	50	50	03/23/15	42349	W17587A2	17	Р	PEICP2
440-47-3	Chromium	50	490	1	50	50	03/23/15	42349	W17587A2	17	Р	PEICP2
440-50-8	Copper	50	500	1	50	50	03/23/15	42349	W17587A2	17	Р	PEICP2
439-89-6	Iron	300	5100	1	50	50	03/23/15	42349	W17587A2	17	Р	PEICP2/
439-95-4	Magnesium	5000	51000	1	50	50	03/23/15	42349	W17587A2	17	Р	PEICP2
439-96-5	Manganese	40	520	1	50	50	03/23/15	42349	W17587A2	17	Р	PEICP2
439-97-6	Mercury	0.70	10	1	25	25	03/23/15	42349	17587SWB	16	CV	HGCV1
440-02-0	Nickel	50	490	1	50	50	03/23/15	42349	W17587A2	17	Р	PEICP2/
440-09-7	Potassium	5000	48000	1	50	50	03/23/15	42349	W17587B2	16	Р	PEICPRAD2
440-22-4	Silver	20	98	1	50	50	03/23/15	42349	W17587A2	17	Р	PEICP2
440-23-5	Sodium	5000	84000	1	50	50	03/23/15	42349	W17587B2	16	Р	PEICPRAD2
440-62-2	Vanadium	50	490	1	50	50	03/23/15	42349	W17587A2	17	Р	PEICP2
440-66-6	Zinc	50	510	1	50	50	03/23/15	42349	W17587A2	17	Р	PEICP2

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-036

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: Matrix:

DMW-15BF MSD AQUEOUS

Units: UG/L Date Rec: 3/18/2015 Lab Code:

Sdg No:

Level:

LOW

Contract: Case No:

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt∕Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Inst
7440-36-0	Antimony	3.0	520	1	50	100	03/27/15	42349	SW32715A	23	MS	MS2_7500SW/
7440-38-2	Arsenic	2.0	480	1	50	100	03/27/15	42349	SW32715A	23	MS	MS2_7500SW/
7440-41-7	Beryllium	1.0	490	1	50	100	03/27/15	42349	SW32715A	23	MS	MS2_7500SW
7440-43-9	Cadmium	2.0	480	1	50	100	03/27/15	42349	SW32715A	23	MS	MS2_7500SW
7440-48-4	Cobalt	2.0	470	1	50	100	03/27/15	42349	SW32715A	23	MS	MS2_7500SW
7439-92-1	Lead	3.0	500	1	50	100	03/27/15	42349	SW32715A	23	MS	MS2_7500SW
7782-49-2	Selenium	10	480	1	50	100	03/27/15	42349	SW32715A	23	MS	MS2_7500SW
7440-28-0	Thallium	2.0	440	1	50	100	03/24/15	42349	SW32315B	23	MS	MS2 7500SW

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

PEICP2A

Form1 Inorganic Analysis Data Sheet

Sample ID: AC83807-036

% Solid:

0

Lab Name: Veritech Nras No:

Client Id:

DMW-15BF MSD **AQUEOUS**

Zinc

Units: UG/L Date Rec: 3/18/2015 Lab Code: Contract:

Sdg No: Case No:

42349 W17587A2 18

Matrix:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
429-90-5	Aluminum	200	5000	1	50	50	03/23/15	42349	W17587A2	18	Р	PEICP2A
440-39-3	Barium	50	530	1	50	50	03/23/15	42349	W17587A2	18	Р	PEICP2A
440-70-2	Calcium	5000	61000	1	50	50	03/23/15	42349	W17587A2	18	Р	PEICP2A
440-47-3	Chromium	50	500	1	50	50	03/23/15	42349	W17587A2	18	Р	PEICP2A
440-50-8	Copper	50	510	1	50	50	03/23/15	42349	W17587A2	18	Р	PEICP2A
439-89-6	Iron	300	5100	1	50	50	03/23/15	42349	W17587A2	18	Р	PEICP2A
439-95-4	Magnesium	5000	53000	1	50	50	03/23/15	42349	W17587A2	18	Р	PEICP2A
439-96-5	Manganese	40	540	1	50	50	03/23/15	42349	W17587A2	18	Р	PEICP2A
439-97-6	Mercury	0.70	10	1	25	25	03/23/15	42349	17587SWB	17	CV	HGCV1A
7440-02-0	Nickel	50	500	1	50	50	03/23/15	42349	W17587A2	18	Р	PEICP2A
7440-09-7	Potassium	5000	49000	1	50	50	03/23/15	42349	W17587B2	17	Р	PEICPRAD2A
7440-22-4	Silver	20	100	1	50	50	03/23/15	42349	W17587A2	18	Ρ	PEICP2A
7440-23-5	Sodium	5000	84000	-1	50	50	03/23/15	42349	W17587B2	17	P	PEICPRAD2A
7440-62-2	Vanadium	50	500	1	50	50	03/23/15	42349	W17587A2	18	Р	PEICP2A

50

50 03/23/15

Comments:	
	· ·

520

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

50

P - ICP-AES

CV -ColdVapor

7440-66-6

Chain of Custody Forms

pler (print name): Celeste fost Paste: note NUMBERED items. If not completed your analytical work may be delayed. After of \$5/sample will be assessed for storage should sample not be artificated for any analysis.	11) Sampler (print name): Cele Please note NUMBERED items. A fee of \$5/sample will be assess						
Cooler Temperature	NJ LSRP Project						Additional Notes
Check if applicable: Project-Specific Reporting Limits Link Contaminant Concentration	Note: Check if applicable: Project-Specific F						
		Walla Wall				the Committee of the Co	
8270C SIM)		5/1/N / 30	#	The state of the s	and theory.	といい	
Check if low-level groundwater methods required to meet current standards:	Note: Check if low-le	1		1		4	
Comments, Notes, Special Requirements, HAZARDS		Date Time	d by:	Accepted by:		ed by:	10) Relinquished by:
			\ \ \	1220	24F	Dmw-2	-010-
			\(\frac{1}{2}\)	1215	4	Dmw-224	-009
			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1205	2284	1	800-
			<	1202	-228	Dmw -2	400-
			< <	1/00	35	Sq	-006
			\ \ \	/oSS	33	1	-005
			< <	1050	ISBE	! ·	-04/03s/036
3	21		\ \ \	Shoy		DMW-15B	respession.
			\ \ \	1 /042	A	DMW-ISA	-002
			< .	3/17/51040	GW	DMW-15A	-00 1 Poor
Na(Gra	x Date Time) ID Matrix	4) Customer Sample ID	Lab Sample #
OH Core OH I SO4		AL	mpos ab (G)	6) Sample	5)		
# of Bottles		- M)		-		AC8.380%
88		let		n 9, Comments)	OL - OII Decify under iter	WW - Waste Water OL - OII OT - Other (please specify under item 9, Comments)	Dag:
		ral			SL - Sludge	GW - Ground Water	0
		S	Sample Type	A - Air	Matrix Codes	M: DW - Drinking Water	Ų.
<=== Check if Contingent			jent ===>	Check If Contingent ===>			USE
	7) Analysis Request	7) Analy	1				FOR LAB
Expedited TAT Not Always Available. Please Check with Lab.							
Other: STD Other:		2d) Quote/PO # (If Applicable):	2d) Quote/Pi		1	l.,	1d) Send Report to:
2 Weeks Category A 4-File/EZNYS/Reg. 2 or 5					le.	Jam Jam	1c) Send Invoice to:
ays (10%) Full / Category B	NO NY	tion (City/State):	2c) Project L	@ aecomion	careta	Jam!	1b) Email/Cell/Fax/Ph:
PA Reduced	\$	が、サースのも	2b) Project Mar:	2	-	S	50
4 Business Days (35%) NY Reduced Excel - NY Regulatory Figure 1. NY Regulatory		TEKU.	Aa) Floject.	house Rd		Ton Bad some	3 Address:
Results + QC (Waste)		Project Information	3		mation	<u>Customer Information</u>	ة. كري
1 Business Day (100%) Data Summary Hazsite/CSV		NELAC/NJ #07071 PA #68-00463 NY #11408 CT #PH-0671 KY #90124 DE HSCA Approved	PH-0671 KY 热	0463 NY #11408 CT #	7071 PA #68-00	NELAC/NJ #0:	
Turnaround Report Type Electronic Deliv.	usiness Enterprise	A Women-Owned, Disadvantaged, Small Business Enterprise	A Won	80-6056	057 Fax: 856-71	Ph (Service Center): 856-780-6057 Fax: 856-780-6056	
3	RECORD	HAMPTONCLARKE VERITECH WBE/DBE/SBE 800.426.9992	HAMPTONCL	973-439-1458 v Jersev 08054	:: 973-244-9787	Ph. 800-426-9992 973-244-9770 Fax: 973-244-9787 973-439-1458 Service Center: 137-D Gaither Drive, Mount Laurel, New Jersey 08054	1 Ph: 800-42
503 8 0 Page of 4	CHAIN OF CUSTODY	CHAIN	Ĭ	v Jersey 07004	nd, Fairfield, New	175 Route 46 West and 2 Madison Road, Fairfield, New Jersey 07004	

3: 3 5 /3. I work may be delayed. Ited for any analysis.	Date: Completed your analytical totage should sample not be activate	Celeste RED items. If not e will be assessed for s	11) Sampler (prin							
Cooler Temperature		Project-Specific Reporting Limits High Contaminant Concentrations NJ LSRP Project	High Contaminan NJ LSRP Project						9	Additional Notes
		icable:	Note: Check if applicable		To can be				1	
		VOC (8260B SIM or 8011)	VOC (8260	W/5 1530	3//	+	1	1	000	7
dards:	quired to meet current stand	Check if low-level groundwater methods req	RN or RNA	9/1/1/30	3//	V	XX		+	
<u>IRDS</u>	al Requirements, HAZ/	Comments, Notes, Special Requirements, HAZARDS	ما الماد الم	\mathbb{H}	Date) Y	Accapied by		ed by:	10) Relinquished by:
						\leq	1705	4	Dmw -18F	-020
	-				3	<	1700		Dmw -18	-019
	-			4	<u>\</u>	<	1525		Dmw-238F	810-
	-		-		1	<	1322		Dmw-238	-017
	2-				_	<	OIH		Dmw-aske	-016
	_				\< 	<	TES.		Dmw-23A	-015
	_				`	<	1425		Dmw-13BF	100
	, _				\< 	<	1420		Pmw - 138	200
<i>y</i>	-				\ <u>\</u>	<	1375	_	Dmw-13AF	200
					\ <u>\</u>	<	3/1/15 1330	Ł	Dmw-13A	-0=
9) Comments	HC H25 HN	├			. !	Gra	Time	Matrix	4) Customer Sample ID	Lab Sample #
	03	ОН			AL	b (G)	6) Sample	5)		
	# of Bottles	# of			- [to (AC8380
	8)	, e			Чe	1		nder item	spec	
				-	Lta			OL - Oil	WW - Waste Water OL - Oil	Batch #
		-	-		ıls	Уре	A - Air	<u>o</u> .	,	←
				. 3.		æ	(a	odes	Matrix Codes	ONLY
	Contingent	<=== Check If Contingent			1.00	nt ====>	Check If Contingent ===>			USE
			Request	7) Analysis Requ					-	FOR LAB
Check with Lab.	Expedited TAT Not Always Available. Please Check with Lab.	Expedited TAT No						90		
Other:		Other: Sta			2d) Quote/PO # (If Applicable):	d) Quote/	2			1d) Send Report to:
-File EZ/NYS/Reg. 2 or 5	Category A	2 Weeks	•							1c) Send Invoice to:
EQuIS (specify below):	Full / Category B	10 Calendar Days (10%)	Slip NY	west Isl	tion (C	c) Project	1	60 25	UPh: Faul. Kareth Cacom.com	1b) Email/Cell/Fax/Ph:
Excel - PA Regulatory	PA Reduced	1 Week (25%)	2	Kareth	Mgr. Paul	2b) Project Mgr:		b		
Excel - NY Regulatory	NY Reduced	4 Business Days (35%)					R	S S	100 Red school house	Address:
Excel - NJ Regulatory	NJ Reduced	3 Business Days (50%)		N	DANS	2a) Project:	2		AECOM	⊣1a) Customer:
EnviroData	Results + QC (Waste)	2 Business Days (75%)		Project Information	Projec			P	Customer Information	31
Hazsite/CSV	Data Summary	1 Business Day (100%)		pproved	90124 DE HSCA A	0671 KY #	NELAC/NJ #07071 PA #68-00463 NY #11408 CT #PH-0671 KY #90124 DE HSCA Approved	A #68-004	NELAC/NJ #07071 P	0
Electronic Deliv.	Report Type	narou	erprise	A Women-Owned, Disadvantaged, Small Business En	men-Owned, Disadv	A Wa	6056	c: 856-780	Ph (Service Center): 856-780-6057 Fax: 856-780-6056	
se Circle)	3) Reporting Requirements (Please Circle)	5051810 3) Reportir	-	REC	HAMPTONCLARKE VERITECH	HAMPTON	73-439-1458 ersey 08054	4-9787 9	Ph: 800-426-9992 973-244-9770 Fax: 973-244-9787 973-439-1458 Senice Center: 137.D Gaither Drive Mount aurel New Jersey 08054	1 Ph: 800-42
9 0	rage		Ö	CHAIN OF CUS	Ż	I	ersey 07004	eld, New J	175 Route 46 West and 2 Madison Road, Fairfield, New Jersey 07004	
Section 1			一年 の気を一般 大海の	Grant.)	-	[C160	מביום	Prolington Action of	

tivated for any analysis.	ase note NUMBERED items. If not completed your analytical work may be delayed. A fee of \$5/sample will be assessed for storage should sample not be activated for any analysis.	e of \$5/sample will be assesse	Please not A fe						
Date: () / / / /	727	(print name): CBSTCY	11) Sampler (print name):		i A	y			
2.9.7./1		3000							
Cooler Temperature	ions	High Contaminant Concentrations NJ LSRP Project					1		Additional Notes
	nits'	Project-Specific Reporting Limits							
		Check if applicable:	Note: Check it	and the state of t	\			-	
		VOC (8260B SIM or 8011)	MAXISO I	3//		X	(100 M	
tandards:	Check if low-level groundwater methods required to meet current standards BN or BNA (8270C SIM)	Check if low-level groundwater me	130 Note:	3/18	1	4xt		1	Con
ZARDS	Comments, Notes, Special Requirements, HAZARDS	Comments, Note		Q D	ckepted by:	Case		ed by:	10) Relinquished by:
				<u> </u>	X	566	35	MW-4F	-030
				<	0.	9%	3	1	-029
				<	V	9//0	S.	DMW -2F	-028
				<	X	905	Z	Dmw - 2	-027
~				<			76	DFB-F	-026
Field Blank				<		908	Ħ	DEB	-025
				<	×	100	QY W	1	160-
				<	×	3/19/15	G E	Dmw - 98	-023
				<		591 4	•	Dmw-17F	e60-
				Ś	٥ ٧	3/17/15 1610	સ્	Dmw-17	-021
9) Comments	HC H28	No		,	Со	Date Time	Matrix	4) Customer Sample ID	Lab Sample #
er:	Core OH I SO4				mpos ab (G	6) Sample	5)		
	# of Bottles	-		-					AC83807
	8)			Ис	C)	n 9, Comments)	under item	OT - Other (please specify under item 9, Comments)	
				ta			SL - Sludge	_	Batch #
					Туре	A - Air	S - Soil		←
	<=== Check it Contingent	\			Sample	Crieck if Conungent	Matrix Codes	Matrix	ONIX
			7) Analysis Request	-					FOR LAB
se Check with Lab.	Expedited TAT Not Always Available. Please Check with Lab.	Expedit							
Other:		Other: ST D);	2d) Quote/PO # (If Applicable):	2d) വ		٦		1d) Send Report to:
4-File/EL/NYS/Reg. 2 or 5	Category A	2 Weeks	2					I	1c) Send Invoice to:
EQuIS (specify below):	\frown	10 Calendar Days (10%)	۶	tion (2c) Pro	aut. Kareting accom.	et	; T	1b) Email/Cell/Fax/Ph:
Excel - PA Regulatory	PA Reduced	1 Week (25%)	El Magte	2b) Project Mgr: Yau					.5(
Excel - NY Regulatory		4 Business Days (35%)				buse Rel	9	100 Red School house	Address:
		3 Business Days (50%)	20	J	2a) Project:			マボらろ	1a) Customer:
		2 Business Days (75%)	Project Information	Proje				Customer Information	31(
Hazsite/CSV	Dat	1 Business Day (100%)	Approved	NELAC/NJ #07071 PA #68-00463 NY #11408 CT #PH-0671 KY #90124 DE HSCA Approved	r #PH-0671	463 NY #11408 C	PA #68-00	NELAC/NJ #07071	
Electronic Deliv.	d Report Type	Turnaround	A Women-Owned, Disadvantaged, Small Business Enterprise	Women-Owned, Disac	WBE/L	30-6056	Fax: 856-78	Ph (Service Center): 856-780-6057 Fax: 856-780-6056	
lease Circle)	3) Reporting Requirements (Please Circle)		KECOKU	HAMPTONCLARKE VERITECH	HAMP	973-439-1458	-244-9787	Ph: 800-426-9992 973-244-9770 Fax: 973-244-9787 973-439-1458	
1 0 g	1810 Page	503	CHAIN OF CUSTODY	つく		Jersey 07004	irfield, New	175 Route 46 West and 2 Madison Road, Fairfield, New Jersey 07004	0 175 Route

Please circle required parameter list (refer to HC-V summary): i) NJ 2008 SRS; ii) Current TCL; iii) HC-V 2010 Merged; iv) PA; v) NY; vi) Project-Specific		Additional Notes		Jan 3/10/15 1/30	3/18/1/1/30	Date T					-032 DMW-3F GW 3/8/15/1020 XX	-031 DMW-3 GW 3/18/15/015 XX	Time Coi	5) 6)Sample pos	ite (C		GW - Ground Water SL - Sludge	latrix Codes Sample	USE Check If Contingent ===>	FOR LAB 7) Analysis Request			Same	av/Ph: Part Carp O Project Location (City/State): W	Ciastout Pico	Inc 3 ed school hat a Rd	S1a) Customer: A # C S S S S S S S S S S S S S S S S S S	NELAC/NJ #97071 PA #68-00463 NY #11408 CT #PH-0671 WV #353 I	Ph (Service Center): 8	` ċ	Ph: 800 / 26 0002 073 2/4 0770 Eax: 073 2/4 0787 073 / 30 1/68
Please note NUMBERED items. If not completed your analytical work may be d A fee of \$5/sample will be assessed for storage should sample not be activated for any analysis.	11) Sampler (print name): \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	High Contaminant Concentrations NJ LSRP Project	Metals-Soi (ICP-MS 6020 for Be & Ag) Note: Check if applicable:	Metals (ICP-MS 200.8 or 6020)	BN or BNA (8270C SIM)	Comments, Notes, Special Requirements, HAZARDS Note: Check if low-level groundwater methods required to meet current standards in NJ or PA:							Nor Med En NaC HCI H2S	OH Core OH	# of Bottles	200			<=== Check If Contingent	Request	Expedited TAT Not Always Available. Please Check with Lab.	other STP	2 Weeks	0 ZV 10 Days (10%)	1 Week (25%; EPH)	<u>ਝ</u>	48 Hours (75%) Waste		Turnaround Report Type	RECORD 3) Reporting Requirements (Please Circle)	
If not completed your analytical work may be delayed. ed for storage should sample not be activated for any analysis.	Date: () / //	Cooler Temperature				HAZARDS it standards in NJ or PA:							o 9) Comments	er:	J						Dease Check with Lab.	Other:	PDF	Excel - PA Regulatory	Excel - NY Regulatory		EQUIS 4-FILE EZ / NYS	Hazsite/CSV	Electronic Deliv.	(Please Circle)	

CONDITION UPON RECEIPT

Batch Number AC83807

Entered By: cbaum

Date Entered 3/18/2015 3:41:00 PM

1	Yes	Is there a corresponding COC included with the samples?
2	Yes	Are the samples in a container such as a cooler or Ice chest?
3	Yes	Are the COC seals intact?
4	Yes	Please specify the Temperature inside the container (in degC) 2.9,3.1,3.9
5	Yes	Are the samples refrigerated (where required)/have they arrived on ice?
6	Yes	Are the samples within the holding times for the parameters listed on the COC? IF no, list parameters and samples:
7	Yes	Are all of the sample bottles intact? If no, specify sample numbers broken/leaking
8	Yes	Are all of the sample labels or numbers legible? If no specify:
9	Yes	Do the contents match the COC? If no, specify
10	Yes	Is there enough sample sent for the analyses listed on the COC? If no, specify:
11	Yes	Are samples preserved correctly?
12	Yes	Was temperature blank present (Place comment below if not)? If not was temperature of samples verified?
13	NA	Other commentsSpecify
14	NA	Corrective actions (Specify item number and corrective action taken).

PRESERVATION DOCUMENT

Batch Number AC83807

Entered By: cbaum

Date Entered 3/18/2015 3:55:00 PM

Lab#:	Container Siz	Container Typ	Parameter	Preservative	PH	
AC83807-001	NA	NA	NA	NA	NA	
AC83807-002	NA	NA	NA	NA	NA	
AC83807-003	NA	NA	NA	NA	NA	
AC83807-004	NA	NA	NA	NA	NA	
AC83807-005	NA	NA	NA	NA	NA	
AC83807-006	NA	NA	NA	NA	NA	
AC83807-007	NA	NA	NA	NA	NA	
AC83807-008	NA	NA	NA	NA	NA	
AC83807-009	NA	NA	NA	NA	NA	
AC83807-010	NA	NA	NA	NA	NA	
AC83807-011	NA	NA	NA	NA	NA	
AC83807-012	NA	NA	NA	NA	NA	
AC83807-013	NA	NA	NA	NA	NA	
AC83807-014	NA	NA	NA	NA	NA	
AC83807-015	NA	NA	NA	NA	NA	
AC83807-016	NA	NA	NA	NA	NA	
AC83807-017	NA	NA	NA	NA	NA	
AC83807-018	NA	NA	NA	NA	NA	
AC83807-019	NA	NA	NA	NA	NA	
AC83807-020	NA	NA	NA	NA	NA	
AC83807-021	NA	NA	NA	NA	NA	
AC83807-022	NA	NA	NA	NA	NA	
AC83807-023	NA	NA	NA	NA	NA	
AC83807-024	NA	NA	NA	NA	NA	
AC83807-025	NA	NA	NA	NA	NA	
AC83807-026	NA	NA	NA	NA	NA	
AC83807-027	NA	NA	NA	NA	NA	
AC83807-028	NA	NA	NA	NA	NA	
AC83807-029	NA	NA	NA	NA	NA	
AC83807-030	NA	NA	NA	NA	NA	
AC83807-031	NA	NA	NA	NA	NA	
AC83807-032	NA	NA	NA	NA	NA	
AC83807-033	1L	Р	METALS	HNO3	1	
AC83807-034	1L	Р	METALS	HNO3	1	
AC83807-035	1L	P	DISS-METALS	HNO3	1	
AC83807-036	1L	Р	DISS-METALS	HNO3	1	

Internal Chain of Custody

		Loc		T				Loc		1	///
		or	Bot	A/				or		A/	
Lab#:	DateTime:	User	Nu	M	Analysis	Lab#:	DateTime:	User	Nu	_	Analysis
AC83807-001	03/18/15 15:30	CBAU		М	Received	AC83807-014	03/20/15 13:56	CJA	1	Α	TDWI-HG
AC83807-001	03/18/15 15:40	CBAU	i	М	Login	AC83807-014	03/20/15 13:56	R12	1	A	NONE
AC83807-001	03/18/15 17:10	1	1	Α	NONE TDWI/HG	AC83807-015 AC83807-015	03/18/15 15:30 03/18/15 15:40		0	M	Received Login
AC83807-001	03/19/15 16:06	AM R12	1	A	NONE	AC83807-015	03/18/15 15:40	R12	1	A	NONE
AC83807-001 AC83807-001	03/19/15 16:07 03/19/15 19:16		1	A	NONE	AC83807-015	03/19/15 16:06	AM	1	A	TDWI/HG
AC83807-002	03/18/15 15:30	CBAU		м	Received	AC83807-015	03/19/15 16:07	R12	1	Α	NONE
AC83807-002	03/18/15 15:40	CBAU		м	Login	AC83807-015	03/19/15 19:16	R12	1	Α	NONE
AC83807-002	03/18/15 17:10		1	Α	NONE	AC83807-016	03/18/15 15:30	CBAU	0	М	Received
AC83807-002	03/20/15 13:56	R12	1	Α	NONE	AC83807-016	03/18/15 15:40	CBAU	0	М	Login
AC83807-002	03/20/15 13:56	CJA	1	Α	TDWI-HG	AC83807-016	03/18/15 17:10	R12	1	Α	NONE
AC83807-003	03/18/15 15:30	CBAU		M	Received	AC83807-016	03/20/15 13:56		1	Α	TDWI-HG
AC83807-003	03/18/15 15:40	CBAU	i	М	Login	AC83807-016	03/20/15 13:56	R12	1	Α	NONE
AC83807-003	03/18/15 17:10	R12	1	Α	NONE	AC83807-017	03/18/15 15:30	and the second		M	Received
AC83807-003	03/19/15 16:06	AM	1	Α	TDWI/HG	AC83807-017	03/18/15 15:40	CBAU	0	M	Login NONE
AC83807-003	03/19/15 16:07	R12	1	A A	NONE NONE	AC83807-017 AC83807-017	03/18/15 17:10	R12 AM	1	A	TDWI/HG
AC83807-003 AC83807-004	03/19/15 19:16 03/18/15 15:30	R12 CBAU		м	Received	AC83807-017	03/19/15 16:07	R12	1	A	NONE
AC83807-004 AC83807-004	03/18/15 15:40	CBAU	1	M	Login	AC83807-017	03/19/15 19:16	R12	1	A	NONE
AC83807-004	03/18/15 17:10	R12	1	A	NONE	AC83807-018	03/18/15 15:30	CBAU	1.	М	Received
AC83807-004 AC83807-004	03/20/15 13:56	R12	1	A	NONE	AC83807-018	03/18/15 15:40	CBAU	1	М	Login
AC83807-004	03/20/15 13:56	CJA	1	A	TDWI-HG	AC83807-018	03/18/15 17:10		1	Α	NONE
AC83807-005	03/18/15 15:30	CBAU		М	Received	AC83807-018	03/20/15 13:56	i	1	Α	NONE
AC83807-005	03/18/15 15:40	CBAU		М	Login	AC83807-018	03/20/15 13:56		1	Α	TDWI-HG
AC83807-005	03/18/15 17:10		1	Α	NONE	AC83807-019	03/18/15 15:30	CBAU	0	М	Received
AC83807-005	03/19/15 16:06	AM	1	Α	TDWI/HG	AC83807-019	03/18/15 15:40	CBAU	0	М	Login
AC83807-005	03/19/15 16:07	R12	1	Α	NONE	AC83807-019	03/18/15 17:10	R12	1.	Α	NONE
AC83807-005	03/19/15 19:16	R12	1	Α	NONE	AC83807-019	03/19/15 16:06		1	Α	TDWI/HG
AC83807-006	03/18/15 15:30	CBAU		М	Received	AC83807-019	03/19/15 16:07	R12	1	Α	NONE
AC83807-006	03/18/15 15:40	CBAU	1	М	Login	AC83807-019	03/19/15 19:16	R12	1	Α	NONE
AC83807-006	03/18/15 17:10	R12	1	Α	NONE	AC83807-020	03/18/15 15:30	CBAU	1 '	М	Received
AC83807-006	03/20/15 13:56	CJA	1	A	TDWI-HG	AC83807-020	03/18/15 15:40	CBAU	1	M	Login NONE
AC83807-006	03/20/15 13:56	R12	1	Α	NONE	AC83807-020 AC83807-020	03/18/15 17:10 03/20/15 13:56	R12 CJA	1	A	TDWI-HG
AC83807-007 AC83807-007	03/18/15 15:30 03/18/15 15:40	CBAU	1	M	Received Login	AC83807-020	03/20/15 13:56	R12	1	A	NONE
AC83807-007 AC83807-007	03/18/15 15:40	R12	1	A	NONE	AC83807-021	03/20/15 15:30	CBAU		M	Received
AC83807-007	03/19/15 16:06	AM	: 1	A	TDWI/HG	AC83807-021	03/18/15 15:40	CBAU	1	М	Login
AC83807-007	03/19/15 16:07	R12	11	A	NONE	AC83807-021	03/18/15 17:10	R12	1	Α	NONE
AC83807-007	03/19/15 19:16	R12	1	Α	NONE	AC83807-021	03/19/15 16:06	AM	1	Α	TDWI/HG
AC83807-008	03/18/15 15:30	CBAU	0	М	Received	AC83807-021	03/19/15 16:07	R12	1	Α	NONE
AC83807-008	03/18/15 15:40	CBAU	0	М	Login	AC83807-021	03/19/15 19:16	R12	1	Α	NONE
AC83807-008	03/18/15 17:10	R12	1	Α	NONE	AC83807-022	03/18/15 15:30	CBAU	0	М	Received
AC83807-008	03/20/15 13:56	CJA	1	Α	TDWI-HG	AC83807-022	03/18/15 15:40	CBAU		М	Lógin
AC83807-008	03/20/15 13:56	R12	1	Α	NONE	AC83807-022	03/18/15 17:10		1	Α	NONE
AC83807-009	03/18/15 15:30	CBAU		М	Received	AC83807-022	03/20/15 13:56	CJA	1	Α	TDWI-HG
AC83807-009	03/18/15 15:40	CBAU	i	М	Login	AC83807-022	03/20/15 13:56	R12	1	Α	NONE
AC83807-009	03/18/15 17:10	R12	1	Α	NONE	AC83807-023	03/18/15 15:30	CBAU		M	Received
AC83807-009	03/19/15 16:06	AM	1	A	TDWI/HG	AC83807-023 AC83807-023	03/18/15 15:40 03/18/15 17:10	R12	1	M	Login NONE
AC83807-009	03/19/15 16:07	R12	1	A	NONE NONE	AC83807-023	03/19/15 16:06	AM	1	A	TDWI/HG
AC83807-009 AC83807-010	03/19/15 19:16 03/18/15 15:30	CBAU	+	м	Received	AC83807-023	03/19/15 16:07	R12	1	Α	NONE
AC83807-010	03/18/15 15:40	CBAU		М	Login	AC83807-023	03/19/15 19:16	R12	1	A	NONE
AC83807-010	03/18/15 17:10	R12	1	Α	NONE	AC83807-024	03/18/15 15:30	CBAU	0	М	Received
AC83807-010	03/20/15 13:56	CJA		Α	TDWI-HG	AC83807-024	03/18/15 15:40	CBAU		М	Login
AC83807-010	03/20/15 13:56	R12		Α	NONE	AC83807-024	03/18/15 17:10	R12	1	Α	NONE
AC83807-011	03/18/15 15:30	CBAU		М	Received	AC83807-024	03/20/15 13:56	CJA	1	Α	TDWI-HG
AC83807-011	03/18/15 15:40	CBAU	0	М	Login	AC83807-024	03/20/15 13:56	R12	1	Α	NONE
AC83807-011	03/18/15 17:10	R12	1	Α	NONE	AC83807-025	03/18/15 15:30	CBAU		М	Received
AC83807-011	03/19/15 16:06	AM	1	Α	TDWI/HG	AC83807-025	03/18/15 15:40	CBAU		М	Login
AC83807-011	03/19/15 16:07	R12	1	Α	NONE	AC83807-025	03/18/15 17:10	R12	1	Α	NONE
AC83807-011	03/19/15 19:16	R12	1	A	NONE	AC83807-025	03/19/15 16:06	AM	1	A	TDWI/HG
AC83807-012	03/18/15 15:30	CBAU	1	М	Received	AC83807-025	03/19/15 16:07	R12	1	A	NONE
AC83807-012	03/18/15 15:40	CBAU	i	M	Login	AC83807-025	03/19/15 19:16	R12	1	A	NONE Received
AC83807-012	03/18/15 17:10	R12	1	A	NONE	AC83807-026 AC83807-026	03/18/15 15:30	CBAU		M	Received Login
AC83807-012	03/20/15 13:56	CJA R12	1	A	TDWI-HG NONE	AC83807-026 AC83807-026	03/18/15 15:40	R12	1	A	NONE
AC83807-012 AC83807-013	03/20/15 13:56	R12 CBAU	1	A M	Received	AC83807-026 AC83807-026	03/20/15 13:56	R12	1	A	NONE
AC83807-013 AC83807-013	03/18/15 15:30 03/18/15 15:40	CBAU		M	Login	AC83807-026 AC83807-026	03/20/15 13:56	CJA	1	A	TDWI-HG
AC83807-013	03/18/15 17:10	R12	1	A	NONE	AC83807-027	03/18/15 15:30	CBAU	1.	M	Received
AC83807-013	03/19/15 16:06	AM	1	A	TDWI/HG	AC83807-027	03/18/15 15:40	CBAU	+	М	Login
AC83807-013	03/19/15 16:07	R12	1	A	NONE	AC83807-027	03/18/15 17:10	R12	1	Α	NONE
AC83807-013	03/19/15 19:16	R12	1	A	NONE	AC83807-027	03/19/15 16:06	AM	1	Α	TDWI/HG
AC83807-014	03/18/15 15:30	CBAU	1	М	Received	AC83807-027	03/19/15 16:07	R12	1	Α	NONE
AC03007-014			i	i		1		1	1.		
AC83807-014	03/18/15 15:40	CBAU	0	M	Login	AC83807-027	03/19/15 19:16	R12	1	Α	NONE

Samples marked as received are stored in coolers or refrigerator R12, or R24 at 4 deg C until Login

Internal Chain of Custody

		Loc	Bot	Δ/					Loc	Bot	^/		
Lab#:	DateTime:	User			Analysis		Lab#:	DateTime:	or User			Analysis	
AC83807-028	03/18/15 15:40	CBAU		М	Login								
AC83807-028	03/18/15 17:10	R12	1	Α	NONE	i							
AC83807-028	03/20/15 13:56	CJA	1	A	TDWI-HG								
AC83807-028	03/20/15 13:56	R12	1	A	NONE								
AC83807-029	03/18/15 15:30	CBAU		м	Received	i							
AC83807-029	03/18/15 15:40	CBAU		М	Login								
AC83807-029	03/18/15 17:10	R12	1	A	NONE	 1							
AC83807-029	03/19/15 16:06	AM	1	Α	TDWI/HG								
AC83807-029	03/19/15 16:07	R12	1	A	NONE								
AC83807-029	03/19/15 19:16	R12	1	A	NONE								
AC83807-030	03/18/15 15:30	CBAU		м	Received								
AC83807-030	03/18/15 15:40	CBAU	1 .	М	Login								
AC83807-030	03/18/15 17:10	R12	1	A	NONE								
AC83807-030	03/20/15 13:56	CJA	1	1	TDWI-HG	i							
AC83807-030	03/20/15 13:56	R12	1	A	NONE								
AC83807-030	03/18/15 15:30	CBAU		ĥ									
AC83807-031			1 0 0		Received								
AC83807-031	03/18/15 15:40	CBAU		М	Login								
	03/18/15 17:10	R12	1	Α	NONE								
AC83807-031	03/19/15 16:06		1	Α	TDWI/HG								
AC83807-031	03/19/15 16:07	R12	1	Α	NONE								
AC83807-031	03/19/15 19:16	R12	1	A	NONE								
AC83807-032	03/18/15 15:30	CBAU		М	Received								
AC83807-032	03/18/15 15:40	CBAU		M	Login								
AC83807-032	03/18/15 17:10		! 1	Α	NONE								
AC83807-032	03/20/15 13:56	i	1	Α	TDWI-HG								
AC83807-032	03/20/15 13:56	R12	1	Α	NONE	 							
AC83807-033	03/18/15 15:30	CBAU		М	Received								
AC83807-033	03/18/15 15:54	CBAU	ï	М	Login								
AC83807-033	03/18/15 17:10		1	Α	NONE								
AC83807-033	03/19/15 16:06	AM	1	Α	TDWI/HG								
AC83807-033	03/19/15 16:07	R12	1	Α	NONE								
AC83807-033	03/19/15 19:16	R12	1	Α	NONE								
AC83807-034	03/18/15 15:30	CBAU	1	М	Received								
AC83807-034	03/18/15 15:54	CBAU	!	М	Login								
AC83807-034	03/18/15 17:10	R12	1	Α	NONE								
AC83807-034	03/19/15 16:06	AM	1.	Α	TDWI/HG	-							
AC83807-034	03/19/15 16:07	R12	1	Α	NONE								
AC83807-034	03/19/15 19:16	R12	1	Α	NONE								
AC83807-035	03/18/15 15:30	CBAU	1	М	Received								
AC83807-035	03/18/15 15:54	CBAU		М	Login	İ							
AC83807-035	03/18/15 17:10	R12	1	Α	NONE								
AC83807-035	03/20/15 13:56	R12	1	Α	NONE								
AC83807-035	03/20/15 13:56	CJA	1	Α	TDWI-HG								
AC83807-036	03/18/15 15:30	CBAU	1	М	Received								
AC83807-036	03/18/15 15:54	CBAU	0	М	Login								
AC83807-036	03/18/15 17:10	R12	1	Α	NONE								
AC83807-036	03/20/15 13:56	CJA	1	Α	TDWI-HG	1							
AC83807-036	03/20/15 13:56	R12	1	Α	NONE								

Metal Data

Metal Data Sample Data

Sample ID: AC83807-001

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: DMW-15A Matrix: AQUEOUS Units: UG/L

Date Rec: 3/18/2015

Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol		Prep Batch	File:	Seq Num	М	Instr
7440-36-0	Antimony	3.0	ND	1	50	100	03/25/15	42348	SW32415A	29	MS/MS2	_7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/25/15	42348	SW32415A	29	MSMS2	_7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	03/25/15	42348	SW32415A	29	MSMS2	_7500SWA
7440-43-9	Cadmium	2.0	17	1	50	100	03/25/15	42348	SW32415A	29	MS/MS2	_7500SWA
7440-48-4	Cobalt	2.0	ND	1	50	100	03/25/15	42348	SW32415A	29	MS/MS2	_7500SWA
7439-92-1	Lead	3.0	6.3	1	50	100	03/25/15	42348	SW32415A	29	MSMS2	_7500SWA
7782-49-2	Selenium	10	ND	1	50	100	03/25/15	42348	SW32415A	29	MSMS2	_7500SWA
7440-28-0	Thallium	2.0	ND	1	50	100	03/25/15	42348	SW32415A	29	MS/MS2	_7500SWA

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-001

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: DMW-15A Matrix: AQUEOUS

Units: UG/L Date Rec: 3/18/2015 Lab Code:

Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	M	Instr
7429-90-5	Aluminum	200	820	1	50	50	03/24/15	42348	W17586A2	24	Р	PEICP2A
7440-39-3	Barium	50	ND	1	50	50	03/24/15	42348	W17586A2	24	Ρ	PEICP2A
7440-70-2	Calcium	5000	12000	1	50	50	03/24/15	42348	W17586A2	24	Р	PEICP2A
7440-47-3	Chromium	50	ND	1	50	50	03/24/15	42348	W17586A2	24	Р	PEICP2A
7440-50-8	Copper	50	ND	1	50	50	03/24/15	42348	W17586A2	24	Р	PEICP2A
7439-89-6	Iron	300	1100	1	50	50	03/24/15	42348	W17586A2	24	Р	PEICP2
7439-95-4	Magnesium	5000	ND	1	50	50	03/24/15	42348	W17586A2	24	Р	PEICP2
7439-96-5	Manganese	40	150	1	50	50	03/24/15	42348	W17586A2	24	Р	PEICP2
7439-97-6	Mercury	0.70	ND	1	25	25	03/20/15	42348	17586SWB	18	C۷	HGCV1A
7440-02-0	Nickel	50	ND	1	50	50	03/24/15	42348	W17586A2	24	Р	PEICP2
7440-09-7	Potassium	5000	ND	1	50	50	03/24/15	42348	W17586B2	23	Р	PEICPRAD2
7440-22-4	Silver	20	ND	1	50	50	03/24/15	42348	W17586A2	24	Р	PEICP2
7440-23-5	Sodium	5000	20000	1	50	50	03/24/15	42348	W17586B2	23	Р	PEICPRAD2/
7440-62-2	Vanadium	50	ND	1	50	50	03/24/15	42348	W17586A2	24	Р	PEICP2/
7440-66-6	Zinc	50	ND	1	50	50	03/24/15	42348	W17586A2	24	Р	PEICP2A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-002

% Solid: 0

Lab Name:

Veritech

Nras No:

Matrix: AQUEOUS

Client Id: DMW-15AF

Units: UG/L Date Rec: 3/18/2015 Lab Code:

Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol		Analysis Date	Prep Batch	File:	Seq Num	М	Inst
7440-36-0	Antimony	3.0	ND	1	50	100	03/27/15	42349	SW32715A	29	MSMS2	_7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/27/15	42349	SW32715A	29	MSMS2	_7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	03/27/15	42349	SW32715A	29	MSMS2	_7500SW
7440-43-9	Cadmium	2.0	8.2	1	50	100	03/27/15	42349	SW32715A	29	MSMS2	_7500SW
7440-48-4	Cobalt	2.0	ND	1	50	100	03/27/15	42349	SW32715A	29	MSMS2	_7500SW
7439-92-1	Lead	3.0	ND	1	50	100	03/27/15	42349	SW32715A	29	MS/MS2	_7500SW
7782-49-2	Selenium	10	ND	1	50	100	03/27/15	42349	SW32715A	29	MSMS2	_7500SW
7440-28-0	Thallium	2.0	ND	1	50	100	03/24/15	42349	SW32315B	29	MSMS2	7500SW

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-002

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: DMW-15AF Matrix: AQUEOUS

Units: UG/L Date Rec: 3/18/2015

Lab Code: Contract: Sdg No:

Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7429-90-5	Aluminum	200	ND	1	50	50	03/23/15	42349	W17587A2	26	Р	PEICP2A
7440-39-3	Barium	50	ND	1	50	50	03/23/15	42349	W17587A2	26	Р	PEICP2A
7440-70-2	Calcium	5000	14000	1	50	50	03/23/15	42349	W17587A2	26	Р	PEICP2A
7440-47-3	Chromium	50	ND	1	50	50	03/23/15	42349	W17587A2	26	Р	PEICP2A
7440-50-8	Copper	50	ND	1	50	50	03/23/15	42349	W17587A2	26	Р	PEICP2A
7439-89-6	Iron	300	ND	1	50	50	03/23/15	42349	W17587A2	26	P	PEICP2A
7439-95-4	Magnesium	5000	ND	1	50	50	03/23/15	42349	W17587A2	26	Р	PEICP2A
7439-96-5	Manganese	40	ND	1	50	50	03/23/15	42349	W17587A2	26	Р	PEICP2A
7439-97-6	Mercury	0.70	ND	1	25	25	03/23/15	42349	17587SWB	18	CV	HGCV1A
7440-02-0	Nickel	50	ND	1	50	50	03/23/15	42349	W17587A2	26	Р	PEICP2A
7440-09-7	Potassium	5000	ND	1	50	50	03/23/15	42349	W17587B2	23	Р	PEICPRAD2A
7440-22-4	Silver	20	ND	1	50	50	03/23/15	42349	W17587A2	26	Р	PEICP2A
7440-23-5	Sodium	5000	23000	1	50	50	03/23/15	42349	W17587B2	23	Р	PEICPRAD2A
7440-62-2	Vanadium	50	ND	1	50	50	03/23/15	42349	W17587A2	26	Р	PEICP2A
7440-66-6	Zinc	50	ND	1	50	50	03/23/15	42349	W17587A2	26	Р	PEICP2A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-003

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client Id: DMW-15B

Units: UG/L

Date Rec: 3/18/2015

Lab Code:

Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7440-36-0	Antimony	3.0	ND	1	100	200	03/25/15	42348	SW32415A	19	MS	MS2_7500SWA
7440-38 - 2	Arsenic	2.0	ND	1	100	200	03/25/15	42348	SW32415A	19	MS	MS2_7500SWA
7440-41-7	Beryllium	1.0	ND	1	100	200	03/25/15	42348	SW32415A	19	MS	MS2_7500SWA
7440-43-9	Cadmium	2.0	ND	1	100	200	03/25/15	42348	SW32415A	19	MS	MS2_7500SWA
7440-48-4	Cobalt	2.0	ND	1	100	200	03/25/15	42348	SW32415A	19	MS	MS2_7500SWA
7439-92-1	Lead	3.0	11	1	100	200	03/25/15	42348	SW32415A	19	MS	MS2_7500SW
7782-49-2	Selenium	10	ND	1	100	200	03/25/15	42348	SW32415A	19	MS	MS2_7500SW
7440-28-0	Thallium	2.0	ND	1	100	200	03/25/15	42348	SW32415A	19	MS	MS2_7500SW/

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-003

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: DMW-15B Matrix: AQUEOUS

Units: UG/L Date Rec: 3/18/2015 Lab Code:

Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Inst
429-90-5	Aluminum	200	ND	1	100	100	03/24/15	42348	W17586A2	15	Р	PEICP2
7440-39-3	Barium	50	ND	1	100	100	03/24/15	42348	W17586A2	15	Р	PEICP2
7440-70-2	Calcium	5000	9900	1	100	100	03/24/15	42348	W17586A2	15	Р	PEICP2
7440-47-3	Chromium	50	ND	1	100	100	03/24/15	42348	W17586A2	15	Ρ	PEICP2
7440-50-8	Copper	50	ND	1	100	100	03/24/15	42348	W17586A2	15	Р	PEICP2
7439-89-6	Iron	300	1500	1	100	100	03/24/15	42348	W17586A2	15	Ρ	PEICP2
7439-95-4	Magnesium	5000	ND	1	100	100	03/24/15	42348	W17586A2	15	Р	PEICP2
7439-96-5	Manganese	40	94	1	100	100	03/24/15	42348	W17586A2	15	Р	PEICP2
7439-97-6	Mercury	0.70	ND	1	25	25	03/20/15	42348	17586SWB	14	CV	HGCV1
7440-02-0	Nickel	50	ND	1	100	100	03/24/15	42348	W17586A2	15	Ρ	PEICP2
7440-09-7	Potassium	5000	ND	1	100	100	03/24/15	42348	W17586B2	14	Ρ	PEICPRAD2
7440-22-4	Silver	20	ND	1	100	100	03/24/15	42348	W17586A2	15	Р	PEICP2
7440-23-5	Sodium	5000	32000	1	100	100	03/24/15	42348	W17586B2	14	Р	PEICPRAD2
7440-62-2	Vanadium	50	ND	1	100	100	03/24/15	42348	W17586A2	15	Р	PEICP2
7440-66-6	Zinc	50	ND	1	100	100	03/24/15	42348	W17586A2	15	Р	PEICP2

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-004

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: DMW-15BF Matrix: AQUEOUS

Units: UG/L Date Rec: 3/18/2015 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7440-36-0	Antimony	3.0	ND	1	50	100	03/27/15	42349	SW32715A	19	MSMS	2_7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/27/15	42349	SW32715A	19	MSMS	2_7500 S WA
7440-41-7	Beryllium	1.0	ND	1	50	100	03/27/15	42349	SW32715A	19	мѕиѕ	2_7500SWA
7440-43-9	Cadmium	2.0	ND	1	50	100	03/27/15	42349	SW32715A	19	MSMS	2_7500SWA
7440-48-4	Cobalt	2.0	ND	1	50	100	03/27/15	42349	SW32715A	19	MSMS	2_7500SWA
7439-92-1	Lead	3.0	ND	1	50	100	03/27/15	42349	SW32715A	19	MSMS	2_7500SWA
7782-49-2	Selenium	10	ND	1	50	100	03/27/15	42349	SW32715A	19	MSMS	2_7500SWA
7440-28-0	Thallium	2.0	ND	1	50	100	03/24/15	42349	SW32315B	19	MSMS	2 7500SWA

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-004

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: DMW-15BF

Matrix: AQUEOUS Level: LOW

Units: UG/L Date Rec: 3/18/2015

Lab Code: Contract:

Sdg No:

Case No:

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
429-90-5	Aluminum	200	ND	1	100	100	03/23/15	42349	W17587A2	15	Р	PEICP2A
440-39-3	Barium	50	ND	1	100	100	03/23/15	42349	W17587A2	15	Р	PEICP2
440-70-2	Calcium	5000	11000	1	100	100	03/23/15	42349	W17587A2	15	Ρ	PEICP2
440-47-3	Chromium	50	ND	1	100	100	03/23/15	42349	W17587A2	15	Р	PEICP2/
7440-50-8	Copper	50	ND	1	100	100	03/23/15	42349	W17587A2	15	Р	PEICP2
439-89-6	Iron	300	ND	1	100	100	03/23/15	42349	W17587A2	15	Р	PEICP2
439-95-4	Magnesium	5000	ND	1	100	100	03/23/15	42349	W17587A2	15	Ρ	PEICP2
439-96-5	Manganese	40	ND	1	100	100	03/23/15	42349	W17587A2	15	Р	PEICP2
439-97-6	Mercury	0.70	ND	1:	25	25	03/23/15	42349	17587SWB	14	CV	HGCV1
440-02-0	Nickel	50	ND	1	100	100	03/23/15	42349	W17587A2	15	Ρ	PEICP2
7440-09-7	Potassium	5000	ND	1	100	100	03/23/15	42349	W17587B2	14	Р	PEICPRAD2
440-22-4	Silver	20	ND	1;	100	100	03/23/15	42349	W17587A2	15	Р	PEICP2
440-23-5	Sodium	5000	36000	1	100	100	03/23/15	42349	W17587B2	14	Р	PEICPRAD2
440-62-2	Vanadium	50	ND	1	100	100	03/23/15	42349	W17587A2	15	Р	PEICP2
440-66-6	Zinc	50	ND	1	100	100	03/23/15	42349	W17587A2	15	Р	PEICP2

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-005

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: DMW-65B Matrix: AQUEOUS Units: UG/L

Date Rec: 3/18/2015

Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol		Analysis Date	Prep Batch	File:	Seq Num	M	Instr
7440-36-0	Antimony	3.0	ND	1	50	100	03/25/15	42348	SW32415A	30	MSMS2_	7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/25/15	42348	SW32415A	30	MSMS2_	_7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	03/25/15	42348	SW32415A	30	MSMS2_	_7500SWA
7440-43-9	Cadmium	2.0	ND	1	50	100	03/25/15	42348	SW32415A	30	MSMS2_	_7500SWA
7440-48-4	Cobalt	2.0	ND	1	50	100	03/25/15	42348	SW32415A	30	MSMS2	_7500SWA
7439-92-1	Lead	3.0	ND	1	50	100	03/25/15	42348	SW32415A	30	MSMS2_	_7500SWA
7782-49-2	Selenium	10	ND	1	50	100	03/25/15	42348	SW32415A	30	MSMS2	_7500SWA
7440-28-0	Thallium	2.0	ND	1	50	100	03/25/15	42348	SW32415A	30	MSMS2	7500SWA

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-005

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: DMW-65B Matrix: AQUEOUS

Units: UG/L Date Rec: 3/18/2015

Lab Code: Contract: Sdg No:

Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7429-90-5	Aluminum	200	ND	1	50	50	03/24/15	42348	W17586A2	25	Р	PEICP2A
7440-39-3	Barium	50	ND	1	50	50	03/24/15	42348	W17586A2	25	Р	PEICP2A
7440-70-2	Calcium	5000	11000	1	50	50	03/24/15	42348	W17586A2	25	Ρ	PEICP2A
7440-47-3	Chromium	50	ND	1	50	50	03/24/15	42348	W17586A2	25	Р	PEICP2A
7440-50-8	Copper	50	ND	1	50	50	03/24/15	42348	W17586A2	25	Р	PEICP2A
439-89-6	Iron	300	1600	1	50	50	03/24/15	42348	W17586A2	25	Р	PEICP2A
439-95-4	Magnesium	5000	ND	1	50	50	03/24/15	42348	W17586A2	25	Ρ	PEICP2
439-96-5	Manganese	40	63	1	50	50	03/24/15	42348	W17586A2	25	Ρ	PEICP2
439-97-6	Mercury	0.70	ND	1	25	25	03/20/15	42348	17586SWB	19	CV	HGCV1A
440-02-0	Nickel	50	ND	1	50	50	03/24/15	42348	W17586A2	25	Ρ	PEICP2/
440-09-7	Potassium	5000	ND	1	50	50	03/24/15	42348	W17586B2	24	Р	PEICPRAD2
440-22-4	Silver	20	ND	1	50	50	03/24/15	42348	W17586A2	25	Р	PEICP2/
440-23-5	Sodium	5000	33000	1	50	50	03/24/15	42348	W17586B2	24	Р	PEICPRAD2
440-62-2	Vanadium	50	ND	1	50	50	03/24/15	42348	W17586A2	25	Р	PEICP2
440-66-6	Zinc	50	ND	1	50	50	03/24/15	42348	W17586A2	25	Р	PEICP2

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES CV -ColdVapor

Sample ID: AC83807-006

% Solid: 0

Lab Name:

Veritech

Nras No:

Matrix: AQUEOUS

Client Id: DMW-65BF

Units: UG/L Date Rec: 3/18/2015 Lab Code:

Contract:

Sdg No:

Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7440-36-0	Antimony	3.0	ND	1	50	100	03/27/15	42349	SW32715A	30	MS	MS2_7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/27/15	42349	SW32715A	30	MS	/IS2_7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	03/27/15	42349	SW32715A	30	MS	MS2_7500SWA
7440-43-9	Cadmium	2.0	ND	1	50	100	03/27/15	42349	SW32715A	30	MS	MS2_7500SWA
7440-48-4	Cobalt	2.0	ND	1	50	100	03/27/15	42349	SW32715A	30	MS	MS2_7500SWA
7439-92-1	Lead	3.0	ND	1	50	100	03/27/15	42349	SW32715A	30	MS	MS2_7500SWA
7782-49-2	Selenium	10	ND	1	50	100	03/27/15	42349	SW32715A	30	MS	MS2_7500SWA
7440-28-0	Thallium	2.0	ND	1	50	100	03/24/15	42349	SW32315B	30	MS	MS2_7500SWA

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-006

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client Id: DMW-65BF

Units: UG/L Date Rec: 3/18/2015 Lab Code:

Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7429-90-5	Aluminum	200	ND	1	50	50	03/23/15	42349	W17587A2	27	Р	PEICP2A
7440-39-3	Barium	50	ND	1	50	50	03/23/15	42349	W17587A2	27	Р	PEICP2A
7440-70-2	Calcium	5000	11000	1	50	50	03/23/15	42349	W17587A2	27	Р	PEICP2A
7440-47-3	Chromium	50	ND	1	50	50	03/23/15	42349	W17587A2	27	Р	PEICP2A
7440-50-8	Copper	50	ND	1	50	50	03/23/15	42349	W17587A2	27	Р	PEICP2A
7439-89-6	Iron	300	340	1	50	50	03/23/15	42349	W17587A2	27	Р	PEICP2A
7439-95-4	Magnesium	5000	ND	1	50	50	03/23/15	42349	W17587A2	27	Р	PEICP2A
7439-96-5	Manganese	40	45	1	50	50	03/23/15	42349	W17587A2	27	P	PEICP2A
7439-97-6	Mercury	0.70	ND	1	25	25	03/23/15	42349	17587SWB	19	CV	HGCV1A
7440-02-0	Nickel	50	ND	1	50	50	03/23/15	42349	W17587A2	27	Р	PEICP2A
7440-09-7	Potassium	5000	ND	1	50	50	03/23/15	42349	W17587B2	24	Р	PEICPRAD2A
7440-22-4	Silver	20	ND	1	50	50	03/23/15	42349	W17587A2	27	Р	PEICP2A
7440-23-5	Sodium	5000	35000	1	50	50	03/23/15	42349	W17587B2	24	Р	PEICPRAD2
7440-62-2	Vanadium	50	ND	1	50	50	03/23/15	42349	W17587A2	27	Р	PEICP2
7440-66-6	Zinc	50	ND	1	50	50	03/23/15	42349	W17587A2	27	Р	PEICP2

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-007

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: DMW-22B

Units: UG/L Date Rec: 3/18/2015 Lab Code:

Sdg No:

Matrix: AQUEOUS Level: LOW

Case No: Contract:

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol		Prep Batch	File:	Seq Num	M	Instr
7440-36-0	Antimony	3.0	ND	1	50	100	03/25/15	42348	SW32415A	31	MSMS	2_7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/25/15	42348	SW32415A	31	MSVIS	2_7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	03/25/15	42348	SW32415A	31	MSMS	2_7500SWA
7440-43-9	Cadmium	2.0	ND	1	50	100	03/25/15	42348	SW32415A	31	MSMS	2_7500SWA
7440-48-4	Cobalt	2.0	ND	1	50	100	03/25/15	42348	SW32415A	31	MSMS	2_7500SWA
7439-92-1	Lead	3.0	ND	1	50	100	03/25/15	42348	SW32415A	31	MSMS	2_7500SWA
7782-49-2	Selenium	10	ND	1	50	100	03/25/15	42348	SW32415A	31	MSMS	2_7500SWA
7440-28-0	Thallium	2.0	ND	1	50	100	03/25/15	42348	SW32415A	31	мѕиѕ	2_7500SWA

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-007

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: DMW-22B Matrix: AQUEOUS

Units: UG/L

Date Rec: 3/18/2015

Lab Code: Contract: Sdg No:

Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7429-90-5	Aluminum	200	ND	1	50	50	03/24/15	42348	W17586A2	26	Р	PEICP2A
7440-39-3	Barium	50	ND	1	50	50	03/24/15	42348	W17586A2	26	Ρ	PEICP2A
440-70-2	Calcium	5000	27000	1	50	50	03/24/15	42348	W17586A2	26	Ρ	PEICP2A
440-47-3	Chromium	50	ND	1	50	50	03/24/15	42348	W17586A2	26	Ρ	PEICP2A
7440-50-8	Copper	50	ND	1,	50	50	03/24/15	42348	W17586A2	26	Ρ	PEICP2A
439-89-6	Iron	300	ND	1	50	50	03/24/15	42348	W17586A2	26	Ρ	PEICP2
439-95-4	Magnesium	5000	5100	1	50	50	03/24/15	42348	W17586A2	26	Ρ	PEICP2
7439-96-5	Manganese	40	550	1	50	50	03/24/15	42348	W17586A2	26	Ρ	PEICP2
7439-97-6	Mercury	0.70	ND	1	25	25	03/20/15	42348	17586SWB	20	CV	HGCV1/
7440-02-0	Nickel	50	ND	1	50	50	03/24/15	42348	W17586A2	26	Ρ	PEICP2/
7440-09-7	Potassium	5000	ND	1	50	50	03/24/15	42348	W17586B2	25	Ρ	PEICPRAD2
7440-22-4	Silver	20	ND	1	50	50	03/24/15	42348	W17586A2	26	P	PEICP2/
7440-23-5	Sodium	5000	15000	1	50	50	03/24/15	42348	W17586B2	25	Ρ	PEICPRAD2/
7440-62-2	Vanadium	50	ND	1	50	50	03/24/15	42348	W17586A2	26	P	PEICP2
440-66 - 6	Zinc	50	ND	1	50	50	03/24/15	42348	W17586A2	26	Ρ	PEICP2/

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-008

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client Id: DMW-22BF

Units: UG/L Date Rec: 3/18/2015 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	м	Inst
7440-36-0	Antimony	3.0	ND	1	50	100	03/27/15	42349	SW32715A	31	MSMS2	2_7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/27/15	42349	SW32715A	31	MSMS	2_7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	03/27/15	42349	SW32715A	31	MSMS	2_7500SWA
7440-43-9	Cadmium	2.0	ND	1	50	100	03/27/15	42349	SW32715A	31	MS/MS2	2_7500SWA
7440-48-4	Cobalt	2.0	ND	1	50	100	03/27/15	42349	SW32715A	31	MS MS2	2_7500SWA
7439-92-1	Lead	3.0	ND	1	50	100	03/27/15	42349	SW32715A	31	MSMS	2_7500SWA
7782-49-2	Selenium	10	ND	1	50	100	03/27/15	42349	SW32715A	31	MSMS2	2_7500SW/
7440-28-0	Thallium	2.0	ND	1	50	100	03/24/15	42349	SW32315B	31	MSMS2	2_7500SW

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES

CV -ColdVapor MS - ICP-MS

Sample ID: AC83807-008

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: DMW-22BF Matrix: AQUEOUS

Units: UG/L Date Rec: 3/18/2015 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7429-90-5	Aluminum	200	ND	1	50	50	03/23/15	42349	W17587A2	28	Р	PEICP2A
7440-39-3	Barium	50	ND	1	50	50	03/23/15	42349	W17587A2	28	Р	PEICP2A
7440-70-2	Calcium	5000	31000	1	50	50	03/23/15	42349	W17587A2	28	Р	PEICP2A
7440-47-3	Chromium	50	ND	1	50	50	03/23/15	42349	W17587A2	28	Р	PEICP2A
7440-50-8	Copper	50	ND	1	50	50	03/23/15	42349	W17587A2	28	Р	PEICP2A
7439-89-6	Iron	300	ND	1	50	50	03/23/15	42349	W17587A2	28	Р	PEICP2A
7439-95-4	Magnesium	5000	5900	1	50	50	03/23/15	42349	W17587A2	28	Р	PEICP2A
7439-96-5	Manganese	40	590	1	50	50	03/23/15	42349	W17587A2	28	Р	PEICP2A
7439-97-6	Mercury	0.70	ND	1	25	25	03/23/15	42349	17587SWB	20	CV	HGCV1A
7440-02-0	Nickel	50	ND	1	50	50	03/23/15	42349	W17587A2	28	Р	PEICP2A
7440-09-7	Potassium	5000	ND	1	50	50	03/23/15	42349	W17587B2	25	Р	PEICPRAD2A
7440-22-4	Silver	20	ND	1	50	50	03/23/15	42349	W17587A2	28	Р	PEICP2A
7440-23-5	Sodium	5000	17000	1	50	50	03/23/15	42349	W17587B2	25	Р	PEICPRAD2A
7440-62-2	Vanadium	50	ND	1	50	50	03/23/15	42349	W17587A2	28	Р	PEICP2A
7440-66-6	Zinc	50	ND	1	50	50	03/23/15	42349	W17587A2	28	Р	PEICP2A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-009

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: DMW-22A Matrix: AQUEOUS

Units: UG/L Date Rec: 3/18/2015

Lab Code: Contract:

Sdg No: Case No:

Level: LOW

		1										
Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol		Prep Batch	File:	Seq Num	М	Instr
7440-36-0	Antimony	3.0	ND	1	50	100	03/25/15	42348	SW32415A	32	MS	/IS2_7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/25/15	42348	SW32415A	32	MS	/IS2_7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	03/25/15	42348	SW32415A	32	MS	/IS2_7500SW/
7440-43-9	Cadmium	2.0	ND	1	50	100	03/25/15	42348	SW32415A	32	MS	/IS2_7500SW/
7440-48-4	Cobalt	2.0	ND	1	50	100	03/25/15	42348	SW32415A	32	MS	/IS2_7500SW
7439-92-1	Lead	3.0	ND	1	50	100	03/25/15	42348	SW32415A	32	MS	/IS2_7500SW
7782-49-2	Selenium	10	ND	1	50	100	03/25/15	42348	SW32415A	32	MS	/IS2_7500SW
7440-28-0	Thallium	2.0	ND	1	50	100	03/25/15	42348	SW32415A	32	MS	/IS2 7500SW

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-009

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client Id: DMW-22A

Units: UG/L Date Rec: 3/18/2015

Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
429-90-5	Aluminum	200	ND	1	50	50	03/24/15	42348	W17586A2	27	Р	PEICP2A
7440-39-3	Barium	50	ND	1	50	50	03/24/15	42348	W17586A2	27	Р	PEICP2A
7440-70-2	Calcium	5000	45000	1	50	50	03/24/15	42348	W17586A2	27	Ρ	PEICP2
7440-47-3	Chromium	50	ND	1	50	50	03/24/15	42348	W17586A2	27	Р	PEICP2
7440-50-8	Copper	50	ND	1	50	50	03/24/15	42348	W17586A2	27	Р	PEICP2
7439-89-6	Iron	300	2100	1	50	50	03/24/15	42348	W17586A2	27	Р	PEICP2
7439-95-4	Magnesium	5000	7200	1	50	50	03/24/15	42348	W17586A2	27	Р	PEICP2
7439-96-5	Manganese	40	220	1	50	50	03/24/15	42348	W17586A2	27	Ρ	PEICP2
7439-97-6	Mercury	0.70	ND	1	25	25	03/20/15	42348	17586SWB	23	CV	HGCV1
7440-02-0	Nickel	50	ND	1	50	50	03/24/15	42348	W17586A2	27	Р	PEICP2
7440-09-7	Potassium	5000	ND	1	50	50	03/24/15	42348	W17586B2	26	Р	PEICPRAD2
7440-22-4	Silver	20	ND	1	50	50	03/24/15	42348	W17586A2	27	Ρ	PEICP2
7440-23-5	Sodium	5000	28000	1	50	50	03/24/15	42348	W17586B2	26	Р	PEICPRAD2
7440-62-2	Vanadium	50	ND	1	50	50	03/24/15	42348	W17586A2	27	Ρ	PEICP2
7440-66-6	Zinc	50	280	1	50	50	03/24/15	42348	W17586A2	27	Р	PEICP2

Comments:		 		

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-010

% Solid: 0

Lab Name: Veritech Nras No:

Client Id: DMW-22AF Matrix: AQUEOUS

Units: UG/L Date Rec: 3/18/2015 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Inst
7440-36-0	Antimony	3.0	ND	1	50	100	03/27/15	42349	SW32715A	32	MSMS	2_7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/27/15	42349	SW32715A	32	MSMS	2_7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	03/27/15	42349	SW32715A	32	MSMS	2_7500SWA
7440-43-9	Cadmium	2.0	ND	1	50	100	03/27/15	42349	SW32715A	32	мѕиѕ	2_7500SW
7440-48-4	Cobalt	2.0	ND	1	50	100	03/27/15	42349	SW32715A	32	MSMS	2_7500SW
7439-92-1	Lead	3.0	ND	1	50	100	03/27/15	42349	SW32715A	32	MSMS	2_7500SW
7782-49-2	Selenium	10	ND	1	50	100	03/27/15	42349	SW32715A	32	MSMS	2_7500SW
7440-28-0	Thallium	2.0	ND	1:	50	100	03/24/15	42349	SW32315B	32	MSMS	2 7500SW

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: Client Id: AC83807-010 DMW-22AF

AQUEOUS

% S

Date Rec:

% Solid: 0 Units: UG/L

3/18/2015

Lab Name: Lab Code:

Contract:

Veritech

Nras No:

Sdg No: Case No:

Matrix: Level:

I: LOW

Initial Final Analysis Prep Seq Cas No. Analyte RL Conc Dil Fact Wt/Vol Wt/Vol File: Date Batch Num М Instr 7429-90-5 Aluminum 200 ND 50 50 03/23/15 42349 W17587A2 34 Ρ PEICP2A 7440-39-3 Barium 50 ND 50 50 03/23/15 1 42349 W17587A2 34 Ρ PEICP2A 7440-70-2 Calcium 5000 51000 50 50 03/23/15 Р PEICP2A 1 42349 W17587A2 34 7440-47-3 Chromium 50 ND 1 50 50 03/23/15 42349 W17587A2 Ρ PEICP2A 34 7440-50-8 50 ND 1 50 50 03/23/15 42349 W17587A2 Ρ Copper 34 PEICP2A 7439-89-6 300 50 03/23/15 Р Iron 640 1 50 42349 W17587A2 PEICP2A 34 7439-95-4 5000 8200 50 50 03/23/15 42349 W17587A2 Р Magnesium 1 34 PEICP2A 7439-96-5 Manganese 40 260 1 50 50 03/23/15 42349 W17587A2 34 Ρ PEICP2A 7439-97-6 0.70 ND 1 25 25 03/23/15 42349 17587SWB Mercury 23 CV HGCV1A 7440-02-0 Nickel ND 50 50 03/23/15 42349 W17587A2 50 1 34 Ρ PEICP2A 7440-09-7 Potassium 5000 ND 1 50 50 03/24/15 42349 W17587C2 11 P PEICPRAD2A 7440-22-4 Silver 20 ND 1 50 Ρ 50: 03/23/15 42349 W17587A2 34 PEICP2A 7440-23-5 Sodium 5000 34000 50 50 03/24/15 42349W17587C2 1 11 PEICPRAD2A 7440-62-2 Vanadium Р 50 ND 50 50 03/23/15 42349 W17587A2 34 PEICP2A 7440-66-6 Zinc 50 290 50 50 03/23/15 42349 W17587A2 Ρ PEICP2A 34

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-011

% Solid: 0

Lab Name: Veritech

Nras No:

Client ld: DMW-13A Matrix: AQUEOUS Units: UG/L

Date Rec: 3/18/2015

Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7440-36-0	Antimony	3.0	ND	1	50	100	03/25/15	42348	SW32415A	33	MSV	1S2_7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/25/15	42348	SW32415A	33	MSV	1S2_7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	03/25/15	42348	SW32415A	33	MS	1S2_7500SWA
7440-43-9	Cadmium	2.0	9.6	1	50	100	03/25/15	42348	SW32415A	33	MSV	1S2_7500SWA
7440-48-4	Cobalt	2.0	17	1	50	100	03/25/15	42348	SW32415A	33	MS	1S2_7500SWA
7439-92-1	Lead	3.0	ND	1	50	100	03/25/15	42348	SW32415A	33	MS	1S2_7500SWA
7782-49-2	Selenium	10	ND	1	50	100	03/25/15	42348	SW32415A	33	MS	1S2_7500SWA
7440-28-0	Thallium	2.0	ND	1	50	100	03/25/15	42348	SW32415A	33	MS	1S2_7500SWA

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-011

% Solid: 0

Lab Name: Veritech

Nras No:

Client ld: DMW-13A Matrix: AQUEOUS

Units: UG/L Date Rec: 3/18/2015

Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
429-90-5	Aluminum	200	420	1	50	50	03/24/15	42348	W17586A2	28	Р	PEICP2A
440-39-3	Barium	50	ND	1	50	50	03/24/15	42348	W17586A2	28	Ρ	PEICP2
440-70-2	Calcium	5000	20000	1	50	50	03/24/15	42348	W17586A2	28	Ρ	PEICP2/
440-47-3	Chromium	50	ND	1	50	50	03/24/15	42348	W17586A2	28	Р	PEICP2
440-50-8	Copper	50 ⁻	ND	1	50	50	03/24/15	42348	W17586A2	28	Ρ	PEICP2/
439-89-6	Iron	300	8600	1	50	50	03/24/15	42348	W17586A2	28	Р	PEICP2
439-95-4	Magnesium	5000	ND	1	50	50	03/24/15	42348	W17586A2	28	Р	PEICP2
439-96-5	Manganese	40	1100	1	50	50	03/24/15	42348	W17586A2	28	Ρ	PEICP2
439-97-6	Mercury	0.70	ND	1	25	25	03/20/15	42348	17586SWB	24	CV	HGCV1
440-02-0	Nickel	50	ND	1	50	50	03/24/15	42348	W17586A2	28	Р	PEICP2
440-09-7	Potassium	5000	ND	1	50	50	03/24/15	42348	W17586B2	27	Р	PEICPRAD2
440-22-4	Silver	20	ND	1	50	50	03/24/15	42348	W17586A2	28	Р	PEICP2
440-23-5	Sodium	5000	43000	1	50	50	03/24/15	42348	W17586B2	27	Ρ	PEICPRAD2
440-62-2	Vanadium	50	ND	1	50	50	03/24/15	42348	W17586A2	28	Ρ	PEICP2
440-66-6	Zinc	50	ND	1	50	50	03/24/15	42348	W17586A2	28	Р	PEICP2

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-012

% Solid: 0

Lab Name:

Veritech

Nras No:

Client Id: DMW-13AF Matrix: AQUEOUS

Units: UG/L Date Rec: 3/18/2015 Lab Code: Contract:

Sdg No:

Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol		Analysis Date	Prep Batch	File:	Seq Num	м	Instr
7440-36-0	Antimony	3.0	ND.	1	50	100	03/27/15	42349	SW32715A	33	MSMS2_	7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/27/15	42349	SW32715A	33	MSMS2_	7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	03/27/15	42349	SW32715A	33	MSMS2_	7500SWA
7440-43-9	Cadmium	2.0	9.1	1	50	100	03/27/15	42349	SW32715A	33	MSMS2	7500 S WA
7440-48-4	Cobalt	2.0	18	1	50	100	03/27/15	42349	SW32715A	33	MSMS2	_7500SWA
7439-92-1	Lead	3.0	25	1	50	100	03/27/15	42349	SW32715A	33	MSMS2	7500SWA
7782-49-2	Selenium	10	ND	1	50	100	03/27/15	42349	SW32715A	33	MS/MS2_	7500 S WA
7440-28-0	Thallium	2.0	ND	1	50	100	03/24/15	42349	SW32315B	33	MSMS2	7500SWA

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-012

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Level: LOW

Client Id: DMW-13AF

Units: UG/L

Date Rec: 3/18/2015

Lab Code: Contract:

Sdg No:

Case No:

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7429-90-5	Aluminum	200	ND	1	50	50	03/23/15	42349	W17587A2	35	Р	PEICP2A
7440-39-3	Barium	50	ND	1	50	50	03/23/15	42349	W17587A2	35	Р	PEICP2A
7440-70-2	Calcium	5000	21000	1	50	50	03/23/15	42349	W17587A2	35	Р	PEICP2A
7440-47-3	Chromium	50	ND	1	50	50	03/23/15	42349	W17587A2	35	Р	PEICP2
440-50-8	Copper	50	ND	1	50	50	03/23/15	42349	W17587A2	35	Р	PEICP2
439-89-6	Iron	300	6200	1	50	50	03/23/15	42349	W17587A2	35	Р	PEICP2
439-95-4	Magnesium	5000	ND	1	50	50	03/23/15	42349	W17587A2	35	Р	PEICP2
7439-96-5	Manganese	40	1200	1	50	50	03/23/15	42349	W17587A2	35	Р	PEICP2/
439-97-6	Mercury	0.70	ND	1	25	25	03/23/15	42349	17587SWB	24	CV	HGCV1/
7440-02-0	Nickel	50	ND	1	50	50	03/23/15	42349	W17587A2	35	Р	PEICP2
7440-09-7	Potassium	5000	ND	1	50	50	03/24/15	42349	W17587C2	12	Р	PEICPRAD2
7440-22-4	Silver	20	ND	1	50	50	03/23/15	42349	W17587A2	35	Р	PEICP2
7440-23-5	Sodium	5000	47000	1	50	50	03/24/15	42349	W17587C2	12	Ρ	PEICPRAD2
7440-62-2°	Vanadium	50	ND	1	50	50	03/23/15	42349	W17587A2	35	Р	PEICP2
7440-66-6	Zinc	50	ND	1	50	50	03/23/15	42349	W17587A2	35	Р	PEICP2

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-013

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: DMW-13B Matrix: AQUEOUS

Units: UG/L Date Rec: 3/18/2015 Lab Code:

Contract:

Sdg No:

Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7440-36-0	Antimony	3.0	ND	1	50	100	03/25/15	42348	SW32415A	34	мѕи	S2_7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/25/15	42348	SW32415A	34	мѕм	S2_7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	03/25/15	42348	SW32415A	34	MSM	S2_7500SWA
7440-43-9	Cadmium	2.0	4.0	1	50	100	03/25/15	42348	SW32415A	34	мѕм	S2_7500SWA
7440-48-4	Cobalt	2.0	3.0	1	50	100	03/25/15	42348	SW32415A	34	мѕм	S2_7500SWA
7439-92-1	Lead	3.0	6.3	1	50	100	03/25/15	42348	SW32415A	34	мѕм	S2_7500SWA
7782-49-2	Selenium	10	ND	1	50	100	03/25/15	42348	SW32415A	34	MSM	S2_7500SWA
7440-28-0	Thallium	2.0	ND	1	50,	100	03/25/15	42348	SW32415A	34	MSM	S2_7500SWA

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-013

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: DMW-13B Matrix: AQUEOUS

Units: UG/L Date Rec: 3/18/2015 Lab Code: Contract:

Sdg No:

Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	м	Instr
7429-90-5	Aluminum	200	1000	1	50	50	03/24/15	42348	W17586A2	34	Р	PEICP2A
7440-39-3	Barium	50	ND	1	50	50	03/24/15	42348	W17586A2	34	Ρ	PEICP2A
7440-70-2	Calcium	5000	12000	1	50	50	03/24/15	42348	W17586A2	34	Р	PEICP2A
7440-47-3	Chromium	50	ND	1	50	50	03/24/15	42348	W17586A2	34	Р	PEICP2A
7440-50-8	Copper	50	ND	1	50	50	03/24/15	42348	W17586A2	34	Р	PEICP2A
7439-89-6	Iron	300	2100	1	50	50	03/24/15	42348	W17586A2	34	Р	PEICP2A
7439-95-4	Magnesium	5000	ND	1	50	50	03/24/15	42348	W17586A2	34	Р	PEICP2A
7439-96-5	Manganese	40	780	1	50	50	03/24/15	42348	W17586A2	34	Р	PEICP2A
7439-97-6	Mercury	0.70	ND	1	25	25	03/20/15	42348	17586SWB	25	CV	HGCV1A
7440-02-0	Nickel	50	ND	1	50	50	03/24/15	42348	W17586A2	34	Р	PEICP2A
7440-09-7	Potassium	5000	ND	1	50	50	03/24/15	42348	W17586B2	33	Р	PEICPRAD2A
7440-22-4	Silver	20	ND	1	50	50	03/24/15	42348	W17586A2	34	Р	PEICP2A
7440-23-5	Sodium	5000	12000	1	50	50	03/24/15	42348	W17586B2	33	Р	PEICPRAD2A
7440-62-2	Vanadium	50	ND	1	50	50	03/24/15	42348	W17586A2	34	Р	PEICP2A
7440-66-6	Zinc	50	ND	1	50	50	03/24/15	42348	W17586A2	34	Р	PEICP2A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-014

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client Id: DMW-13BF

Units: UG/L Date Rec: 3/18/2015 Lab Code:

Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol		Prep Batch	File:	Seq Num	М	Instr
7440-36-0	Antimony	3.0	ND	1,	50	100	03/27/15	42349	SW32715A	34	MS	MS2_7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/27/15	42349	SW32715A	34	MS	/IS2_7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	03/27/15	42349	SW32715A	34	MS	/IS2_7500SWA
7440-43-9	Cadmium	2.0	ND	1	50	100	03/27/15	42349	SW32715A	34	MS	/IS2_7500SWA
7440-48-4	Cobalt	2.0	ND	1	50	100	03/27/15	42349	SW32715A	34	MS	MS2_7500SWA
7439-92-1	Lead	3.0	ND	1	50	100	03/27/15	42349	SW32715A	34	MS	MS2_7500SWA
7782-49-2	Selenium	10	ND	1	50	100	03/27/15	42349	SW32715A	34	MS	MS2_7500SWA
7440-28-0	Thallium	2.0	ND	1	50	100	03/24/15	42349	SW32315B	34	MS	/IS2_7500SWA

Comments:	
	_

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-014

Client Id: DMW-13BF

% Solid: 0

Lab Name:

Veritech

Nras No:

Units: UG/L

Date Rec: 3/18/2015

Lab Code: Contract: Sdg No:

Case No:

Level: LOW

Matrix: AQUEOUS

Seq File: Num M	Prep Batch	Analysis Date	Final Wt/Vol	Initial Wt/Vol	Dil Fact	Conc	RL	Analyte	Cas No.
7587A2 36 P	42349	03/23/15	50	50	1	ND	200	Aluminum	7429-90-5
7587A2 36 P	42349	03/23/15	50	50	1	ND	50	Barium	7440-39-3
7587A2 36 P	42349	03/23/15	50	50	1	13000	5000	Calcium	7440-70-2
7587A2 36 P	42349	03/23/15	50	50	1	ND	50	Chromium	7440-47-3
7587A2 36 P	42349	03/23/15	50	50	1	ND	50	Copper	7440-50-8
7587A2 36 P	42349	03/23/15	50	50	1	ND	300	Iron	7439-89-6
7587A2 36 P	42349	03/23/15	50	50	1	ND	5000	Magnesium	7439-95-4
7587A2 36 P	42349	03/23/15	50	50	1	ND	40	Manganese	7439-96-5
87SWB 25 CV	42349	03/23/15	25	25	1	ND	0.70	Mercury	7439-97-6
7587A2 36 P	42349	03/23/15	50	50	1	ND	50	Nickel	7440-02-0
7587C2 13 P	42349	03/24/15	50	50	1	ND	5000	Potassium	7440-09-7
7587A2 36 P	42349	03/23/15	50	50	1	ND	20	Silver	7440-22-4
7587C2 13 P	42349	03/24/15	50	50	1	13000	5000	Sodium	7440-23-5
7587A2 36 P	42349	03/23/15	50	50	1.	ND	50	Vanadium	7440-62-2
7587A2 36 P	42349	03/23/15	50	50	1	ND	50	Zinc	7440-66-6

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-015

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client Id: DMW-23A

Units: UG/L

Date Rec: 3/18/2015

Lab Code:

Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol			Prep Batch	File:	Seq Num	М	Instr
7440-36-0	Antimony	3.0	ND	1	50	100	03/25/15	42348	SW32415A	35	MS	MS2_7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/25/15	42348	SW32415A	35	MS	MS2_7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	03/25/15	42348	SW32415A	35	MS	MS2_7500SWA
7440-43-9	Cadmium	2.0	10	1	50	100	03/25/15	42348	SW32415A	35	MS	MS2_7500SWA
7440-48-4	Cobalt	2.0	ND	1	50	100	03/25/15	42348	SW32415A	35	MS	MS2_7500SWA
7439-92-1	Lead	3.0	ND	1	50	100	03/25/15	42348	SW32415A	35	MS	MS2_7500SWA
7782-49-2	Selenium	10	ND	1	50	100	03/25/15	42348	SW32415A	35	MS	MS2_7500SWA
7440-28-0	Thallium	2.0	ND	1	50	100	03/25/15	42348	SW32415A	35	MS	MS2 7500SWA

Comments:	·

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-015

% Solid: 0

Lab Name:

Veritech

Nras No:

Client Id: DMW-23A Matrix: AQUEOUS Units: UG/L

Date Rec: 3/18/2015

Lab Code: Contract:

Sdg No: Case No:

Level:	LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date		File:	Seq Num	М	Instr
7429-90-5	Aluminum	200	ND	1	50		03/24/15		W17586A2		P	PEICP2A
7440-39-3	Barium	50	ND	1	50	1	03/24/15		W17586A2		Р	PEICP2A
7440-70-2	Calcium	5000	41000	1	50		03/24/15		W17586A2	35	Р	PEICP2A
7440-47-3	Chromium	50	ND	1	50	50	03/24/15	42348	W17586A2	35	Р	PEICP2A
7440-50-8	Copper	50	ND	1	50	50	03/24/15	42348	W17586A2	35	Р	PEICP2A
7439-89-6	Iron	300	8000	1	50	50	03/24/15	42348	W17586A2	35	Р	PEICP2A
7439-95-4	Magnesium	5000	8600	1	50	50	03/24/15	42348	W17586A2	35	Р	PEICP2A
7439-96-5	Manganese	40	780	1	50	50	03/24/15	42348	W17586A2	35	Р	PEICP2A
7439-97-6	Mercury	0.70	ND	1	25	25	03/20/15	42348	17586SWB	26	CV	HGCV1A
7440-02-0	Nickel	50	ND	1	50	50	03/24/15	42348	W17586A2	35	Р	PEICP2A
7440-09-7	Potassium	5000	6400	1	50	50	03/24/15	42348	W17586B2	34	Р	PEICPRAD2A
7440-22-4	Silver	20	ND	1	50	50	03/24/15	42348	W17586A2	35	Р	PEICP2A
7440-23-5	Sodium	5000	91000	1	50	50	03/24/15	42348	W17586B2	34	Р	PEICPRAD2A
7440-62-2	Vanadium	50	ND	1	50	50	03/24/15	42348	W17586A2	35	Р	PEICP2A
7440-66-6	Zinc	50	ND	1	50	50	03/24/15	42348	W17586A2	35	Р	PEICP2A

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-016

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client Id: DMW-23AF

Units: UG/L Date Rec: 3/18/2015 Lab Code:

Sdg No:

Contract:

Case No:

Level: LOW

Cas No.	Analyte	RL	Conc Dil Fa	Initial act Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	Seq File: Num	М	Instr
7440-36-0	Antimony	3.0	ND	1 50	100	03/27/15	42349 SW	32715A 35	MSMS2_7	′500SWA
7440-38-2	Arsenic	2.0	ND	1 50	100	03/27/15	42349 SW	32715A 35	MSMS2_	′500SWA
7440-41-7	Beryllium	1.0	ND	1 50	100	03/27/15	42349 SW	32715A 35	MSMS2_7	′500SWA
7440-43-9	Cadmium	2.0	ND	1 50	100	03/27/15	42349 SW	32715A 35	MSMS2_	′500SWA
7440-48-4	Cobalt	2.0	ND	1 50	100	03/27/15	42349 SW	32715A 35	MSVIS2_7	′500SWA
7439-92-1	Lead	3.0	ND	1 50	100	03/27/15	42349 SW	32715A 35	MSMS2_7	′500SWA
7782-49-2	Selenium	10	ND	1 50	100	03/27/15	42349 SW	32715A 35	MSMS2_	7500SWA
7440-28-0	Thallium	2.0	ND	1 50	100	03/24/15	42349 SW	32315B 35	MSMS2_	′500SWA

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-016

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client Id: DMW-23AF

Units: UG/L Date Rec: 3/18/2015 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7429-90-5	Aluminum	200	ND	1	50	50	03/23/15	42349	W17587A2	37	Р	PEICP2A
7440-39-3	Barium	50	ND	1	50	50	03/23/15	42349	W17587A2	37	Р	PEICP2
7440-70-2	Calcium	5000	40000	1	50	50	03/23/15	42349	W17587A2	37	Р	PEICP2
7440-47-3	Chromium	50	ND	1	50	50	03/23/15	42349	W17587A2	37	Р	PEICP2
7440-50-8	Copper	50	ND	1	50	50	03/23/15	42349	W17587A2	37	Р	PEICP2
7439-89-6	Iron	300	6400	1	50	50	03/23/15	42349	W17587A2	37	Р	PEICP2
7439-95-4	Magnesium	5000	8400	1	50	50	03/23/15	42349	W17587A2	37	Р	PEICP2/
7439-96-5	Manganese	40	820	1	50	50	03/23/15	42349	W17587A2	37	Р	PEICP2/
7439-97-6	Mercury	0.70	ND	1	25	25	03/23/15	42349	17587SWB	26	CV	HGCV1/
7440-02-0	Nickel	50	ND	1	50	50	03/23/15	42349	W17587A2	37	Р	PEICP2/
7440-09-7	Potassium	5000	6800	1	50	50	03/24/15	42349	W17587C2	14	Ρ	PEICPRAD2
7440-22-4	Silver	20	ND	1	50	50	03/23/15	42349	W17587A2	37	Р	PEICP2
7440-23-5	Sodium	5000	95000	1	50	50	03/24/15	42349	W17587C2	14	Ρ	PEICPRAD2
7440-62-2	Vanadium	50	ND	1	50	50	03/23/15	42349	W17587A2	37	Р	PEICP2
7440-66-6	Zinc	50	ND	1	50	50	03/23/15	42349	W17587A2	37	Р	PEICP2/

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES CV -ColdVapor MS - ICP-MS

Sample ID: AC83807-017

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: DMW-23B Matrix: AQUEOUS Units: UG/L

Date Rec: 3/18/2015

Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol		Analysis Date		File:	Seq Num	М	Instr
7440-36-0	Antimony	3.0	ND	1	50	100	03/25/15	42348	SW32415A	36	MS	MS2_7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/25/15	42348	SW32415A	36	MS	MS2_7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	03/25/15	42348	SW32415A	36	MS	MS2_7500SWA
7440-43-9	Cadmium	2.0	27	1	50	100	03/25/15	42348	SW32415A	36	MS	MS2_7500SWA
7440-48-4	Cobalt	2.0	ND	1	50	100	03/25/15	42348	SW32415A	36	MS	MS2_7500SWA
7439-92-1	Lead	3.0	5.6	1	50	100	03/25/15	42348	SW32415A	36	MS	MS2_7500SWA
7782-49-2	Selenium	10	ND	1	50	100	03/25/15	42348	SW32415A	36	MS	MS2_7500SWA
7440-28-0	Thallium	2.0	ND	1	50	100	03/25/15	42348	SW32415A	36	MS	MS2_7500SWA

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-017

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: DMW-23B Matrix: AQUEOUS Units: UG/L

Date Rec: 3/18/2015

Lab Code: Contract: Sdg No:

Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
429-90-5	Aluminum	200	730	1	50	50	03/24/15	42348	W17586A2	36	Р	PEICP2A
440-39-3	Barium	50	ND	1	50	50	03/24/15	42348	W17586A2	36	Р	PEICP2A
440-70-2	Calcium	5000	8900	1	50	50	03/24/15	42348	W17586A2	36	Р	PEICP2
440-47-3	Chromium	50	ND	1;	50	50	03/24/15	42348	W17586A2	36	Р	PEICP2
440-50-8	Copper	50	ND	1	50	50	03/24/15	42348	W17586A2	36	Р	PEICP2
439-89-6	Iron	300	1600	1	50	50	03/24/15	42348	W17586A2	36	Р	PEICP2/
439-95-4	Magnesium	5000	ND	1	50	50	03/24/15	42348	W17586A2	36	Ρ	PEICP2/
439-96-5	Manganese	40	ND	1.	50	50	03/24/15	42348	W17586A2	36	Р	PEICP2
439-97-6	Mercury	0.70	ND	1	25	25	03/20/15	42348	17586SWB	27	C۷	HGCV1
440-02-0	Nickel	50	ND	1	50	50	03/24/15	42348	W17586A2	36	Р	PEICP2/
440-09-7	Potassium	5000	ND	1	50	50	03/24/15	42348	W17586B2	35	Р	PEICPRAD2
440-22-4	Silver	20	ND	1	50	50	03/24/15	42348	W17586A2	36	Р	PEICP2
440-23-5	Sodium	5000	25000	1	50	50	03/24/15	42348	W17586B2	35	Р	PEICPRAD2
440-62-2	Vanadium	50	ND	1	50	50	03/24/15	42348	W17586A2	36	Р	PEICP2
440-66-6	Zinc	50	61	1	50	50	03/24/15	42348	W17586A2	36	Р	PEICP2

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-018

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: DMW-23BF Matrix: AQUEOUS

Units: UG/L Date Rec: 3/18/2015 Lab Code:

Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol		Analysis Date	Prep Batch	File:	Seq Num	M Ir
7440-36-0	Antimony	3.0	ND	1	50	100	03/27/15	42349	SW32715A	36	MSMS2_7500S
7440-38-2	Arsenic	2.0	ND	1	50	100	03/27/15	42349	SW32715A	36	MSMS2_7500S
7440-41-7	Beryllium	1.0	ND	1	50	100	03/27/15	42349	SW32715A	36	MSMS2_7500S
7440-43-9	Cadmium	2.0	31	1	50	100	03/27/15	42349	SW32715A	36	MSMS2_7500S
7440-48-4	Cobalt	2.0	ND	1	50	100	03/27/15	42349	SW32715A	36	MSMS2_7500S
7439-92-1	Lead	3.0	ND	1	50	100	03/27/15	42349	SW32715A	36	MSMS2_7500S
7782-49-2	Selenium	10	ND	1	50	100	03/27/15	42349	SW32715A	36	MSMS2_7500S
7440-28-0	Thallium	2.0	ND	1	50	100	03/24/15	42349	SW32315B	36	MSMS2_7500S

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-018

% Solid: 0

Lab Name:

Veritech

Nras No:

Matrix: AQUEOUS

Client Id: DMW-23BF

Units: UG/L Date Rec: 3/18/2015 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Ins	М	Seq Num	File:	Prep Batch	Analysis Date	Final Wt/Vol	Initial Wt/Vol	Dil Fact	Conc	RL	Analyte	Cas No.
PEICP2	Р	38	W17587A2	42349	03/23/15	50	50	1	ND	200	Aluminum	429-90-5
PEICP2	Ρ	38	W17587A2	42349	03/23/15	50	50	1	ND	50	Barium	440-39-3
PEICP2	Р	38	W17587A2	42349	03/23/15	50	50	1	9900	5000	Calcium	440-70-2
PEICP2	Ρ	38	W17587A2	42349	03/23/15	50	50	1	ND	50	Chromium	440-47-3
PEICP2	Ρ	38	W17587A2	42349	03/23/15	50	50	1	ND	50	Copper	7440-50-8
PEICP2	Р	38	W17587A2	42349	03/23/15	50	50	1	ND	300	iron	7439-89-6
PEICP2	Ρ	38	W17587A2	42349	03/23/15	50	50	1	ND	5000	Magnesium	7439-95-4
PEICP2	Р	38	W17587A2	42349	03/23/15	50	50	1	ND	40	Manganese	439-96-5
HGCV1	CV	27	17587SWB	42349	03/23/15	25	25	1	ND	0.70	Mercury	7439-97-6
PEICP2	Р	38	W17587A2	42349	03/23/15	50	50	1	ND	50	Nickel	7440-02-0
PEICPRAD2	Р	15	W17587C2	42349	03/24/15	50	50	1	ND	5000	Potassium	440-09-7
PEICP2	Р	38	W17587A2	42349	03/23/15	50	50	1	ND	20	Silver	440-22-4
PEICPRAD2	Р	15	W17587C2	42349	03/24/15	50	50	1	27000	5000	Sodium	440-23-5
PEICP2	Р	38	W17587A2	42349	03/23/15	50	50	1	DИ	50	Vanadium	440-62-2
PEICP2	P	38	W17587A2	42349	03/23/15	50	50	1	ND	50	Zinc	440-66-6

Comments:	 , /12/100-01	 	 	 	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES

CV -ColdVapor MS - ICP-MS

Sample ID: AC83807-019

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: DMW-18 Matrix: AQUEQUS Units: UG/L

Date Rec: 3/18/2015

Lab Code: Contract:

Sdg No:

Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7440-36-0	Antimony	3.0	ND	1	50	100	03/25/15	42348	SW32415A	37	MS	MS2_7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/25/15	42348	SW32415A	37	MS	MS2_7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	03/25/15	42348	SW32415A	37	MS	MS2_7500SWA
7440-43-9	Cadmium	2.0	ND	1	50	100	03/25/15	42348	SW32415A	37	MS	MS2_7500SWA
7440-48-4	Cobalt	2.0	ND	1	50	100	03/25/15	42348	SW32415A	37	MS	MS2_7500SWA
7439-92-1	Lead	3.0	ND	1	50	100	03/25/15	42348	SW32415A	37	MS	MS2_7500SWA
7782-49-2	Selenium	10	ND	1	50	100	03/25/15	42348	SW32415A	37	MS	MS2_7500SWA
7440-28-0	Thallium	2.0	ND	1	50	100	03/25/15	42348	SW32415A	37	MS	MS2_7500SWA

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-019

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client Id: DMW-18

Units: UG/L

Date Rec: 3/18/2015

Lab Code: Contract: Sdg No:

Case No:

Level: LOW

					Initial	Final	Analysis	Prep		Sea		
Cas No.	Analyte	RL	Conc	Dil Fact			Date	•	File:	Num	М	Instr
7429-90-5	Aluminum	200	440	1	50	50	03/24/15	42348	W17586A2	37	Р	PEICP2A
7440-39-3	Barium	50	ND	1	50	50	03/24/15	42348	W17586A2	37	Р	PEICP2A
7440-70-2	Calcium	5000	18000	1	50	50	03/24/15	42348	W17586A2	37	Р	PEICP2A
7440-47-3	Chromium	50	ND	1	50	50	03/24/15	42348	W17586A2	37	Р	PEICP2A
7440-50-8	Copper	50	ND	1	50	50	03/24/15	42348	W17586A2	37	Р	PEICP2A
7439-89-6	Iron	300	520	1	50	50	03/24/15	42348	W17586A2	37	Р	PEICP2A
7439-95-4	Magnesium	5000	ND	1	50	50	03/24/15	42348	W17586A2	37	Р	PEICP2A
7439-96-5	Manganese	40	720	1	50	50	03/24/15	42348	W17586A2	37	Р	PEICP2A
7439-97-6	Mercury	0.70	ND	1	25	25	03/20/15	42348	17586SWB	28	CV	HGCV1A
7440-02-0	Nickel	50	ND	1	50	50	03/24/15	42348	W17586A2	37	Р	PEICP2A
7440-09-7	Potassium	5000	ND	1	50	50	03/24/15	42348	W17586B2	36	Р	PEICPRAD2A
7440-22-4	Silver	20	ND	1	50	50	03/24/15	42348	W17586A2	37	Р	PEICP2A
7440-23-5	Sodium	5000	37000	1	50	50	03/24/15	42348	W17586B2	36	Р	PEICPRAD2A
7440-62-2	Vanadium	50	ND	1	50	50	03/24/15	42348	W17586A2	37	Р	PEICP2A
7440-66-6	Zinc	50	ND	1	50	50	03/24/15	42348	W17586A2	37	Р	PEICP2A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-020

% Solid: 0

Lab Name:

Veritech

Nras No:

Matrix: AQUEOUS

Client Id: DMW-18F

Units: UG/L

Date Rec: 3/18/2015

Lab Code: Contract: Sdg No:

Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	M	Instr
 7440-36-0	Antimony	3.0	ND	1	50	100	03/27/15	42349	SW32715A	37	MSMS2	_7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/27/15	42349	SW32715A	37	MSMS2	_7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	03/27/15	42349	SW32715A	37	MS/IS2	_7500SWA
7440-43-9	Cadmium	2.0	ND	1	50	100	03/27/15	42349	SW32715A	37	MSMS2	_7500SWA
7440-48-4	Cobalt	2.0	ND	1	50	100	03/27/15	42349	SW32715A	37	MSMS2	_7500SWA
7439-92-1	Lead	3.0	ND	1	50	100	03/27/15	42349	SW32715A	37	MSMS2	_7500SWA
7782-49-2	Selenium	10	ND	1	50	100	03/27/15	42349	SW32715A	37	MSMS2	_7500SWA
7440-28-0	Thallium	2.0	ND	1	50	100	03/24/15	42349	SW32315B	37	MS MS2	_7500SWA

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-020

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: DMW-18F Matrix: AQUEOUS Units: UG/L

Date Rec: 3/18/2015

Lab Code: Contract:

Sdg No: Case No:

Level: LOW

М	М	Seq Num	File:	Prep Batch	Analysis Date	Final Wt/Vol	Initial Wt/Vol	Dil Fact	Conc	RL	Analyte	Cas No.
P PEIC	Р	39	W17587A2	42349	03/23/15	50	50	1	ND	200	Aluminum	7429-90-5
P PEIC	Р	39	W17587A2	42349	03/23/15	50	50	1	ND	50	Barium	440-39-3
P PEIC	Р	39	W17587A2	42349	03/23/15	50	50	. 1	19000	5000	Calcium	440-70-2
P PEIC	Ρ	39	W17587A2	42349	03/23/15	50	50	1	ND	50	Chromium	440-47-3
P PEIC	Р	39	W17587A2	42349	03/23/15	50	50	1	ND	50	Copper	440-50-8
P PEIC	Р	39	W17587A2	42349	03/23/15	50	50	1	ND	300	Iron	7439-89-6
P PEIC	Ρ	39	W17587A2	42349	03/23/15	50	50	1	ND	5000	Magnesium	439-95-4
P PEIC	Р	39	W17587A2	42349	03/23/15	50	50	1	ND	40	Manganese	439-96-5
CV HGC	CV	28	17587SWB	42349	03/23/15	25	25	1	ND	0.70	Mercury	439-97-6
P PEIC	Р	39	W17587A2	42349	03/23/15	50	50	1	ND	50	Nickel	7440-02-0
P PEICPRA	Р	16	W17587C2	42349	03/24/15	50	50	1	ND	5000	Potassium	7440-09-7
P PEIC	Р	39	W17587A2	42349	03/23/15	50	50	1	ND	20	Silver	7440-22-4
P PEICPRA	Р	16	W17587C2	42349	03/24/15	50	50	1	39000	5000	Sodium	7440-23-5
P PEIC	Р	39	W17587A2	42349	03/23/15	50	50	1,	ND	50	Vanadium	7440-62-2
P PEIC	Р	39	W17587A2	42349	03/23/15	50	50	1	ND	50	Zinc	7440-66-6

Comments:		 	 	 	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-021

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client Id: DMW-17

Units: UG/L Date Rec: 3/18/2015 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7440-36-0	Antimony	3.0	ND	1	50	100	03/25/15	42348	SW32415A	42	MSV	1S2_7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/25/15	42348	SW32415A	42	MSV	1S2_7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	03/25/15	42348	SW32415A	42	MSV	1S2_7500SWA
7440-43-9	Cadmium	2.0	ND	1	50	100	03/25/15	42348	SW32415A	42	MSV	1S2_7500SWA
7440-48-4	Cobalt	2.0	ND	1	50	100	03/25/15	42348	SW32415A	42	MSV	1S2_7500SWA
7439-92-1	Lead	3.0	6.5	1	50	100	03/25/15	42348	SW32415A	42	MSV	1S2_7500SWA
7782-49-2	Selenium	10	ND	1	50	100	03/25/15	42348	SW32415A	42	MSV	1S2_7500SWA
7440-28-0	Thallium	2.0	ND	1	50	100	03/25/15	42348	SW32415A	42	MSV	1S2_7500SWA

Comments:		 	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-021

Client Id: DMW-17

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Units: UG/L Date Rec: 3/18/2015

Lab Code:

Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7429-90-5	Aluminum	200	ND	1	50	50	03/24/15	42348	W17586A2	38	Р	PEICP2A
7440-39-3	Barium	50	ND	1	50	50	03/24/15	42348	W17586A2	38	Р	PEICP2A
7440-70-2	Calcium	5000	37000	1	50	50	03/24/15	42348	W17586A2	38	Р	PEICP2A
7440-47-3	Chromium	50	ND	1	50	50	03/24/15	42348	W17586A2	38	Р	PEICP2A
7440-50-8	Copper	50	ND	1	50	50	03/24/15	42348	W17586A2	38	Р	PEICP2A
7439-89-6	Iron	300	880	1	50	50	03/24/15	42348	W17586A2	38	Р	PEICP2A
7439-95-4	Magnesium	5000	11000	1	50	50	03/24/15	42348	W17586A2	38	Р	PEICP2A
7439-96-5	Manganese	40	520	1	50	50	03/24/15	42348	W17586A2	38	Р	PEICP2A
7439-97-6	Mercury	0.70	ND	1	25	25	03/20/15	42348	17586SWB	29	CV	HGCV1A
7440-02-0	Nickel	50	ND	1	50	50	03/24/15	42348	W17586A2	38	Р	PEICP2A
7440-09-7	Potassium	5000	ND	1	50	50	03/24/15	42348	W17586B2	37	Р	PEICPRAD2A
7440-22-4	Silver	20	ND	1	50	50	03/24/15	42348	W17586A2	38	Р	PEICP2A
7440-23-5	Sodium	5000	7100	1	50	50	03/24/15	42348	W17586B2	37	Р	PEICPRAD2A
7440-62-2	Vanadium	50	ND	1	50	50	03/24/15	42348	W17586A2	38	Р	PEICP2A
7440-66-6	Zinc	50	ND	1	50	50	03/24/15	42348	W17586A2	38	Р	PEICP2A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-022

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client Id: DMW-17F

Units: UG/L

Date Rec: 3/18/2015

Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7440-36-0	Antimony	3.0	ND	1	50	100	03/25/15	42349	SW32515A	16	MSMS2_	7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/25/15	42349	SW32515A	16	MSMS2_	7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	03/25/15	42349	SW32515A	16	MSMS2_	7500SWA
7440-43-9	Cadmium	2.0	4.1	1	50	100	03/25/15	42349	SW32515A	16	MSMS2_	7500SWA
7440-48-4	Cobalt	2.0	ND	1	50	100	03/25/15	42349	SW32515A	16	MSMS2_	7500SWA
7439-92-1	Lead	3.0	ND	1	50	100	03/25/15	42349	SW32515A	16	MS/MS2_	7500SWA
7782-49-2	Selenium	10	ND	1	50	100	03/25/15	42349	SW32515A	16	MSMS2_	7500SWA
7440-28-0	Thallium	2.0	ND	1	50	100	03/24/15	42349	SW32315B	42	MSMS2_	7500SWA

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-022

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client Id: DMW-17F

Units: UG/L Date Rec: 3/18/2015

Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol		Prep Batch	File:	Seq Num	М	Instr
429-90-5	Aluminum	200	ND	1	50	50	03/23/15	42349	W17587A2	40	Р	PEICP2A
440-39-3	Barium	50	ND	1	50	50	03/23/15	42349	W17587A2	40	Р	PEICP2/
440-70-2	Calcium	5000	41000	1	50	50	03/23/15	42349	W17587A2	40	Р	PEICP2
440-47-3	Chromium	50	ND	1	50	50	03/23/15	42349	W17587A2	40	Р	PEICP2
440-50-8	Copper	50	ND	1	50	50	03/23/15	42349	W17587A2	40	Р	PEICP2
439-89-6	Iron	300	ND	1	50	50	03/23/15	42349	W17587A2	40	Р	PEICP2
7439-95-4	Magnesium	5000	12000	1	50	50	03/23/15	42349	W17587A2	40	Р	PEICP2
7439-96-5	Manganese	40	ND	1	50	50	03/23/15	42349	W17587A2	40	Р	PEICP2
439-97-6	Mercury	0.70	ND	1	25	25	03/23/15	42349	17587SWB	29	CV	HGCV1
7440-02-0	Nickel	50	ND	1	50	50	03/23/15	42349	W17587A2	40	Р	PEICP2
7440-09-7	Potassium	5000	ND	1	50	50	03/24/15	42349	W17587C2	17	Р	PEICPRAD2
7440-22-4	Silver	20	ND	1	50	50	03/23/15	42349	W17587A2	40	Р	PEICP2
7440-23-5	Sodium	5000	8400	1	50	50	03/24/15	42349	W17587C2	17	Р	PEICPRAD2
7440-62-2	Vanadium	50	ND	1	50	50	03/23/15	42349	W17587A2	40	P	PEICP2
7440-66-6	Zinc	50	ND	1	50	50	03/23/15	42349	W17587A2	40	Р	PEICP2

Comments:	 	 	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-023

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id:

DMW-9B

Units: UG/L

Date Rec: 3/18/2015

Sdg No:

Matrix: AQUEOUS

Level: LOW

Lab Code: Contract: Case No:

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date		File:	Seq Num	М	Instr
7440-36-0	Antimony	3.0	ND	1	50	100	03/25/15	42348	SW32415A	43	MSMS	2_7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/25/15	42348	SW32415A	43	MSMS	2_7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	03/25/15	42348	SW32415A	43	мѕмѕ	2_7500SWA
7440-43-9	Cadmium	2.0	ND	1	50	100	03/25/15	42348	SW32415A	43	MSMS	2_7500SWA
7440-48-4	Cobalt	2.0	ND	1	50	100	03/25/15	42348	SW32415A	43	MSMS	2_7500SWA
7439-92-1	Lead	3.0	ND	1	50	100	03/25/15	42348	SW32415A	43	MSMS	2_7500SWA
7782-49-2	Selenium	10	ND	1	50	100	03/25/15	42348	SW32415A	43	мѕмѕ	2_7500SWA
7440-28-0	Thallium	2.0	ND	1	50	100	03/25/15	42348	SW32415A	43	MSMS	2_7500SWA

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-023

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: DMW-9B Matrix: AQUEOUS Units: UG/L

Date Rec: 3/18/2015

Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7429-90-5	Aluminum	200	ND	1	50	50	03/24/15	42348	W17586A2	42	Р	PEICP2A
7440-39-3	Barium	50	ND	1	50	50	03/24/15	42348	W17586A2	42	Р	PEICP2A
7440-70-2	Calcium	5000	6400	1	50	50	03/24/15	42348	W17586A2	42	Р	PEICP2A
7440-47-3	Chromium	50	ND	1	50	50	03/24/15	42348	W17586A2	42	Р	PEICP2A
7440-50-8	Copper	50	ND	1	50	50	03/24/15	42348	W17586A2	42	Р	PEICP2
7439-89-6	Iron	300	ND	1	50	50	03/24/15	42348	W17586A2	42	Р	PEICP2
7439-95-4	Magnesium	5000	ND	1	50	50	03/24/15	42348	W17586A2	42	Р	PEICP2
7439-96-5	Manganese	40	44	1	50	50	03/24/15	42348	W17586A2	42	Р	PEICP2
7439-97-6	Mercury	0.70	ND	1	25	25	03/20/15	42348	17586SWB	30	CV	HGCV1
7440-02-0	Nickel	50	ND	1	50	50	03/24/15	42348	W17586A2	42	Р	PEICP2/
7440-09-7	Potassium	5000	ND	1	50	50	03/24/15	42348	W17586B2	41	Р	PEICPRAD2
7440-22-4	Silver	20	ND	1	50	50	03/24/15	42348	W17586A2	42	Р	PEICP2
7440-23-5	Sodium	5000	13000	1	50	50	03/24/15	42348	W17586B2	41	Ρ	PEICPRAD2
7440-62-2	Vanadium	50	ND	1	50	50	03/24/15	42348	W17586A2	42	Ρ	PEICP2/
7440-66-6	Zinc	50	ND	1	50	50	03/24/15	42348	W17586A2	42	P	PEICP2

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-024

% Solid: 0

Lab Name:

Veritech

Nras No:

Client Id: DMW-9BF Matrix: AQUEOUS Units: UG/L

Date Rec: 3/18/2015

Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc Di	Fact	Initial Wt/Vol	Final Wt/Vol		Prep Batch	File:	Seq Num	М	Instr
7440-36-0	Antimony	3.0	ND:	1	50	100			SW32515A			2 7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/25/15	42349	SW32515A	17	MSMS	2_7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	03/25/15	42349	SW32515A	17	мѕмѕ	2_7500SWA
7440-43-9	Cadmium	2.0	2.5	1	50	100	03/25/15	42349	SW32515A	17	MSMS	2_7500SWA
7440-48-4	Cobalt	2.0	ND	1	50	100	03/25/15	42349	SW32515A	17	MSMS	2_7500SWA
7439-92-1	Lead	3.0	ND	1	50	100	03/25/15	42349	SW32515A	17	MSMS	2_7500SWA
7782-49-2	Selenium	10	ND	1	50	100	03/25/15	42349	SW32515A	17	MSMS	2_7500SWA
7440-28-0	Thallium	2.0	ND	1	50	100	03/24/15	42349	SW32315B	43	MSMS	2 7500SWA

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor MS - ICP-MS

Sample ID: AC83807-024

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client Id: DMW-9BF

Units: UG/L

Date Rec: 3/18/2015

Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7429-90-5	Aluminum	200	ND	1	50	50	03/23/15	42349	W17587A2	44	Р	PEICP2A
7440-39-3	Barium	50 ⁻¹	ND	1	50	50	03/23/15	42349	W17587A2	44	Р	PEICP2A
7440-70-2	Calcium	5000	6700	1	50	50	03/23/15	42349	W17587A2	44	Ρ	PEICP2A
7440-47-3	Chromium	50	ND	1	50	50	03/23/15	42349	W17587A2	44	Р	PEICP2A
7440-50-8	Copper	50	ND	1	50	50	03/23/15	42349	W17587A2	44	Ρ	PEICP2A
7439-89-6	Iron	300	ND	1	50	50	03/23/15	42349	W17587A2	44	Ρ	PEICP2A
7439-95-4	Magnesium	5000	ND	1	50	50	03/23/15	42349	W17587A2	44	Р	PEICP2A
7439-96-5	Manganese	40	ND	1	50	50	03/23/15	42349	W17587A2	44	Ρ	PEICP2A
7439-97-6	Mercury	0.70	ND	1	25	25	03/23/15	42349	17587 SW B	30	CV	HGCV1A
7440-02-0	Nickel	50	ND	1	50	50	03/23/15	42349	W17587A2	44	Р	PEICP2A
7440-09-7	Potassium	5000	ND	1	50	50	03/24/15	42349	W17587C2	21	Р	PEICPRAD2A
7440-22-4	Silver	20	ND	1	50	50	03/23/15	42349	W17587A2	44	P	PEICP2A
7440-23-5	Sodium	5000	14000	1	50	50	03/24/15	42349	W17587C2	21 .	Ρ	PEICPRAD2A
7440-62-2	Vanadium	50	ND	1	50	50	03/23/15	42349	W17587A2	44	Р	PEICP2A
7440-66-6	Zinc	50	ND	1	50	50	03/23/15	42349	W17587A2	44	Р	PEICP2A

Comments:		 	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-025

% Solid: 0

Lab Name: Veritech Nras No:

Client Id: DFB Matrix: AQUEOUS

Units: UG/L

Lab Code:

Sdg No:

Level: LOW

Date Rec: 3/18/2015 Contract: Case No:

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol		Analysis Date	,	File:	Seq Num	М	Instr
7440-36-0	Antimony	3.0	ND	1	50	100	03/25/15	42348	SW32415A	44	MSMS2	_7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/25/15	42348	SW32415A	44	MSMS2	_7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	03/25/15	42348	SW32415A	44	MSMS2	_7500SWA
7440-43-9	Cadmium	2.0	ND	1	50	100	03/25/15	42348	SW32415A	44	MSMS2	_7500SWA
7440-48-4	Cobalt	2.0	ND	1	50	100	03/25/15	42348	SW32415A	44	MSMS2	_7500SWA
7439-92-1	Lead	3.0	ND	1	50	100	03/25/15	42348	SW32415A	44	MSMS2	_7500SWA
7782-49-2	Selenium	10	ND	1	50	100	03/25/15	42348	SW32415A	44	MSMS2	_7500SWA
7440-28-0	Thallium	2.0	ND	1	50	100	03/25/15	42348	SW32415A	44	MS/IS2	_7500SWA

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-025

% Solid: 0

Lab Name:

Veritech

Nras No:

Matrix: AQUEOUS

Client Id: DFB

Units: UG/L

Date Rec: 3/18/2015

Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol		Analysis Date	Prep Batch	File:	Seq Num	м	Instr
7429-90-5	Aluminum	200	ND	1	50	50	03/24/15	42348	W17586A2	43	Р	PEICP2A
7440-39-3	Barium	50	ND	1	50	50	03/24/15	42348	W17586A2	43	Р	PEICP2A
7440-70-2	Calcium	5000	ND	1	50	50	03/24/15	42348	W17586A2	43	Р	PEICP2A
7440-47-3	Chromium	50	ND	1	50	50	03/24/15	42348	W17586A2	43	Р	PEICP2A
7440-50-8	Copper	50	ND	1	50	50	03/24/15	42348	W17586A2	43	Р	PEICP2A
7439-89-6	Iron	300	ND	1	50	50	03/24/15	42348	W17586A2	43	Р	PEICP2A
7439-95-4	Magnesium	5000	ND	1	50	50	03/24/15	42348	W17586A2	43	Р	PEICP2A
7439-96-5	Manganese	40	ND	1	50	50	03/24/15	42348	W17586A2	43	Ρ	PEICP2A
7439-97-6	Mercury	0.70	ND	1	25	25	03/20/15	42348	17586SWB	31	C۷	HGCV1A
7440-02-0	Nickel	50	ND	1	50	50	03/24/15	42348	W17586A2	43	Ρ	PEICP2A
7440-09-7	Potassium	5000	ND	1	50	50	03/24/15	42348	W17586B2	42	Р	PEICPRAD2A
7440-22-4	Silver	20	ND	1	50	50	03/24/15	42348	W17586A2	43	Ρ	PEICP2A
7440-23-5	Sodium	5000	ND	1	50	50	03/24/15	42348	W17586B2	42	Ρ	PEICPRAD2A
7440-62-2	Vanadium	50	ND	1	50	50	03/24/15	42348	W17586A2	43	Ρ	PEICP2A
7440-66-6	Zinc	50	ND	1	50	50	03/24/15	42348	W17586A2	43	Р	PEICP2A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-026

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: DFB-F

Matrix: AQUEOUS

Units: UG/L Date Rec: 3/18/2015 Lab Code: Contract:

Sdg No:

Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	M	Instr
7440-36-0	Antimony	3.0	ND	1	50	100	03/25/15	42349	SW32515A	18	MSMS2_	7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/25/15	42349	SW32515A	18	MSVIS2	_7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	03/25/15	42349	SW32515A	18	MSMS2	_7500SWA
7440-43-9	Cadmium	2.0	ND	1	50	100	03/25/15	42349	SW32515A	18	MSVIS2	_7500SWA
7440-48-4	Cobalt	2.0	ND	1	50	100	03/25/15	42349	SW32515A	18	MSMS2	_7500SWA
7439-92-1	Lead	3.0	ND	1	50	100	03/25/15	42349	SW32515A	18	MSVIS2_	_7500SWA
7782-49-2	Selenium	10	ND	1	50	100	03/25/15	42349	SW32515A	18	MSMS2	_7500SWA
7440-28-0	Thallium	2.0	ND	1	50	100	03/24/15	42349	SW32315B	44	MSMS2	7500SWA

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES

CV -ColdVapor MS - ICP-MS

Sample ID: AC83807-026

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client Id: DFB-F

Units: UG/L

Date Rec: 3/18/2015

Lab Code: Contract:

Sdg No: Case No:

Level: LOW

• :	Seq Num	File:	Prep Batch	Analysis Date	Final Wt/Vol	Initial Wt/Vol	Dil Fact	Conc	RL	Analyte	Cas No.
45 P P	45	W17587A2	42349	03/23/15	50	50	1	ND	200	Aluminum	7429-90-5
45 P PE	45	W17587A2	42349	03/23/15	50	50	1	ND	50	Barium	7440-39-3
45 P PI	45	W17587A2	42349	03/23/15	50	50	1	ND	5000	Calcium	7440-70-2
45 P PI	45	W17587A2	42349	03/23/15	50	50	1	ND	50	Chromium	7440-47-3
45 P PI	45	W17587A2	42349	03/23/15	50	50	1	ND	50	Copper	7440-50-8
45 P PI	45	W17587A2	42349	03/23/15	50	50	1	ND	300	Iron	7439-89-6
45 P PI	45	W17587A2	42349	03/23/15	50	50	1	ND	5000	Magnesium	7439-95-4
45 P PI	45	W17587A2	42349	03/23/15	50	50	1	ND	40	Manganese	7439-96-5
31 CV H	31	17587SWB	42349	03/23/15	25	25	1	ND	0.70	Mercury	7439-97-6
45 P PI	45	W17587A2	42349	03/23/15	50	50	1	ND	50	Nickel	7440-02-0
22 P PEICP	22	W17587C2	42349	03/24/15	50	50	1	ND	5000	Potassium	7440-09-7
45 P PI	45	W17587A2	42349	03/23/15	50	50	1	ND	20	Silver	7440-22-4
22 P PEICP	22	W17587C2	42349	03/24/15	50	50	1	ND	5000	Sodium	7440-23-5
45 P PI	45	W17587A2	42349	03/23/15	50	50	1	ND	50	Vanadium	7440-62-2
45 P PI	45	W17587A2	42349	03/23/15	50	50	1	ND	50	Zinc	7440-66-6

Comments:		

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-027

% Solid: 0

Lab Name:

Veritech

Nras No:

Matrix: AQUEOUS

Client Id: DMW-2

Units: UG/L Date Rec: 3/18/2015 Lab Code:

Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Inst
7440-36-0	Antimony	3.0	ND	1	50	100	03/25/15	42348	SW32415A	45	MS	MS2_7500SWA
7440-38-2	Arsenic	2.0	21	1	50	100	03/25/15	42348	SW32415A	45	MS	MS2_7500SWA
7440-41 - 7	Beryllium	1.0	ND	1,	50	100	03/25/15	42348	SW32415A	45	MS	MS2_7500SW
7440-43-9	Cadmium	2.0	15	1	50	100	03/25/15	42348	SW32415A	45	MS	MS2_7500SW
7440-48-4	Cobalt	2.0	13	1	50	100	03/25/15	42348	SW32415A	45	MS	MS2_7500SW/
7439-92-1	Lead	3.0	29	1	50	100	03/25/15	42348	SW32415A	45	MS	MS2_7500SW
7782-49-2	Selenium	10	ND	1	50	100	03/25/15	42348	SW32415A	45	MS	MS2_7500SW
7440-28-0	Thallium	2.0	ND	1	50	100	03/25/15	42348	SW32415A	45	MS	MS2 7500SW

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-027

% Solid: 0

Lab Name:

Veritech

Nras No:

Matrix: AQUEOUS

Client Id: DMW-2

Units: UG/L

Date Rec: 3/18/2015

Lab Code: Contract: Sdg No:

Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date		File:	Seq Num	М	Instr
7429-90-5	Aluminum	200	7200	1	50	50	03/24/15	42348	W17586A2	44	Р	PEICP2A
7440-39-3	Barium	50	65	1	50	50	03/24/15	42348	W17586A2	44	Р	PEICP2A
7440-70-2	Calcium	5000	21000	1	50	50	03/24/15	42348	W17586A2	44	Р	PEICP2A
7440-47-3	Chromium	50	ND	1	50	50	03/24/15	42348	W17586A2	44	Р	PEICP2A
7440-50-8	Copper	50	ND	1	50	50	03/24/15	42348	W17586A2	44	Р	PEICP2A
7439-89-6	Iron	300	98000	1	50	50	03/24/15	42348	W17586A2	44	Р	PEICP2A
7439-95-4	Magnesium	5000	ND	1	50	50	03/24/15	42348	W17586A2	44	Р	PEICP2A
7439-96-5	Manganese	40	410	1	50	50	03/24/15	42348	W17586A2	44	Р	PEICP2A
7439-97-6	Mercury	0.70	ND	1	25	25	03/20/15	42348	17586SWB	32	cv	HGCV1A
7440-02-0	Nickel	50	ND	1	50	50	03/24/15	42348	W17586A2	44	Р	PEICP2A
7440-09-7	Potassium	5000	ND	1	50	50	03/24/15	42348	W17586B2	43	Р	PEICPRAD2A
7440-22-4	Silver	20	ND	1	50	50	03/24/15	42348	W17586A2	44	Р	PEICP2A
7440-23-5	Sodium	5000	19000	1	50	50	03/24/15	42348	W17586B2	43	Р	PEICPRAD2A
7440-62-2	Vanadium	50	ND	1	50	50	03/24/15	42348	W17586A2	44	Р	PEICP2A
7440-66-6	Zinc	50	210	1	50	50	03/24/15	42348	W17586A2	44	Р	PEICP2A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID:

AC83807-028

Analyte

Arsenic

Beryllium

Cadmium

Selenium

Thallium

Cobalt

Lead

Antimony

% Solid: 0

Lab Name: Veritech

Nras No:

42349 SW32515A

42349 SW32315B

19

45

MSMS2_7500SWA

MS/MS2_7500SWA

Client Id: Matrix:

Cas No.

7440-36-0

7440-38-2

7440-41-7

7440-43-9

7440-48-4

7439-92-1

7782-49-2

7440-28-0

DMW-2F AQUEOUS Units: UG/L
Date Rec: 3/18/2015

Lab Code: Contract: Sdg No: Case No:

Level:

LOW

Initial Final Analysis Ргер Seq RL Conc. Dil Fact Wt/Vol Wt/Vol Date Batch File: Num М Instr ND 50 100 03/25/15 42349 SW32515A MSMS2_7500SWA 3.0 19 ND 50 100 03/25/15 42349 SW32515A 19 MSMS2_7500SWA 2.0 1 1.0 ND 1 50 100 03/25/15 42349 SW32515A 19 MSMS2_7500SWA 2.0 2.6 50 100 03/25/15 42349 SW32515A 19 MSMS2_7500SWA 2.0 3.8 1 50 100 03/25/15 42349 SW32515A MSMS2_7500SWA 19 3.0 ND 1 50 100 03/25/15 42349 SW32515A 19 MSMS2_7500SWA

100 03/25/15

100 03/24/15

Comments:	

ND

ND

1

1

50

50

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

10

2.0

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-028

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: DMW-2F Matrix: AQUEOUS

Units: UG/L Date Rec: 3/18/2015 Lab Code: Contract:

Sdg No:

Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7429-90-5	Aluminum	200	ND	1	50	50	03/23/15	42349	W17587A2	46	Р	PEICP2A
7440-39-3	Barium	50	ND	1	50	50	03/23/15	42349	W17587A2	46	Р	PEICP2A
7440-70-2	Calcium	5000	20000	1	50	50	03/23/15	42349	W17587A2	46	P	PEICP2A
7440-47-3	Chromium	50	ND	1	50	50	03/23/15	42349	W17587A2	46	Р	PEICP2A
7440-50-8	Copper	50	ND	1	50	50	03/23/15	42349	W17587A2	46	Р	PEICP2A
7439-89-6	Iron	300	4200	1	50	50	03/23/15	42349	W17587A2	46	Р	PEICP2A
7439-95-4	Magnesium	5000	ND	1	50	50	03/23/15	42349	W17587A2	46	Ρ	PEICP2A
7439-96-5	Manganese	40	240	1	50	50	03/23/15	42349	W17587A2	46	Р	PEICP2A
7439-97-6	Mercury	0.70	ND	1	25	25	03/23/15	42349	17587SWB	32	CV	HGCV1A
7440-02-0	Nickel	50	ND	1	50	50	03/23/15	42349	W17587A2	46	Р	PEICP2A
7440-09-7	Potassium	5000	ND	1	50	50	03/24/15	42349	W17587C2	23	Ρ	PEICPRAD2A
7440-22-4	Silver	20	ND	1	50	50	03/23/15	42349	W17587A2	46	Р	PEICP2A
7440-23-5	Sodium	5000	20000	1	50	50	03/24/15	42349	W17587C2	23	Ρ	PEICPRAD2A
7440-62-2	Vanadium	50	ND	1	50	50	03/23/15	42349	W17587A2	46	Р	PEICP2A
7440-66-6	Zinc	50	ND	1:	50	50	03/23/15	42349	W17587A2	46	Р	PEICP2A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES CV -ColdVapor MS - ICP-MS

Sample ID: AC83807-029

% Solid: 0

Lab Name: Veritech Nras No:

Matrix: AQUEOUS

Client Id: DMW-9

Units: UG/L Date Rec: 3/18/2015 Lab Code:

Sdg No:

Level: LOW

Contract:

Case No:

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7440-36-0	Antimony	3.0	ND	1	50	100	03/25/15	42348	SW32415A	46	MS	MS2_7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/25/15	42348	SW32415A	46	MS	MS2_7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	03/25/15	42348	SW32415A	46	MS	MS2_7500SWA
7440-43-9	Cadmium	2.0	ND	1	50	100	03/25/15	42348	SW32415A	46	MS	MS2_7500SWA
7440-48-4	Cobalt	2.0	ND	1	50	100	03/25/15	42348	SW32415A	46	MS	MS2_7500SWA
7439-92-1	Lead	3.0	ND	1	50	100	03/25/15	42348	SW32415A	46	MS	MS2_7500SWA
7782-49-2	Selenium	10	ND	1	50	100	03/25/15	42348	SW32415A	46	MS	VIS2_7500SWA
7440-28-0	Thallium	2.0	ND	1	50	100	03/25/15	42348	SW32415A	46	MS	MS2_7500SWA

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-029

% Solid: 0

Lab Name:

Veritech

Nras No:

Matrix: AQUEOUS

Client Id: DMW-9

Units: UG/L

Date Rec: 3/18/2015

Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7429-90-5	Aluminum	200	ND	1	50	50	03/24/15	42348	W17586A2	45	Р	PEICP2A
7440-39-3	Barium	50	ND	1	50	50	03/24/15	42348	W17586A2	45	Р	PEICP2A
7440-70-2	Calcium	5000	13000	1	50	50	03/24/15	42348	W17586A2	45	Р	PEICP2A
7440-47-3	Chromium	50	ND	1	50	50	03/24/15	42348	W17586A2	45	Р	PEICP2A
7440-50-8	Copper	50	ND	1	50	50	03/24/15	42348	W17586A2	45	Р	PEICP2A
7439-89 - 6	Iron	300	550	1	50	50	03/24/15	42348	W17586A2	45	Р	PEICP2A
7439-95-4	Magnesium	5000	ND	1	50	50	03/24/15	42348	W17586A2	45	Р	PEICP2A
7439-96-5	Manganese	40	ND	1	50	50	03/24/15	42348	W17586A2	45	Р	PEICP2A
7439-97 - 6	Mercury	0.70	ND	1	25	25	03/20/15	42348	17586SWB	35	CV	HGCV1A
7440-02-0	Nickel	50	ND	1	50	50	03/24/15	42348	W17586A2	45	Р	PEICP2A
7440-09-7	Potassium	5000	ND	1	50	50	03/24/15	42348	W17586B2	44	Р	PEICPRAD2A
7440-22-4	Silver	20	ND	1	50	50	03/24/15	42348	W17586A2	45	Р	PEICP2A
7440-23-5	Sodium	5000	18000	1	50	50	03/24/15	42348	W17586B2	44	P	PEICPRAD2A
7440-62-2	Vanadium	50	ND	1	50	50	03/24/15	42348	W17586A2	45	Р	PEICP2A
7440-66-6	Zinc	50	ND	1	50	50	03/24/15	42348	W17586A2	45	Р	PEICP2A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES CV -ColdVapor

MSMS2_7500SWA

MSMS2_7500SWA

MSMS2_7500SWA

Form1 Inorganic Analysis Data Sheet

Sample ID: AC83807-030

Analyte

Arsenic

Antimony

Beryllium

Cadmium

Selenium

Thallium

Cobalt

Lead

% Solid: 0

Lab Name: Veritech Nras No:

42349 SW32515A 20

20

46

42349 SW32515A

42349 SW32315B

Client Id: Matrix:

Cas No.

7440-36-0

7440-38-2

7440-41-7

7440-43-9

7440-48-4

7439-92-1

7782-49-2

7440-28-0

DMW-9F

Units: UG/L Date Rec: 3/18/2015 Lab Code: Contract:

50

50

50

1

Sdg No: Case No:

Level:

AQUEOUS LOW

RL	Conc	Dil Fact	Initial Wt∕Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
3.0	ND	1	50	100	03/26/15	42349	SW32515A	20	MSMS2	7500SWA
2.0	ND	1	50	100	03/26/15	42349	SW32515A	20	MSMS2	_7500SWA
1.0	ND	1	50	100	03/26/15	42349	SW32515A	20	MSMS2	_7500SWA
2.0	2.4	1	50	100	03/26/15	42349	SW32515A	20	MSMS2	_7500SWA
2.0	ND	1	50	100	03/26/15	42349	SW32515A	20	MSMS2	_7500SWA

100 03/26/15

100 03/26/15

100 03/24/15

Comments:	

ND

ND

ND

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

3.0

10

2.0

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-030

% Solid: 0

Lab Name:

Veritech

Nras No:

Client Id: Matrix: AQUEOUS

DMW-9F

Units: UG/L Date Rec: 3/18/2015

Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol		Prep Batch	File:	Seq Num	М	Instr
7429-90-5	Aluminum	200	ND	1	50	50	03/23/15	42349	W17587A2	47	Р	PEICP2A
7440-39-3	Barium	50	ND	1	50	50	03/23/15	42349	W17587A2	47	Р	PEICP2A
7440-70-2	Calcium	5000	14000	1	50	50	03/23/15	42349	W17587A2	47	Р	PEICP2A
7440-47-3	Chromium	50	ND	1	50	50	03/23/15	42349	W17587A2	47	Р	PEICP2A
7440-50-8	Copper	50	ND	1	50	50	03/23/15	42349	W17587A2	47	Ρ	PEICP2A
7439-89-6	Iron	300	ND	1	50	50	03/23/15	42349	W17587A2	47	Р	PEICP2A
7439-95-4	Magnesium	5000	ND	1	50	50	03/23/15	42349	W17587A2	47	P	PEICP2A
7439-96-5	Manganese	40	ND	1	50	50	03/23/15	42349	W17587A2	47	Р	PEICP2A
7439-97-6	Mercury	0.70	ND	1	25	25	03/23/15	42349	17587SWB	35	CV	HGCV1A
7440-02-0	Nickel	50	ND	1	50	50	03/23/15	42349	W17587A2	47	Р	PEICP2A
7440-09-7	Potassium	5000	ND	1	50	50	03/24/15	42349	W17587C2	24	Р	PEICPRAD2A
7440-22-4	Silver	20	ND	1	50	50	03/23/15	42349	W17587A2	47	Р	PEICP2A
7440-23-5	Sodium	5000	21000	1	50	50	03/24/15	42349	W17587C2	24	Р	PEICPRAD2A
7440-62-2	Vanadium	50	ND	1	50	50	03/23/15	42349	W17587A2	47	Р	PEICP2A
7440-66-6	Zinc	50	ND	1	50	50	03/23/15	42349	W17587A2	47	Р	PEICP2A

Comments:	AND THE RESERVE OF THE PERSON	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-031

% Solid: 0

Lab Name:

Veritech

Nras No:

Client Id: Matrix:

DMW-3 AQUEOUS Units: UG/L

Date Rec: 3/18/2015

Lab Code:

Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol		Prep Batch	File:	Seq Num	М	Instr
7440-36-0	Antimony	3.0	ND	1	50	100	03/25/15	42348	SW32415A	47	MSMS2	_7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/25/15	42348	SW32415A	47	MS/IS2	_7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	03/25/15	42348	SW32415A	47	MS MS2	_7500SWA
7440-43-9	Cadmium	2.0	20	1	50	100	03/25/15	42348	SW32415A	47	MSMS2	_7500SWA
7440-48-4	Cobalt	2.0	ND	1	50	100	03/25/15	42348	SW32415A	47	MS MS2	_7500SWA
7439-92-1	Lead	3.0	ND	1	50	100	03/25/15	42348	SW32415A	47	MSMS2	_7500SWA
7782-49-2	Selenium	10	ND	1	50	100	03/25/15	42348	SW32415A	47	MS/MS2	_7500SWA
7440-28-0	Thallium	2.0	ND	1	50	100	03/25/15	42348	SW32415A	47	MSMS2	_7500SWA

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-031

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client ld: DMW-3

Units: UG/L

Date Rec: 3/18/2015

Lab Code: Contract: Sdg No:

Case No:

Level: LOW

1 In	М	Seq Num	File:	Prep Batch	Analysis Date	Final Wt/Vol	Initial Wt/Vol	Dil Fact	Conc	RL	Analyte	Cas No.
PEICP	Р	46	W17586A2	42348	03/24/15	50	50	1	490	200	Aluminum	7429-90-5
PEICP	Р	46	W17586A2	42348	03/24/15	50	50	1	ND	50	Barium	7440-39-3
PEICP	Р	46	W17586A2	42348	03/24/15	50	50	1	9300	5000	Calcium	7440-70-2
PEICP	Р	46	W17586A2	42348	03/24/15	50	50	1	ND	50	Chromium	7440-47-3
PEICP	Ρ	46	W17586A2	42348	03/24/15	50	50	1	ND	50	Copper	7440-50-8
PEICP	Ρ	46	W17586A2	42348	03/24/15	50	50	1	510	300	Iron	7439-89-6
PEICP	Р	46	W17586A2	42348	03/24/15	50	50	1	ND	5000	Magnesium	7439-95-4
PEICP	Р	46	W17586A2	42348	03/24/15	50	50	1	64	40	Manganese	7439-96-5
HGCV	CV	36	17586SWB	42348	03/20/15	25	25	1	ND	0.70	Mercury	7439-97-6
PEICP	Р	46	W17586A2	42348	03/24/15	50	50	1	ND	50	Nickel	7440-02-0
PEICPRAD	Р	45	W17586B2	42348	03/24/15	50	50	1	ND	5000	Potassium	7440-09-7
PEICP	Р	46	W17586A2	42348	03/24/15	50	50	1	ND	20	Silver	7440-22-4
PEICPRAD	P	45	W17586B2	42348	03/24/15	50	50	1	18000	5000	Sodium	7440-23-5
PEICP	Р	46	W17586A2	42348	03/24/15	50	50	1	ND	50	Vanadium	7440-62-2
PEICP	Р	46	W17586A2	42348	03/24/15	50	50	1	ND	50	Zinc	7440-66-6

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-032

% Solid: 0

Lab Name:

Veritech

Nras No:

Matrix: AQUEOUS

Client Id: DMW-3F

Units: UG/L Date Rec: 3/18/2015 Lab Code:

Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol		Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7440-36-0	Antimony	3.0	ND	1	50	100	03/26/15	42349	SW32515A	21	MS	MS2_7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	03/26/15	42349	SW32515A	21	MS	- ∕IS2_7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	03/26/15	42349	SW32515A	21	MS	MS2_7500SWA
7440-43-9	Cadmium	2.0	14	1	50	100	03/26/15	42349	SW32515A	21	MS	VIS2_7500SW
7440-48-4	Cobalt	2.0	ND	1	50	100	03/26/15	42349	SW32515A	21	MS	MS2_7500SWA
7439-92-1	Lead	3.0	ND	1	50	100	03/26/15	42349	SW32515A	21	MS	MS2_7500SW
7782-49-2	Selenium	10	ND	1	50	100	03/26/15	42349	SW32515A	21	MS	MS2_7500SW/
7440-28-0	Thallium	2.0	ND	1:	50	100	03/24/15	42349	SW32315B	47	MS	MS2 7500SW

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-032

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client Id: DMW-3F

Units: UG/L Date Rec: 3/18/2015 Lab Code:

Sdg No: Contract:

Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7429-90-5	Aluminum	200	ND	1	50	50	03/23/15	42349	W17587A2	48	Р	PEICP2A
7440-39-3	Barium	50	ND	1	50	50	03/23/15	42349	W17587A2	48	Р	PEICP2A
7440-70-2	Calcium	5000	9300	1	50	50	03/23/15	42349	W17587A2	48	Р	PEICP2A
7440-47-3	Chromium	50	ND	1	50	50	03/23/15	42349	W17587A2	48	Р	PEICP2A
7440-50-8	Copper	50	ND	1	50	50	03/23/15	42349	W17587A2	48	Р	PEICP2A
7439-89-6	Iron	300	ND	1	50	50	03/23/15	42349	W17587A2	48	Р	PEICP2A
7439-95-4	Magnesium	5000	ND	1	50	50	03/23/15	42349	W17587A2	48	Р	PEICP2A
7439-96-5	Manganese	40	ND	1	50	50	03/23/15	42349	W17587A2	48	Р	PEICP2A
7439-97-6	Mercury	0.70	ND	1	25	25	03/23/15	42349	17587SWB	36	CV	HGCV1A
7440-02-0	Nickel	50	ND	1	50	50	03/23/15	42349	W17587A2	48	Р	PEICP2A
7440-09-7	Potassium	5000	ND	1	50	50	03/24/15	42349	W17587C2	25	Р	PEICPRAD2A
7440-22-4	Silver	20	ND	1	50	50	03/23/15	42349	W17587A2	48	Р	PEICP2A
7440-23-5	Sodium	5000	18000	1	50	50	03/24/15	42349	W17587C2	25	Р	PEICPRAD2A
7440-62-2	Vanadium	50	ND	1;	50	50	03/23/15	42349	W17587A2	48	Р	PEICP2A
7440-66-6	Zinc	50	ND.	1	50	50	03/23/15	42349	W17587A2	48	Р	PEICP2A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES

CV -ColdVapor

MSMS2_7500SWA

Form1 Inorganic Analysis Data Sheet

Sample ID: AC83807-033

Thallium

% Solid: 0

Lab Name:

Veritech

Nras No:

Client Id: Matrix: AQUEOUS

DMW-15B MS

Units: UG/L

Date Rec: 3/18/2015

Lab Code: Contract:

Sdg No: Case No:

42348 SW32415A 22

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol				File:	Seq Num	М	Instr
7440-36-0	Antimony	3.0	500	1	50	100	03/25/15	42348	SW32415A	22	MSMS2	_7500SWA
7440-38-2	Arsenic	2.0	490	1	50	100	03/25/15	42348	SW32415A	22	MSMS2	_7500SWA
7440-41-7	Beryllium	1.0	500	1	50	100	03/25/15	42348	SW32415A	22	MSMS2	_7500SWA
7440-43-9	Cadmium	2.0	480	1	50	100	03/25/15	42348	SW32415A	22	MSMS2	_7500SWA
7440-48-4	Cobalt	2.0	490	1	50	100	03/25/15	42348	SW32415A	22	MSMS2	_7500SWA
7439-92-1	Lead	3.0	490	1	50	100	03/25/15	42348	SW32415A	22	MSMS2	_7500SWA
7782-49-2	Selenium	10	470	1	50	100	03/25/15	42348	SW32415A	22	MSMS2	_7500SWA

50

100; 03/25/15

Comments:		 	 	

470

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

2.0

P - ICP-AES

7440-28-0

CV -ColdVapor

Sample ID: AC83807-033

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: DMW-15B MS Matrix: AQUEOUS

Units: UG/L

Date Rec: 3/18/2015

Lab Code: Contract:

Sdg No:

Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	м	Instr
7429-90-5	Aluminum	200	4600	1	50	50	03/24/15	42348	W17586A2	17	Р	PEICP2A
7440-39-3	Barium	50	490	1	50	50	03/24/15	42348	W17586A2	17	Р	PEICP2A
7440-70-2	Calcium	5000	56000	1	50	50	03/24/15	42348	W17586A2	17	Р	PEICP2A
7440-47-3	Chromium	50	460	1	50	50	03/24/15	42348	W17586A2	17	Ρ	PEICP2A
7440-50-8	Copper	50	460	1	50	50	03/24/15	42348	W17586A2	17	Р	PEICP2A
7439-89-6	Iron	300	6100	1	50	50	03/24/15	42348	W17586A2	17	Р	PEICP2A
7439-95-4	Magnesium	5000	49000	1,	50	50	03/24/15	42348	W17586A2	17	Р	PEICP2A
7439-96-5	Manganese	40	540	1	50	50	03/24/15	42348	W17586A2	17	Ρ	PEICP2A
7439-97-6	Mercury	0.70	9.3	1	25	25	03/20/15	42348	17586SWB	16	CV	HGCV1A
7440-02-0	Nickel	50	460	1	50	50	03/24/15	42348	W17586A2	17	Р	PEICP2
7440-09-7	Potassium	5000	49000	1	50	50	03/24/15	42348	W17586B2	16	Р	PEICPRAD2A
7440-22-4	Silver	20	86	1	50	50	03/24/15	42348	W17586A2	17	Р	PEICP2A
7440-23-5	Sodium	5000	78000	1	50	50	03/24/15	42348	W17586B2	16	Р	PEICPRAD2A
7440-62-2	Vanadium	50	450	1	50	50	03/24/15	42348	W17586A2	17	Р	PEICP2
7440-66-6	Zinc	50	480	1	50	50	03/24/15	42348	W17586A2	17	Р	PEICP2/

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-034

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client Id: DMW-15B MSD

Units: UG/L

Date Rec: 3/18/2015

Lab Code:

Contract:

Sdg No:

Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	M	Instr
7440-36-0	Antimony	3.0	490	1	50	100	03/25/15	42348	SW32415A	23	MS	MS2_7500SWA
7440-38-2	Arsenic	2.0	470	1	50	100	03/25/15	42348	SW32415A	23	MS	/IS2_ 7500SWA
7440-41-7	Beryllium	1.0	490	1	50	100	03/25/15	42348	SW32415A	23	MS	MS2_7500SWA
7440-43-9	Cadmium	2.0	460	1	50	100	03/25/15	42348	SW32415A	23	MS	MS2_7500SWA
7440-48-4	Cobalt	2.0	460	1	50	100	03/25/15	42348	SW32415A	23	MS	MS2_7500SWA
7439-92-1	Lead	3.0	470	1	50	100	03/25/15	42348	SW32415A	23	MS	MS2_7500SWA
7782-49-2	Selenium	10	460	1	50	100	03/25/15	42348	SW32415A	23	MS	MS2_7500SWA
7440-28-0	Thallium	2.0	440	1	50	100	03/25/15	42348	SW32415A	23	MS	MS2 7500SWA

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-034

% Solid: 0

Lab Name:

Veritech

Nras No:

Client Id:

DMW-15B MSD Matrix: AQUEOUS

Units: UG/L Date Rec: 3/18/2015 Lab Code:

Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol		Analysis Date		File:	Seq Num	м	Instr
7429-90-5	Aluminum	200	4600	1	50	50	03/24/15	42348	W17586A2	18	Р	PEICP2A
7440-39-3	Barium	50	490	1	50	50	03/24/15	42348	W17586A2	18	Р	PEICP2A
7440-70-2	Calcium	5000	57000	1	50	50	03/24/15	42348	W17586A2	18	Р	PEICP2A
7440-47-3	Chromium	50	460	1	50	50	03/24/15	42348	W17586A2	18	Ρ	PEICP2A
7440-50-8	Copper	50	460	1	50	50	03/24/15	42348	W17586A2	18	Р	PEICP2A
7439-89-6	Iron	300	6000	1	50	50	03/24/15	42348	W17586A2	18	Р	PEICP2A
7439-95-4	Magnesium	5000	50000	1	50	50	03/24/15	42348	W17586A2	18	Р	PEICP2A
7439-96-5	Manganese	40	520	1	50	50	03/24/15	42348	W17586A2	18	Р	PEICP2A
7439-97-6	Mercury	0.70	10	1	25	25	03/20/15	42348	17586SWB	17	CV	HGCV1A
7440-02-0	Nickel	50	460	1	50	50	03/24/15	42348	W17586A2	18	Р	PEICP2A
7440-09-7	Potassium	5000	49000	1	50	50	03/24/15	42348	W17586B2	17	Ρ	PEICPRAD2A
7440-22-4	Silver	20	86	1	50	50	03/24/15	42348	W17586A2	18	Р	PEICP2A
7440-23-5	Sodium	5000	77000	1	50	50	03/24/15	42348	W17586B2	17	Р	PEICPRAD2A
7440-62-2	Vanadium	50	450	1	50	50	03/24/15	42348	W17586A2	18	Р	PEICP2A
7440-66-6	Zinc	50	490	1	50	50	03/24/15	42348	W17586A2	18	Р	PEICP2A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-035

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client Id: DMW-15BF MS

Units: UG/L

Date Rec: 3/18/2015

Lab Code: Contract:

Sdg No:

Case No:

LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol		Prep Batch	File:	Seq Num	М	Instr
7440-36-0	Antimony	3.0	520	1	50	100	03/27/15	42349	SW32715A	22	MS	MS2_7500SWA
7440-38-2	Arsenic	2.0	490	1	50	100	03/27/15	42349	SW32715A	22	MS	MS2_7500SWA
7440-41-7	Beryllium	1.0	490	1	50	100	03/27/15	42349	SW32715A	22	MS	MS2_7500 S WA
7440-43-9	Cadmium	2.0	480	1	50	100	03/27/15	42349	SW32715A	22	MS	/IS 2_7500SWA
7440-48-4	Cobalt	2.0	470	1	50	100	03/27/15	42349	SW32715A	22	MS	MS2_7500SWA
7439-92-1	Lead	3.0	500	1	50	100	03/27/15	42349	SW32715A	22	MS	MS2_7500SWA
7782-49-2	Selenium	10	480	1	50	100	03/27/15	42349	SW32715A	22	MS	MS2_7500SWA
7440-28-0	Thallium	2.0	460	1	50	100	03/24/15	42349	SW32315B	22	MS	MS2 7500SWA

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-035

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client Id: DMW-15BF MS

Units: UG/L

Date Rec: 3/18/2015

Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
429-90-5	Aluminum	200	4900	1	50	50	03/23/15	42349	W17587A2	17	Р	PEICP2A
440-39-3	Barium	50	530	1	50	50	03/23/15	42349	W17587A2	17	Р	PEICP2
7440-70-2	Calcium	5000	58000	1	50	50	03/23/15	42349	W17587A2	17	Ρ	PEICP2
7440-47-3	Chromium	50	490	1	50	50	03/23/15	42349	W17587A2	17	Р	PEICP2
7440-50-8	Copper	50	500	1	50	50	03/23/15	42349	W17587A2	17	Ρ	PEICP2
7439-89-6	Iron	300	5100	1	50	50	03/23/15	42349	W17587A2	17	Р	PEICP2
7439-95-4	Magnesium	5000	51000	1	50	50	03/23/15	42349	W17587A2	17	Р	PEICP2
7439-96-5	Manganese	40	520	1	50	50	03/23/15	42349	W17587A2	17	Р	PEICP2
7439-97-6	Mercury	0.70	10	1	25	25	03/23/15	42349	17587 S WB	16	CV	HGCV1
7440-02-0	Nickel	50	490	1	50	50	03/23/15	42349	W17587A2	17	Ρ	PEICP2
7440-09-7	Potassium	5000	48000	1	50	50	03/23/15	42349	W17587B2	16	Р	PEICPRAD2
7440-22-4	Silver	20	98	1	50	50	03/23/15	42349	W17587A2	17	Р	PEICP2/
7440-23-5	Sodium	5000	84000	1	50	50	03/23/15	42349	W17587B2	16	Р	PEICPRAD2
440-62-2	Vanadium	50	490	1	50	50	03/23/15	42349	W17587A2	17	Р	PEICP2
440-66-6	Zinc	50	510	1	50	50	03/23/15	42349	W17587A2	17	Р	PEICP2

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor

Sample ID: AC83807-036

% Solid: 0

Lab Name:

Veritech

Nras No:

Client Id: DMW-15BF MSD Matrix: AQUEOUS

Units: UG/L Date Rec: 3/18/2015

Lab Code: Contract:

Sdg No:

Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7440-36-0	Antimony	3.0	520	1	50	100	03/27/15	42349	SW32715A	23	MSMS2	_7500SWA
7440-38-2	Arsenic	2.0	480	1	50	100	03/27/15	42349	SW32715A	23	MSMS2	_7500SWA
7440-41-7	Beryllium	1.0	490	1	50	100	03/27/15	42349	SW32715A	23	MSMS2	_7500SWA
7440-43-9	Cadmium	2.0	480	1	50	100	03/27/15	42349	SW32715A	23	MS MS2	_7500SWA
7440-48-4	Cobalt	2.0	470	1	50	100	03/27/15	42349	SW32715A	23	MSMS2	_7500SWA
7439-92-1	Lead	3.0	500	1	50	100	03/27/15	42349	SW32715A	23	MSMS2	_7500SWA
7782-49-2	Selenium	10	480	1	50	100	03/27/15	42349	SW32715A	23	MSMS2	_7500SWA
7440-28-0	Thallium	2.0	440	1	50	100	03/24/15	42349	SW32315B	23	MSMS2	_7500SWA

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC83807-036

% Solid: 0

Lab Name: Veritech

Nras No: Sdg No:

Matrix: AQUEOUS

Client Id: DMW-15BF MSD

Units: UG/L Date Rec: 3/18/2015 Lab Code: Contract:

Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7429-90-5	Aluminum	200	5000	1	50	50	03/23/15	42349	W17587A2	18	Р	PEICP2A
7440-39-3	Barium	50	530	1	50	50	03/23/15	42349	W17587A2	18	Р	PEICP2A
7440-70-2	Calcium	5000	61000	1	50	50	03/23/15	42349	W17587A2	18	Р	PEICP2A
7440-47-3	Chromium	50	500	1	50	50	03/23/15	42349	W17587A2	18	Р	PEICP2A
7440-50-8	Copper	50	510	1	50	50	03/23/15	42349	W17587A2	18	Р	PEICP2A
7439-89-6	Iron	300	5100	1	50	50	03/23/15	42349	W17587A2	18	Р	PEICP2A
7439-95-4	Magnesium	5000	53000	1	50	50	03/23/15	42349	W17587A2	18	Р	PEICP2A
7439-96-5	Manganese	40	540	1	50	50	03/23/15	42349	W17587A2	18	Р	PEICP2A
7439-97-6	Mercury	0.70	10	1,	25	25	03/23/15	42349	17587SWB	17	CV	HGCV1A
7440-02-0	Nickel	50	500	1	50	50	03/23/15	42349	W17587A2	18	Р	PEICP2A
7440-09-7	Potassium	5000	49000	1	50	50	03/23/15	42349	W17587B2	17	Р	PEICPRAD2A
7440-22-4	Silver	20	100	1	50	50	03/23/15	42349	W17587A2	18	Р	PEICP2A
7440-23-5	Sodium	5000	84000	1	50.	50	03/23/15	42349	W17587B2	17	Р	PEICPRAD2A
7440-62-2	Vanadium	50	500	1	50	50	03/23/15	42349	W17587A2	18	Р	PEICP2A
7440-66-6	Zinc	50	520	1	50	50	03/23/15	42349	W17587A2	18	Р	PEICP2A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES

CV -ColdVapor

Metal Data QC Data

FORM 2 (ICV/CCV Summary)

Date Analyzed: 03/23/15

Data File: SW17587A2

Prep Batch: 42349

Analytical Method: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A

Instrument: PEICP2A

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 5031810

Lab Name: Veritech

Lab Code:

Contract:

Nras No:

Sdg No: Case No:

ICV/CCV SOURCE: VHG LABS

Analyte	ICV/CC V Amt	ICV V- 202964- 7	Rec	CCV V- 202964- 20	Rec	CCV V- 202964- 31	Rec	CCV V- 202964- 41	Rec	CCV V- 202964- 51	Rec	Rec	Rec	Rec
Aluminum	10/5	5.00935	100	5.05292	101	5.05396	101	5.01409	100	4.98853	100			
3arium	1/.5	0.49035	98	0.49362	99	0.49290	99	0.49051	98	0.48666	97			:
Beryllium	1/.5	0.48472	97	0.48409	97	0.48694	97	0.47583	95	0.47685	95			
Calcium	100/50	48.77790	98	48.78490	98	49.03790	98	47.98120	96	47.99900	96			
Chromium	1/.5	0.49253	99	0.49243	98	0.49550	99	0.49187	98	0.48686	97			
Соррег	1/.5	0.49381	99	0.49675	99	0.49579	99	0.49482	99	0.49182	98			
ron	10/5	4.94732	99	4.97471	99	4.97539	100	4.94425	99	4.90566	98		:	
/lagnesium	100/50	49.30510	99	49.27260	99	49.57840	99	48.43040	97	48.48460	97			
flanganese	1/.5	0.48314	97	0.48559	97	0.48506	97	0.48291	97	0.47872	96			
lickel	1/.5	0.48787	98	0.48800	98	0.48931	98	0.48533	97	0.48187	96			
ilver	0.2/0.1	0.10022	100	0.09968	100	0.10072	101	0.10006	100	0.09889	99		:	
anadium	1/.5	0.48147	96	0.48577	97	0.48345	97	0.48170	96	0.47677	95			
inc	1/.5	0.48645	97	0.48818	98	0.48984	98	0.48451	97	0.48116	96			

a-indicates analyte failed the ICV limits for 6010B/6010C, 6020/6020A Notes:

b-indicates analyte failed the ICV limits for 200.7 or 200.8

c-indicates analyte failed the CCV limits for 200.7/200.8/245.1/6010B/6010C (Except Hg 7470/7470A,7471A/7471B),6020/6020A

d-indicates analyte failed the CCV limits Hg 7470A/7471A/7471B

Qc Limits: ICV - 200.7: 95-105

CLP ICP ICV/CCV: 90-110 CCV- 200.7/200.8/6010B/6010C/245.1 : 90-110 (Except Hg 7470/7470A/ 7471A/7471B=80-120)

ICV -6010B/6010C/6020/6020A/200.8:90-110

CLP Hg ICV/CCV: 80-120

FORM 2 (LLICV/LLCCV Summary)

Date Analyzed: 03/23/15

Data File: SW17587A2

Prep Batch: 42349

Analytical Method: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A

Instrument: PEICP2A

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 5031810

Lab Name: Veritech

Lab Code:

Contract:

Nras No:

Sdg No:

Case No:

ICV/CCV SOURCE: VHG LABS

Analyte	LLICV/ LLCCV Amt	LLICV [aq] V- 206357- 8	Rec	LLCCV [aq] V- 206357- 21	Rec	LLCCV [aq] V- 206357- 32	Rec	LLCCV [aq] V- 206357- 42	Rec	LLCCV [aq] V- 206357- 52	Rec	R	ec	Rec	Rec
Aluminum	0.2/0.2	0.201843	101	0.200684	100	0.200322	100	0.193212	97	0.195757	98			5	
Barium	0.05/0.05	0.0517241	103	0.0520598	104	0.0509957	102	0.0504520	101	0.0504534	101				i.
Beryllium	0.012/0.012	0.0119102	99	0.0120649	101	0.0117908	98	0.0116915	97	0.0117314	98				
Calcium	5.0/5	5.12828	103	5.16254	103	5.11990	102	5.06189	101	5.08725	102				
Chromium	0.05/0.05	0.0515691	103	0.0516455	103	0.0510786	102	0.0505612	101	0.0506654	101			1	
Copper	0.05/0.05	0.0519584	104	0.0518392	104	0.0512696	103	0.0511370	102	0.0511606	102	!			
ron	0.3/0.3	0.304356	101	0.308366	103	0.302624	101	0.298759	100	0.298604	100				
Magnesium	5.0/5	5.21301	104	5.28485	106	5.17371	103	5.10652	102	5.11474	102				
Manganese	0.04/0.04	0.0400632	100	0.0405023	101	0.0396936	99	0.0392852	98	0.0390969	98				
Nickel	0.05/0.05	0.0505699	101	0.0518297	104	0.0504235	101	0.0496309	99	0.0497768	100				
Silver	0.02/0.02	0.0198897	99	0.0201372	101	0.0196385	98	0.0194558	97	0.0191962	96				
/anadium	0.05/0.05	0.0497853	100	0.0507308	101	0.0492208	98	0.0486419	97	0.0493407	99		!	5	
Zinc	0.05/0.05	0.0502784	101	0.0511372	102	0.0505125	101	0.0497228	99	0.0499732	100				

Notes: a-indicates analyte failed the LLICV limits for 6010B, 6010C, 6020, 6020A

c-indicates analyte failed the LLCCV limits for 6010B, 6010C, 6020, 6020A

Qc Limits: LLCCV- 6010B/6010C/6020/6020A (70-130)

FORM 2 (ICV/CCV Summary)

Date Analyzed: 03/23/15

Data File: SW17587B2

Prep Batch: 42349 Analytical Method: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A

Instrument: PEICPRAD2A

Units: All units in ppm except Hg and icp-ms in ppb Project Number: 5031810

Lab Name: Veritech

Lab Code:

Contract: Nras No:

Sdg No: Case No:

ICV/CCV SOURCE: VHG LABS

Analyte	ICV/CC V Amt	ICV V- 202964- 6	Rec	CCV V- 202964- 19	Rec	CCV V- 202964- 28	Rec	Rec	Rec	Rec	Rec	Rec
Potassium	100/50	48.85420	98	48.69840	97	48.35740	97					
Sodium		49.01790		48.95550	98	48.86270	98					

a-indicates analyte failed the ICV limits for 6010B/6010C, 6020/6020A Notes:

b-indicates analyte failed the ICV limits for 200.7 or 200.8

c-indicates analyte failed the CCV limits for 200.7/200.8/245.1/6010B/6010C (Except Hg 7470/7470A,7471A/7471B),6020/6020A

d-indicates analyte failed the CCV limits Hg 7470A/7471A/7471B

ICV - 200.7 : 95-105 Qc Limits: CCV- 200.7/200.8/6010B/6010C/245.1 : 90-110 (Except Hg 7470/7470A/ 7471A/7471B=80-120)

CLP ICP ICV/CCV: 90-110

ICV -6010B/6010C/6020/6020A/200.8: 90-110

CLP Hg ICV/CCV: 80-120

FORM 2 (LLICV/LLCCV Summary)

Date Analyzed: 03/23/15

Data File: SW17587B2

Prep Batch: 42349

Analytical Method: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A

Instrument: PEICPRAD2A

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 5031810

Lab Name: Veritech

Lab Code: Contract:

Nras No:

Sdg No:

Case No:

ICV/CCV SOURCE: VHG LABS

Analyte	LLICV/ LLCCV Amt	LLICV [aq] V- 206357- 7	Rec	LLCCV [aq] V- 206357- 20	Rec	LLCCV [aq] V- 206357- 29	Rec	Rec	Rec	Rec	Rec	Rec
Potassium	5.0/5	5.22736	105	5.25920	105	5.19203	104					
Sodium	5.0/5	5.25965	105	5.32239	106	5.23953	105					

a-indicates analyte failed the LLICV limits for 6010B, 6010C, 6020, 6020A Notes:

c-indicates analyte failed the LLCCV limits for 6010B, 6010C, 6020, 6020A

LLCCV- 6010B/6010C/6020/6020A (70-130) Qc Limits:

FORM 2 (ICV/CCV Summary)

Date Analyzed: 03/24/15

Data File: SW17586A2 Prep Batch: 42348

Analytical Method: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A

Instrument: PEICP2A

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 5031810

Lab Name: Veritech

Lab Code:

Contract: Nras No:

Sdg No: Case No:

ICV/CCV SOURCE: VHG LABS

Analyte	ICV/CC V Amt	ICV V- 202964- 7	Rec	CCV V- 202964- 20	Rec	CCV V- 202964- 31	Rec	CCV V- 202964- 39	Rec	CCV V- 202964- 49	Rec	Rec	Rec	Rec
Aluminum	10/5	5.06802	101	5.10393	102	5.11523	102	5.10090	102	5.15056	103			
Barium	1/.5	0.49909	100	0.50119	100	0.50106	100	0.50030	100	0.50322	101			
Calcium	100/50	49.69820	99	49.73510	99	50.04400	100	49.80390	100	49.73150	99			
Chromium	1/.5	0.49988	100	0.50151	100	0.49997	100	0.50051	100	0.50384	101			
Copper	1/.5	0.49984	100	0.50114	100	0.50385	101	0.50580	101	0.50906	102			
Iron	10/5	5.04546	101	5.06796	101	5.05332	101	5.04239	101	5.06985	101			
Magnesium	100/50	50.11950	100	50.18150	100	50.30350	101	49.97460	100	49.76240	100			
Manganese	1/.5	0.49158	98	0.49358	99	0.49262	99	0.49281	99	0.49541	99			
Nickel	1/.5	0.49564	99	0.49832	100	0.49566	99	0.49402	99	0.49547	99			
Silver	0.2/0.1	0.10099	101	0.10160	102	0.10095	101	0.10123	101	0.10197	102			
Vanadium	1/.5	0.48775	98	0.48889	98	0.49117	98	0.49328	99	0.49687	99			
Zinc	1/.5	0.49951	100	0.50199	100	0.49449	99	0.49251	99	0.49183	98	-		

Notes: a-indicates analyte failed the ICV limits for 6010B/6010C, 6020/6020A

b-indicates analyte failed the ICV limits for 200.7 or 200.8

c-indicates analyte failed the CCV limits for 200.7/200.8/245.1/6010B/6010C (Except Hg 7470/7470A,7471A/7471B),6020/6020A

d-indicates analyte failed the CCV limits Hg 7470A/7471A/7471B

Qc Limits: ICV - 200.7 : 95-105

CCV- 200.7/200.8/6010B/6010C/245.1 : 90-110 (Except Hg 7470/7470A/ 7471A/7471B=80-120) CLP Hg

ICV -6010B/6010C/6020/6020A/200.8: 90-110

CLP ICP ICV/CCV: 90-110

CLP Hg ICV/CCV: 80-120

FORM 2 (LLICV/LLCCV Summary)

Date Analyzed: 03/24/15

Data File: SW17586A2

Prep Batch: 42348

Analytical Method: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A

Instrument: PEICP2A

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 5031810

Lab Name: Veritech

Lab Code:

Contract:

Nras No:

Sdg No: Case No:

ICV/CCV SOURCE: VHG LABS

Analyte	LLICV/ LLCCV Amt	LLICV [aq] V- 206357- 8	Rec	LLCCV [aq] V- 206357- 21	Rec	LLCCV [aq] V- 206357- 32	Rec	LLCCV [aq] V- 206357- 40	Rec	LLCCV [aq] V- 206357- 50	Rec	Rec	Rec	Rec
Aluminum	0.2/0.2	0.188551	94	0.193655	97	0.193761	97	0.191602	96	0.185129	93	I		
Barium	0.05/0.05	0.0503264	101	0.0509617	102	0.0510607	102	0.0513771	103	0.0503144	101			!
Calcium	5.0/5	5.02835	101	5.04088	101	5.11257	102	5.03203	101	4.98595	100			
Chromium	0.05/0.05	0.0502152	100	0.0504212	101	0.0505819	101	0.0509076	102	0.0500430	100	i		
Copper	0.05/0.05	0.0510584	102	0.0513173	103	0.0516599	103	0.0521962	104	0.0506875	101			
Iron	0.3/0.3	0.291958	97	0.295440	98	0.296517	99	0.298668	100	0.290305	97			
Magnesium	5.0/5	5.11713	102	5.17913	104	5.16095	103	5.16710	103	5.02846	101			
Manganese	0.04/0.04	0.0388397	97	0.0392189	98	0.0393434	98	0.0394047	99	0.0383249	96			
Nickel	0.05/0.05	0.0495776	99	0.0499702	100	0.0503960	101	0.0489609	98	0.0479186	96			
Silver	0.02/0.02	0.0194643	97	0.0196391	98	0.0194552	97	0.0193496	97	0.0189546	95			
/anadium	0.05/0.05	0.0483837	97	0.0494432	99	0.0499765	100	0.0497627	100	0.0475079	95			
Zinc	0.05/0.05	0.0494803	99	0.0498679	100	0.0498414	100	0.0484734	97	0.0478489	96			

Notes: a-indicates analyte failed the LLICV limits for 6010B, 6010C, 6020, 6020A

c-indicates analyte failed the LLCCV limits for 6010B, 6010C, 6020, 6020A

Qc Limits: LLCCV- 6010B/6010C/6020/6020A (70-130)

FORM 2 (ICV/CCV Summary)

Date Analyzed: 03/24/15 Lab Name: Veritech

Data File: SW17587C2 Lab Code:
Prep Batch: 42349 Contract:
Analytical Method: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A Nras No:
Instrument: PEICPRAD2A Sdg No:
Units: All units in ppm except Hg and icp-ms in ppb Case No:

Project Number: 5031810 ICV/CCV SOURCE: VHG LABS

Analyte	ICV/CC V Amt		2 Rec	CCV V- 202964- 18	Rec	CCV V- 202964- 29	Rec	Rec	Rec	Rec	Rec	Rec
Potassium		48.51860		47.85060	96	47.69270	95					
Sodium	100/50	49.59390	99 4	48.36220	97	48.67130	97					i i

Notes: a-indicates analyte failed the ICV limits for 6010B/6010C, 6020/6020A

b-indicates analyte failed the ICV limits for 200.7 or 200.8

c-indicates analyte failed the CCV limits for 200.7/200.8/245.1/6010B/6010C (Except Hg 7470/7470A,7471A/7471B),6020/6020A

d-indicates analyte failed the CCV limits Hg 7470A/7471A/7471B

Qc Limits: ICV - 200.7 : 95-105 CLP ICV/CCV: 90-110

CCV- 200.7/200.8/6010B/6010C/245.1 : 90-110 (Except Hg 7470/7470A/ 7471A/7471B=80-120) CLP Hg ICV/CCV: 80-120

ICV -6010B/6010C/6020/6020A/200.8: 90-110

FORM 2 (LLICV/LLCCV Summary)

Date Analyzed: 03/24/15

Data File: SW17587C2

Prep Batch: 42349

Analytical Method: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A

Instrument: PEICPRAD2A

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 5031810

Lab Name: Veritech

Lab Code:

Contract: Nras No:

Sdg No:

Case No:

ICV/CCV SOURCE: VHG LABS

Analyte	LLICV/ LLCCV Amt	LLICV [aq] V- 206357- 7	Rec	LLCCV [aq] V- 206357- 19	Rec	LLCCV [aq] V- 206357- 30	Rec	Rec	Rec	Rec	Rec	Rec
Potassium	5.0/5	5.07044	101	4.92189	98	4.88445	98		i			
Sodium	5.0/5	5.04570	101	5.00641	100	4.97245	99					

Notes: a-indicates analyte failed the LLICV limits for 6010B, 6010C, 6020, 6020A

c-indicates analyte failed the LLCCV limits for 6010B, 6010C, 6020, 6020A

Qc Limits: LLCCV- 6010B/6010C/6020/6020A (70-130)

FORM 2 (ICV/CCV Summary)

Date Analyzed: 03/24/15

Data File: SW17586B2

Prep Batch: 42348

Analytical Method: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A

Instrument: PEICPRAD2A

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 5031810

Lab Name: Veritech

Lab Code: Contract:

Nras No:

Sdg No: Case No:

ICV/CCV SOURCE: VHG LABS

Analyte	ICV/CC V Amt	ICV V- 202964- 6	Rec	CCV V- 202964- 19	Rec	CCV V- 202964- 30	Rec	CCV V- 202964- 38	Rec	CCV V- 202964- 48	Rec	Rec	Rec	Rec
Potassium	100/50	49.50930	99	51.38980	103	48.84160	98	48.81970	98	48.89610	98			
Sodium	100/50	49.97840	100	50.34460	101	48.71150	97	49.02170	98	49.04720	98			

Notes:

a-indicates analyte failed the ICV limits for 6010B/6010C, 6020/6020A

b-indicates analyte failed the ICV limits for 200.7 or 200.8

c-indicates analyte failed the CCV limits for 200.7/200.8/245.1/6010B/6010C (Except Hg 7470/7470A,7471A/7471B),6020/6020A

d-indicates analyte failed the CCV limits Hg 7470A/7471A/7471B

Qc Limits:

ICV - 200.7: 95-105

CLP ICP ICV/CCV: 90-110

CCV- 200.7/200.8/6010B/6010C/245.1: 90-110 (Except Hg 7470/7470A/ 7471A/7471B=80-120)

ICV -6010B/6010C/6020/6020A/200.8: 90-110

CLP Hg ICV/CCV: 80-120

FORM 2 (LLICV/LLCCV Summary)

Date Analyzed: 03/24/15

Data File: SW17586B2

Prep Batch: 42348

Analytical Method: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A

Instrument: PEICPRAD2A

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 5031810

Lab Name: Veritech

Lab Code:

Contract: Nras No:

Sdg No:

Case No:

ICV/CCV SOURCE: VHG LABS

Analyte	LLICV/ LLCCV Amt	LLICV [aq] V- 206357- 7	Rec	LLCCV [aq] V- 206357- 20	Rec	LLCCV [aq] V- 206357- 31	Rec	LLCCV [aq] V- 206357- 39	Rec	LLCCV [aq] V- 206357- 49	Rec	Rec	Rec	Rec
Potassium	5.0/5	5.02464	100	5.04290	101	4.97208	99	5.00017	100	4.97849	100			
Sodium	5.0/5	5.08520	102	5.11607	102	5.04465	101	4.99703	100	5.00250	100			

Notes: a-indicates analyte failed the LLICV limits for 6010B, 6010C, 6020, 6020A

c-indicates analyte failed the LLCCV limits for 6010B, 6010C, 6020, 6020A

Qc Limits: LLCCV- 6010B/6010C/6020/6020A (70-130)

FORM 2 (ICV/CCV Summary)

Date Analyzed: 03/24/15

Data File: SW32315B Prep Batch: 42349

Analytical Method: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A

Instrument: MS2_7500SWA

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 5031810

Lab Name: Veritech

Lab Code: Contract: Nras No: Sdg No: Case No:

ICV/CCV SOURCE: VHG LABS

Analyte	ICV/CC V Amt	ICV V- 206314- 8 Rec	CCV V- 206318- 13 Rec	CCV V- 206318- 26 Rec	CCV V- 206318- 39 Rec	CCV V- 206318- 50 Rec	Rec	Rec	Rec
Thallium		49.10000 98	50.74000 101	51.62000 103	51.99000 104	53.43000 107		i	

Notes: a-indicates analyte failed the ICV limits for 6010B/6010C, 6020/6020A

b-indicates analyte failed the ICV limits for 200.7 or 200.8

c-indicates analyte failed the CCV limits for 200.7/200.8/245.1/6010B/6010C (Except Hg 7470/7470A,7471A/7471B),6020/6020A

d-indicates analyte failed the CCV limits Hg 7470A/7471A/7471B

Qc Limits: ICV - 200.7 : 95-105 CLP ICV/CCV: 90-110

CCV- 200.7/200.8/6010B/6010C/245.1 : 90-110 (Except Hg 7470/7470A/ 7471A/7471B=80-120) CLP Hg ICV/CCV: 80-120

ICV -6010B/6010C/6020/6020A/200.8: 90-110

FORM 2 (LLICV/LLCCV Summary)

Date Analyzed: 03/24/15

Data File: SW32315B

Lab Name: Veritech

Prep Batch: 42349

Lab Code:

Analytical Method: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A

Contract: Nras No:

Sdg No:

Instrument: MS2_7500SWA

Units: All units in ppm except Hg and icp-ms in ppb

Case No:

Project Number: 5031810

ICV/CCV SOURCE: VHG LABS

Analyte	LLICV/ LLCCV Amt	LLICV V- 206320- 9 Rec	LLCCV V- 206320- 14 Rec	LLCCV V- 206320- 27 Rec	LLCCV V- 206320- 40 Rec	LLCCV V- 206320- 51	Rec	Rec	Rec	Rec
Thallium	1/1	9.302E-01 93	8.967E-01 90	9.977E-01 100	9.296E-01 93	9.152E-01				

a-indicates analyte failed the LLICV limits for 6010B, 6010C, 6020, 6020A Notes:

c-indicates analyte failed the LLCCV limits for 6010B, 6010C, 6020, 6020A

Qc Limits: LLCCV- 6010B/6010C/6020/6020A (70-130)

FORM 2 (ICV/CCV Summary)

Date Analyzed: 03/25/15

Data File: SW32515A

Prep Batch: 42349

Analytical Method: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A

Instrument: MS2_7500SWA

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 5031810

Lab Name: Veritech

Lab Code:

Contract:

Nras No:

Sdg No: Case No:

ICV/CCV SOURCE: VHG LABS

Analyte	ICV/CC V Amt	ICV V- 206314- 8	Rec	CCV V- 206318- 13	Rec	CCV V- 206318- 24	Rec	Rec		Rec	Rec		Rec	Rec
Antimony	50/30	48.62000	97	50.83000	102	49.91000	100							
Arsenic	50/30	49.05000	98	48.95000	98	49.46000	99	i						
Beryllium	50/30	48.19000	96	49.96000	100	50.23000	100							
Cadmium	50/30	49.32000	99	50.61000	101	50.32000	101							
Cobalt	50/30	48.83000	98	50.72000	101	51.00000	102							
ead	50/30	46.55000	93	48.68000	97	48.78000	98		:		!	:		
Selenium	50/30	50.42000	101	246.80000	99	246.90000	99							

Notes:

a-indicates analyte failed the ICV limits for 6010B/6010C, 6020/6020A

b-indicates analyte failed the ICV limits for 200.7 or 200.8

c-indicates analyte failed the CCV limits for 200.7/200.8/245.1/6010B/6010C (Except Hg 7470/7470A,7471A/7471B),6020/6020A

d-indicates analyte failed the CCV limits Hg 7470A/7471A/7471B

Qc Limits:

ICV - 200.7 : 95-105

CCV- 200.7/200.8/6010B/6010C/245.1: 90-110 (Except Hg 7470/7470A/ 7471A/7471B=80-120)

CLP ICP ICV/CCV: 90-110

ICV -6010B/6010C/6020/6020A/200,8: 90-110

CLP Hg ICV/CCV: 80-120

FORM 2 (LLICV/LLCCV Summary)

Date Analyzed: 03/25/15

Data File: SW32515A

Prep Batch: 42349

Analytical Method: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A

Instrument: MS2_7500SWA

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 5031810

Lab Name: Veritech

Lab Code:

Contract:

Nras No:

Sdg No: Case No:

ICV/CCV SOURCE: VHG LABS

Analyte	LLICV/ LLCCV Amt	LLICV V 206320- 9		LLCCV V- 206320- 14	Rec	LLCCV V- 206320- 25	Rec	Rec	 Rec	Rec	,	Rec	Rec
Antimony	1.5/1.5	1.521	101	1.508	101	1.515	101						
Arsenic	1/1	1.046	105	1.024	102	1.010	101						
Beryllium	0.5/0.5	4.885E-01	98	5.037E-01	101	5.061E-01	101	: :				!	i
Cadmium	. 1/1	9.974E-01	100	1.034	103	1.032	. 103						
Cobalt	1/1	1.011	101	1.039	104	1.023	102						
Lead	1.5/1.5	1.411	94	1.435	96	1.429	95						
Selenium	5/5	5.479	110	5.336	107	5.040	101						

a-indicates analyte failed the LLICV limits for 6010B, 6010C, 6020, 6020A Notes:

c-indicates analyte failed the LLCCV limits for 6010B, 6010C, 6020, 6020A

LLCCV- 6010B/6010C/6020/6020A (70-130) Qc Limits:

FORM 2 (ICV/CCV Summary)

Date Analyzed: 03/25/15

Data File: SW32415A

Prep Batch: 42348

Analytical Method: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A

Instrument: MS2_7500SWA

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 5031810

Lab Name: Veritech

Lab Code:

Contract:

Nras No:

Sdg No:

Case No:

ICV/CCV SOURCE: VHG LABS

Analyte	ICV/CC V Amt	ICV V- 206314- 8	Rec	CCV V- 206318- 13	Rec	CCV V- 206318- 26	Rec	CCV V- 206318- 39	Rec	CCV V- 206318- 52	Rec	CCV V- 206318- 56	Rec	Rec	Rec
Antimony	50/30	49.23000	98	50.22000	100	50.49000	101	49.89000	100	49.95000	100	48.33000	97		
Arsenic	50/30	49 06000	98	50.59000	101	50.47000	101	50.15000	100	50.68000	101	48.35000	97		
Beryllium	50/30	49.04000	98	48 57000	97	52.53000	105	52.23000	104	52.47000	105	50.47000	101		
Cadmium	50/30	49.35000	99	50.21000	100	50.22000	100	49.98000	100	50.01000	100	48.16000	96		i
Cobalt	50/30	48.39000	97	50.20000	100	51.02000	102	50.28000	101	51.29000	103	48.28000	97		
Lead	50/30	47.37000	95	48.57000	97	49.03000	98	48.99000	98	48.92000	98	47.29000	95		
Selenium	50/30	50.60000	101	250.90000	100	248.80000	100	245.90000	98	250.50000	100	238.50000	95		
Thallium	50/30	48.49000	97	50.27000	101	51.29000	103	51.45000	103	50.30000	101	49.37000	99		2

Notes:

a-indicates analyte failed the ICV limits for 6010B/6010C, 6020/6020A

b-indicates analyte failed the ICV limits for 200.7 or 200.8

c-indicates analyte failed the CCV limits for 200.7/200.8/245.1/6010B/6010C (Except Hg 7470/7470A,7471A/7471B),6020/6020A

d-indicates analyte failed the CCV limits Hg 7470A/7471A/7471B

Qc Limits:

ICV - 200.7: 95-105

CLP ICP ICV/CCV: 90-110

CCV- 200.7/200.8/6010B/6010C/245.1 : 90-110 (Except Hg 7470/7470A/ 7471A/7471B=80-120)

CLP Hg ICV/CCV: 80-120

ICV -6010B/6010C/6020/6020A/200.8: 90-110

FORM 2 (LLICV/LLCCV Summary)

Date Analyzed: 03/25/15

Data File: SW32415A

Prep Batch: 42348

Analytical Method: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A

Instrument: MS2_7500SWA

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 5031810

Lab Name: Veritech

Lab Code:

Contract:

Nras No:

Sdg No:

Case No:

ICV/CCV SOURCE: VHG LABS

Analyte	LLICV/ LLCCV Amt	LLICV V 206320- 9		LLCCV V- 206320- 14	Rec	LLCCV V- 206320- 27	Rec	LLCCV V- 206320- 40	Rec	LLCCV V- 206320- 53	Rec	LLCCV V- 206320- 57	Rec	Rec	Rec
Antimony	1.5/1.5	1.559	104	1.487	99	1.568	105	1.509	101	1.510	101	1.504	100		
Arsenic	1/1	9.883E-01	99	9.998E-01	100	9.811E-01	98	1.044	104	1.010	101	1.027	103		
Beryllium	0.5/0.5	4.801E-01	96	4.880E-01	98	5.237E-01	105	4.829E-01	97	4.929E-01	99	4.564E-01	91		į
Cadmium	1/1	9.527E-01	95	9.638E-01	96	9.468E-01	95	9.419E-01	94	9.360E-01	94	9.458E-01	95		
Cobalt	1/1	1.016	102	1.023	102	1.006	101	9.906E-01	99	9.983E-01	100	1.010	101		
Lead	1.5/1.5	1.421	95	1.428	95	1.396	93	1.438	96	1.428	95	1.412	94		
Selenium	5/5	5.084	102	5.114	102	5.453	109	5.206	104	5.048	101	5.375	108		
Thallium	1/1	9.559E-01	96	9.320E-01	93	9.971E-01	100	9.319E-01	93	9.171E-01	92	9.225E-01	92		

Notes:

a-indicates analyte failed the LLICV limits for 6010B, 6010C, 6020, 6020A

c-indicates analyte failed the LLCCV limits for 6010B, 6010C, 6020, 6020A

Qc Limits:

LLCCV- 6010B/6010C/6020/6020A (70-130)

FORM 2 (ICV/CCV Summary)

Date Analyzed: 03/27/15

Data File: SW32715A Prep Batch: 42349

Analytical Method: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A

Instrument: MS2_7500SWA

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 5031810

Lab Name: Veritech

Lab Code:

Contract:

Nras No:

Sdg No: Case No:

ICV/CCV SOURCE: VHG LABS

Analyte	ICV/CC V Amt	ICV V- 206943- 8	Rec	CCV V- 206947- 13	Rec	CCV V- 206947- 26	Rec	CCV V- 206947- 39	Rec	CCV V- 206947- 43	Rec	Rec		Rec		Rec
Antimony	50/30	48.07000	96	51.82000	104	51.28000	103	50.35000	101	50.06000	100				!	
Arsenic	50/30	48.55000	97	50.19000	100	50.03000	100	49.55000	99	49.22000	98					
3eryllium	50/30	47.20000	94	50.71000	101	51.25000	102	50.49000	101	49.78000	100	i		!		
Cadmium	50/30	48.31000	97	51.42000	103	51.54000	103	49.99000	100	49.99000	100				i	
Cobalt	50/30	47.18000	94	51.13000	102	50.58000	101	49.61000	99	49.55000	99					!
.ead	50/30	45.98000	92	50.44000	101	50.08000	100	48.43000	97	48.28000	97		8		:	
Selenium	50/30	49.70000	99	250.50000	100	255.50000	102	253.20000	101	247.40000	99					

Notes:

a-indicates analyte failed the ICV limits for 6010B/6010C, 6020/6020A

b-indicates analyte failed the ICV limits for 200.7 or 200.8

c-indicates analyte failed the CCV limits for 200.7/200.8/245.1/6010B/6010C (Except Hg 7470/7470A,7471A/7471B),6020/6020A

d-indicates analyte failed the CCV limits Hg 7470A/7471A/7471B

Qc Limits:

ICV - 200.7: 95-105

CCV- 200.7/200.8/6010B/6010C/245.1: 90-110 (Except Hg 7470/7470A/ 7471A/7471B=80-120)

CLP ICP ICV/CCV: 90-110

ICV -6010B/6010C/6020/6020A/200.8: 90-110

CLP Hg ICV/CCV: 80-120

FORM 2 (LLICV/LLCCV Summary)

Date Analyzed: 03/27/15

Data File: SW32715A

Prep Batch: 42349

Analytical Method: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A

Instrument: MS2_7500SWA

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 5031810

Lab Name: Veritech

Lab Code:

Contract:

Nras No:

Sdg No:

Case No:

ICV/CCV SOURCE: VHG LABS

Analyte	LLICV/ LLCCV Amt	LLICV V 206949- 9		LLCCV V- 206949- 14	Rec	LLCCV V- 206949- 27	Rec	LLCCV V- 206949- 40	Rec	LLCCV V- 206949- 44	Rec	Rec	Rec	Rec
Antimony	1.5/1.5	1.481	99	1,500	100	1.498	100	1.468	98	1.477	98			
Arsenic	1/1	9.937E-01	99	9.522E-01	95	9.803E-01	98	9.725E-01	97	9.779E-01	98			1
Beryllium	0.5/0.5	4.772E-01	95	4.933E-01	99	4.836E-01	97	4.542E-01	91	4.564E-01	91			:
Cadmium	1/1	1.007	101	1.004	100	9.636E-01	96	9.868E-01	99	9.499E-01	95			
Cobalt	1/1	9.671E-01	97	1.019	102	9.799E-01	98	9.526E-01	95	9.530E-01	95			
Lead	1.5/1.5	1.408	94	1.429	95	1.430	95	1.390	93	1.355	90			
Selenium	5/5	5.107	102	5.027	101	5.219	104	5.403	108	4.429	89			

Notes: a-indicates analyte failed the LLICV limits for 6010B, 6010C, 6020, 6020A

c-indicates analyte failed the LLCCV limits for 6010B, 6010C, 6020, 6020A

Qc Limits: LLCCV- 6010B/6010C/6020/6020A (70-130)

LLICV -6010B/6010C/6020/6020A:70-130

FORM 2 (ICV/CCV Summary)

Date Analyzed: 03/20/15

Data File: H17586SWB

Prep Batch: 42348

Analytical Method: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A

Instrument: HGCV1A

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 5031810

Lab Name: Veritech

Lab Code:

Contract:

Nras No:

Sdg No: Case No:

ICV/CCV SOURCE: VHG LABS

		ICV (2)-9	CCV-21	CCV-33	CCV-37				
Analyte	ICV/CC V Amt	Rec	Rec	Rec	Rec	Rec	Rec	Rec	Rec
Mercury	20/10	20.07498 100	10.29513 103	10.25115 103	10.29314 103				

Notes: a-indicates analyte failed the ICV limits for 6010B/6010C, 6020/6020A

b-indicates analyte failed the ICV limits for 200.7 or 200.8

c-indicates analyte failed the CCV limits for 200.7/200.8/245.1/6010B/6010C (Except Hg 7470/7470A,7471A/7471B),6020/6020A

d-indicates analyte failed the CCV limits Hg 7470A/7471A/7471B

Qc Limits: ICV - 200.7: 95-105

CLP ICP ICV/CCV: 90-110

CCV- 200.7/200.8/6010B/6010C/245.1 : 90-110 (Except Hg 7470/7470A/ 7471A/7471B=80-120)

CLP Hg ICV/CCV: 80-120

ICV -6010B/6010C/6020/6020A/200.8: 90-110

FORM 2 (ICV/CCV Summary)

Date Analyzed: 03/23/15

Data File: H17587SWB

Prep Batch: 42349

Analytical Method: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A

Instrument: HGCV1A

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 5031810

Lab Name: Veritech

Lab Code:

Contract:

Nras No:

Sdg No:

Case No:

ICV/CCV SOURCE: VHG LABS

		ICV (2)-9	CCV-21	CCV-33		CCV-38					
Analyte	ICV/CC V Amt	Rec		Rec	Rec		Rec	Rec	Rec	Rec	Rec
Mercury	20/10	18.31353 92	9.54624	95 9.59941	96	9.54527	95				

Notes:

a-indicates analyte failed the ICV limits for 6010B/6010C, 6020/6020A

b-indicates analyte failed the ICV limits for 200.7 or 200.8

c-indicates analyte failed the CCV limits for 200.7/200.8/245.1/6010B/6010C (Except Hg 7470/7470A,7471A/7471B),6020/6020A

d-indicates analyte failed the CCV limits Hg 7470A/7471A/7471B

Qc Limits:

ICV - 200.7: 95-105

CCV- 200.7/200.8/6010B/6010C/245.1 : 90-110 (Except Hg 7470/7470A/ 7471A/7471B=80-120)

CLP ICP ICV/CCV: 90-110

CLP Hg ICV/CCV: 80-120

ICV -6010B/6010C/6020/6020A/200.8:90-110

Date Analyzed: 03/23/15

Data File: SW17587A2

Lab Name: Veritech

Prep Batch: 42349 Reporting Limits Used: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A Lab Code: Contract:

Instrument: PEICP2A

Nras No:

Sdg No:

Units: All units in ppm except Hg and icp-ms in ppb Case No: Project Number: 5031810

Analyte	ICB V-205362- 9	CCB-22	CCB-33	CCB-43	CCB-53	MB 42349 (1)- 12	
Aluminum	.2 U	.2 U	.2 U	.2 U	.2 U	.2 U	
Barium	.05 U	.05 U	.05 U	.05 U	.05 U	.05 U	
Beryllium	.012 U	.012 U	.012 U	.012 U	.012 U	.012 U	
Calcium	5 U	5 U	5 U	5 U	5 U	5 U	
Chromium	.05 U	.05 U	.05 U	.05 U	.0,5 U	.05 U	
Copper	.05 U	.05 U	.05 U	.05 U	.05 U	.05 U	
tron	.3 U	.3 U	.3 U	.3 U	.3 U	.3U	
Magnesium	5 U	5 U	5 U	5 U	5 U	5 U	
Manganese	.04 U	.04 U	.04 U	.04 U	.04 U	.04 U	
Nickel	.05 U	.05 U	.05 U	.05 U	.05 U	.05 U	
Silver	.02 U	.02 U	.02 U	.02 U	.02 U	.02 U	
Vanadium	.05 U	.05 U	.05 U	.05 U	.05 U	.05 U	
Zinc	.05 U	.05 U	.05 U	.05 U	.05 U	.05 U	

Date Analyzed: 03/23/15

Data File: SW17587B2

Lab Name: Veritech

Lab Code:

Prep Batch: 42349

Reporting Limits Used: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A

Contract:

Instrument: PEICPRAD2A

Nras No:

Sdg No:

Units: All units in ppm except Hg and icp-ms in ppb

Case No:

Project Number: 5031810

Analyte	 /-205362- 8	CCB-21	CCB-30	CCB-40	CCB-51	MB 42349 (1)- 11	
Potassium	5 U	5 U	5 U	5 U	5 U	5U	
Sodium	5 U	5 U	5 U	5 U	5 U	5 U	

Date Analyzed: 03/24/15

Data File: SW17586A2

Lab Name: Veritech

Lab Code:

Prep Batch: 42348 Reporting Limits Used: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A

Contract:

Nras No: Sdg No:

Instrument: PEICP2A

Case No:

Units: All units in ppm except Hg and icp-ms in ppb Project Number: 5031810

Analyte	ICB V-205362- 9	CCB-22	CCB-33	CCB-41	CCB-51	MB 42348 (1)- 12
Aluminum	.2 U	.2 U	.2 ∪	.2 U	.2 U	.2U
Barium	.05 U	.05 U	.05 U	.05 U	.05 U	.05 U
Calcium	5 U	5 U	5 U	5 U	5 U	5 U
Chromium	.05 U	.05 U	.05 U	.05 U	.05 U	.05 U
Copper	.05 U	.05 U	.05 U	.05 U	.05 U	.05 U
Iron	.3 U	.3 U	.3 U	.3 U	.3 U	.3 U
Magnesium	5 U	5 U	5 U	5 U	5 U	5 U
Manganese	.04 U	.04 U	.04 U	.04 U	.04 U	.04 U
Nickel	.05 U	.05 U	.05 U	.05 U	.05 U	.05 U
Silver	.02 U	.02 U	.02 U	.02 U	.02 U	.02 U
Vanadium	.05 U	.05 U	.05 U	.05 U	.05 U	.05 U
Zinc	.05 U	.05 U	.05 U	.05 U	.05 U	.05 U

Date Analyzed: 03/24/15

Data File: SW17587C2

Prep Batch: 42349

Reporting Limits Used: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A

Instrument: PEICPRAD2A

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 5031810

Lab Name: Veritech

Lab Code:

Contract:

Nras No:

Sdg No:

Case No:

Analyte	ICB V-205362- 8	CCB-20	CCB-31			
Potassium	5 U	5 U	5 U			
Sodium	5 U	5 U	5 U	 	i	

Date Analyzed: 03/24/15

Data File: SW17586B2

Lab Name: Veritech

Prep Batch: 42348

Lab Code:

Reporting Limits Used: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A

Contract:

Instrument: PEICPRAD2A

Nras No: Sdg No:

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 5031810

Case No:

	ICB V-205362-	CCB-21	CCB-32	CCB-40	CCB-50	MB 42348 (1)-	
Analyte	8	CCB-21	CCB-32	CCB-40	CCB-30	11	
Potassium	5 U	5 U	5 U	5 U	5 U	5 U	
Sodium	5 U	5 U	5 U	5 U	5 U	5 U	

Date Analyzed: 03/24/15

Data File: SW32315B

Lab Name: Veritech

Prep Batch: 42349

Lab Code:

Reporting Limits Used: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A

Contract:

Instrument: MS2_7500SWA

Nras No:

Units: All units in ppm except Hg and icp-ms in ppb

Sdg No:

Case No:

Project Number: 5031810

ICB V-206315-CCB V-206315-CCB V-206315-CCB V-206315-CCB V-206315-MB 42349-16 Analyte 10 15 28 52 41 Thallium 1 U 2 U 1 U 1 U 1 U 1 U

Date Analyzed: 03/25/15

Data File: SW32515A

Lab Name: Veritech

Prep Batch: 42349

Lab Code:

Reporting Limits Used: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A

Contract:

Instrument: MS2_7500SWA

Nras No:

Sdg No:

Units: All units in ppm except Hg and icp-ms in ppb

Case No:

Project Number: 5031810

Analyte		-206315- 10	CCB V-2063	15	CCB V-206315- 26		
Antimony		1.5 U		5 U	1.5 U		
Arsenic		1 U	:	1 U	1 U		
Beryllium		.5 U		5 U	.5 U		
admium		1 U		1 U	1 U		
obalt		1 U		1 U	1 U	:	
ead		1.5 U	1.	5 U	1.5 U		
elenium	1	5 U	1	5 U	5 U		

Date Analyzed: 03/25/15

Data File: SW32415A

Lab Name: Veritech

Prep Batch: 42348

Lab Code:

Reporting Limits Used: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A

Contract:

Nras No:

Instrument: MS2_7500SWA

Sdg No:

Units: All units in ppm except Hg and icp-ms in ppb

Case No:

Project Number: 5031810	

Analyte	10	CCB V-206315- 15	CCB V-206315- 28	CCB V-206315- 41	CCB V-206315- 54	CCB V-206315- 58	MB 42348-16	
Antimony	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	3U	
Arsenic	1 U	1 U	. 1 U	1 U	1 U	10	2 U	
Beryllium	.5 U	.5 U	.5 U	.5 U	.5 U	.5 U	1U	
Cadmium	, 1 U	1 U	1 U	1 U	1 U	1U	2 U	
Cobalt	1 U	1 U	1 U	1 U	1 U	1 U	2 U	
_ead	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	3 U	
Selenium	5 U	5 U	5 U	5 U	5 U	5 U	10 U	
Thallium	1 U	1 U	1 U	1 U	1 U	1 U	2 U	

Date Analyzed: 03/27/15

Data File: SW32715A

Lab Name: Veritech

Prep Batch: 42349

Lab Code:

Reporting Limits Used: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A

Contract:

Nras No:

Instrument: MS2_7500SWA

Sdg No:

Units: All units in ppm except Hg and icp-ms in ppb

Case No:

Project Number: 5031810

Analyte	ICB V-206944- 10	CCB V-206944- 15	CCB V-206944- 28	CCB V-206944- 41	CCB V-206944- 45	MB 42349-16
Antimony	1.5 U	3 U				
Arsenic	1 U	1 U	1 U	1 U	1 U	2 U
Beryllium	.5 U	10				
Cadmium	1 U	1 U	1 U	1 U	1 U	2 U
Cobalt	1 U	1 U	1 U	1 U	1 U	2 U
Lead	1.5 U	3 U				
Selenium	5 U	5 U	5 U	5 U	5 U	10 U

Date Analyzed: 03/20/15

Data File: H17586SWB

Prep Batch: 42348

Reporting Limits Used: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A

Instrument: HGCV1A

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 5031810

Lab Name: Veritech

Lab Code:

Contract:

Nras No:

Sdg No:

Case No:

		ICR 10	CCB-22	CCB-34	CCB-38	MB 42348 (1)-	
A 1. 4 -		ICB-10	CCB-22	CCB-34	OOD-30	110 42340 (1)-	
Analyte							
Mercury	:	711	711	711	711	7 []	
Mercury		., 0			., 0		

Date Analyzed: 03/23/15

Data File: H17587SWB

Prep Batch: 42349

Reporting Limits Used: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A

Instrument: HGCV1A

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 5031810

Lab Name: Veritech

Lab Code:

Contract:

Nras No:

Sdg No:

Case No:

:	ICB-10	CCB-22	CCB-34	CCB-39	MB 42349 (1)-	
Analyte Mercury	.7 U					

Date Analyzed: 03/23/15

Data File: SW17587A2 Prep Batch: 42349

Reporting Limits Used: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A

Instrument: PEICP2A

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 5031810

Lab Name: Veritech

Lab Code: Contract:

Nras No: Sdg No:

Case No:

ICSA/ICSAB: SOURCE: VHG LABS

	Spk	ICSA V- 202074-10		ICSAB V- 202076-11		ICSA V- 202074-29		ICSAB V- 202076-30		ICSA V- 202074-49		ICSAB V- 202076-50			
Analyte	Amt		Rec		Rec		Rec		Rec		Rec		Rec	Rec	Rec
Aluminum	500	508.202	102	513.31000	103	516.245	103	518.35300	104	507.487	101	505.85400	101		
Barium	.5	U		0.52216	104	U		0.52762	106	U		0.51520	103		
Beryllium	.5	U		0.49778	100	U		0.50403	101	U		0.49422	99	!	,
Calcium	500	480.198	96	482,52200	97	483.917	97	488.56300	98	480.068	96	474.09400	95		
Chromium	.5	U		0.49431	99	U		0.49904	100	U		0.48604	97		
Copper	.5	U		0.53920	108	U		0.54369	109	U		0.53536	107		
Iron	200	190.898	95	192.03700	96	191.842	96	194.13400	97	190.037	95	189.98000	95		
Magnesium	500	490.282	98	491.62700	98	497.615	100	504.93200	101	496.51	99	493.62500	99		
Manganese	.5	U		0.49465	99	U		0.49953	100	U	:	0.48804	98		
Nickel	1	U		0.91720	92	U		0.92828	93	U		0.90385	90		
Silver	1	U		1.07705	108	U		1.08723	109	U		1.06251	106		
Vanadium	.5	U		0.48035	96	U		0.48477	97	U		0.47455	95		
Zinc	1 :	U U		0.95822	96			0.97059	97	<u> </u>		0.94755	95		

Notes: a-indicates absolute value of the concentration > 2 * Reporting Limits In the ICSA

b-indicates absolute value of the concentration above Reporting Limits but < 2 * Reporting Limits in the ICSA

c-indicates the recovery failed the Qc Criteria in the ICSAB

Date Analyzed: 03/23/15

Lab Name: Veritech

Data File: SW17587B2

Lab Code:

Prep Batch: 42349

Contract:

Reporting Limits Used: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A

Nras No:

Instrument: PEICPRAD2A

Sdg No:

Units: All units in ppm except Hg and icp-ms in ppb

Case No:

Project Number: 5031810

ICSA/ICSAB: SOURCE: VHG LABS

Analyte	Spk Amt	ICSA V- 202074-9	Rec	ICSAB V- 202076-10	Rec	ICSA V- 202074-26		ICSAB V- 202076-27	Rec	Rec	Rec	Rec	Rec
Aluminum	500	517.243	103	525.80400	105	520.306	104	521.98500	104				i
Calcium	500	493.057	99	502.02800	100	492.421	98	494.28800	99				
Iron	200	194.317	97	198.37000	99	194.304	97	195.35300	98				
Magnesium	500	503.576	101	513.43700	103	501.537	100	503.48500	101		i		

Notes: a-indicates absolute value of the concentration > 2 * Reporting Limits In the ICSA

b-indicates absolute value of the concentration above Reporting Limits but < 2 * Reporting Limits in the ICSA

c-indicates the recovery failed the Qc Criteria in the ICSAB

Date Analyzed: 03/24/15

Lab Name: Veritech

Data File: SW17586A2

Lab Code:

Prep Batch: 42348

Contract:

Reporting Limits Used: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A

Nras No:

Instrument: PEICP2A

Sdg No:

Units: All units in ppm except Hg and icp-ms in ppb

Case No:

Project Number: 5031810

ICSA/ICSAB: SOURCE: VHG LABS

Analyte	Spk Amt	ICSA V- 202074-10	Rec	ICSAB V- 202076-11	Rec	ICSA V- 202074-29	Rec	ICSAB V- 202076-30	Rec	ICSA V- 202074-47	Rec	ICSAB V- 202076-48	Rec	Rec	Rec
Aluminum	500	514.981	103	515.88800	103	512.794	103	519.08100	104	519.492	104	520.18100	104		
Barium	.5	U		0.52537	105	U		0.52949	106	U		0.52712	105		
Calcium	500	492.169	98	490.94400	98	484.739	97	491.32000	98	488.131	98	487.82100	98		
Chromium	.5	U		0.49749	99	U		0.50206	100	U		0.49904	100		
Copper	.5	U	İ	0.54018	108	U		0.54938	110	U		0.54986	110		
Iron	200	192.814	96	194.02600	97	191.942	96	195.01900	98	193.105	97	193.53400	97		
Magnesium	500	500.746	100	498.80500	100	490.65	98	497.71600	100	499.022	100	492.45100	98		
Manganese	.5	U		0.49856	100	U		0.50231	100	U	,	0.50027	100		
Nickel	1	U	!	0.92556	93	U		0.93174	93	U		0.92280	92		
Silver	1	U	1	1.08444	108	U		1.09996	110	U		1.09751	110		
Vanadium	.5	U		0.47344	95	U		0.48123	96	U		0.48483	97		
Zinc	1	U		0.96496	96	U		0.96044	96	U		0.94594	95		

Notes: a-indicates absolute value of the concentration > 2 * Reporting Limits In the ICSA

b-indicates absolute value of the concentration above Reporting Limits but < 2 * Reporting Limits in the ICSA

c-indicates the recovery failed the Qc Criteria in the ICSAB

Date Analyzed: 03/24/15

Lab Name: Veritech

Data File: SW17587C2

Lab Code:

Prep Batch: 42349

Contract:

Reporting Limits Used: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A

Nras No:

Sdg No:

Instrument: PEICPRAD2A

Case No:

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 5031810

ICSA/ICSAB: SOURCE: VHG LABS

Analyte	Spk Amt	ICSA V- 202074-9	Rec	ICSAB V- 202076-10		ICSA V- 202074-27	Rec	ICSAB V- 202076-28		Rec	Rec	Rec	Rec
Aluminum	500	524.058	105	530.48500	106	520.784	104	535.61000	107				
Calcium	500	492,317	98	500.76800	100	491.602	98	507.86500	102				
Iron	200	194.466	97	198.13000	99	194.023	97	200.80300	100				
Magnesium	500	496.323	99	506.49200	101	496.352	99	514.16600	103				

Notes: a-indicates absolute value of the concentration > 2 * Reporting Limits In the ICSA

b-indicates absolute value of the concentration above Reporting Limits but < 2 * Reporting Limits in the ICSA

c-indicates the recovery failed the Qc Criteria in the ICSAB

Date Analyzed: 03/24/15

Lab Name: Veritech

Data File: SW17586B2

Lab Code:

Prep Batch: 42348

Contract:

Reporting Limits Used: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A

Nras No:

Jacks and BEICEBADOA

Sdg No:

Instrument: PEICPRAD2A

Sag No:

Units: All units in ppm except Hg and icp-ms in ppb

Case No:

Project Number: 5031810

ICSA/ICSAB: SOURCE: VHG LABS

	Spk	ICSA V- 202074-9		ICSAB V- 202076-10		ICSA V- 202074-28		ICSAB V- 202076-29		ICSA V- 202074-46		ICSAB V- 202076-47			
Analyte	Amt		Rec		Rec		Rec		Rec		Rec		Rec	Rec	Rec
Aluminum	500	516.079	103	522.45200	104	510.744	102	513.73100	103	516.048	103	514.03900	103		
Calcium	500	531.53	106	520.08500	104	499.502	100	502.16300	100	505.367	101	502.55800	101		
Iron	200	205.876	103	201.73900	101	193,214	97	194.48000	97	195.377	98	194.67300	97		
Magnesium	500	556.55	111	533.23400	107	506.306	101	509.13500	102	511.965	102	509.42000	102		

Notes: a-indicates absolute value of the concentration > 2 * Reporting Limits In the ICSA

b-indicates absolute value of the concentration above Reporting Limits but < 2 * Reporting Limits in the ICSA

c-indicates the recovery failed the Qc Criteria in the ICSAB

Date Analyzed: 03/24/15

Data File: SW32315B Prep Batch: 42349

Reporting Limits Used: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A

Instrument: MS2_7500SWA

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 5031810

Lab Name: Veritech

Lab Code: Contract:

Nras No:

Sdg No: Case No:

ICSA/ICSAB: SOURCE: VHG LABS

Analyte	Spk Amt	ICSA V- 206316-11	ICSAB V- 206317-12 Rec	Rec						
Aluminum	50000	46600	93 #6390.00000	93						
Calcium	150000	153900	103 53500.00000	102						
Iron	125000	118300	95 18000,00000	94						
Magnesium	50000	47740	95 47330.00000	95						

Notes: a-indicates absolute value of the concentration > 2 * Reporting Limits In the ICSA

b-indicates absolute value of the concentration above Reporting Limits but < 2 * Reporting Limits in the ICSA

c-indicates the recovery failed the Qc Criteria in the ICSAB

Date Analyzed: 03/25/15

Lab Name: Veritech

Data File: SW32515A

Lab Code:

Prep Batch: 42349

Contract:

Reporting Limits Used: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A

Nras No: Sdg No:

Instrument: MS2_7500SWA

Units: All units in ppm except Hg and icp-ms in ppb

Case No:

Project Number: 5031810

ICSA/ICSAB: SOURCE: VHG LABS

Analyte	Spk Amt	ICSA V- 206316-11	Rec	ICSAB V- 206317-12		Rec	Rec	Rec	Rec	Rec	Rec
Aluminum	50000	45600	91	45320.00000	91						
Arsenic	100	U		96.58000	97						
Cadmium	100	1.356b		92.56000	93						
Calcium	150000	152100	101	53100.00000	102						
Cobalt	200	U		186.10000	93				!		
Iron	125000	117400	94	17700.00000	94		į				
Magnesium	50000	47110	94	46750.00000	94			!			
Selenium	100	U		90.61000	91					-	

Notes: a-indicates absolute value of the concentration > 2 * Reporting Limits In the ICSA

b-indicates absolute value of the concentration above Reporting Limits but < 2 * Reporting Limits in the ICSA

c-indicates the recovery failed the Qc Criteria in the ICSAB

Date Analyzed: 03/25/15

Lab Name: Veritech

Data File: SW32415A

Lab Code:

Prep Batch: 42348

Contract:

Reporting Limits Used: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A

Nras No:

Instrument: MS2_7500SWA

Sdg No:

Units: All units in ppm except Hg and icp-ms in ppb

Case No:

Project Number: 5031810

ICSA/ICSAB: SOURCE: VHG LABS

Analyte	Spk Amt	ICSA V- 206316-11	ICSAB V- 206317-12 Rec		Rec	Rec	Rec	Rec	Rec	Rec
Aluminum	50000	45590	91 46170.00000	92						
Arsenic	100	U	98.25000	98		!				
Cadmium	100	1.448b	92.70000	93						
Calcium	150000	150600	100 51800.00000	101						
Cobalt	200	· U	185.30000	93						
Iron	125000	116800	93 18200.00000	95						
Magnesium	1 50000	46800	94 47670.00000	95						
Selenium	100	U	90.27000	90			<u>:</u>			

Notes: a-indicates absolute value of the concentration > 2 * Reporting Limits In the ICSA

b-indicates absolute value of the concentration above Reporting Limits but < 2 * Reporting Limits in the ICSA

c-indicates the recovery failed the Qc Criteria in the ICSAB

Date Analyzed: 03/27/15

Lab Name: Veritech

Data File: SW32715A

Lab Code:

Prep Batch: 42349

Contract:

Reporting Limits Used: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A

Nras No:

Instrument: MS2_7500SWA

Sdg No:

Case No:

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 5031810

ICSA/ICSAB: SOURCE: VHG LABS

Analyte	Spk Amt	ICSA V- 206945-11	ICSAB V- 206946-12 Rec		Rec	Rec	Rec	Rec	Rec	Rec
Aluminum	50000	47880	96 47600.00000	95	i					
Arsenic	100	U	97.96000	98				!	i	
Cadmium	100	1.221b	93.02000	93						
Calcium	150000	151000	101 52200.00000	101					;	
Cobalt	200	U	183.90000	92						
Iron	125000	117300	94 17400.00000	94				!		
Magnesium	50000	46600	93 46370 00000	93						
Selenium	100	U	92.65000	93						

Notes: a-indicates absolute value of the concentration > 2 * Reporting Limits In the ICSA

b-indicates absolute value of the concentration above Reporting Limits but < 2 * Reporting Limits in the ICSA

c-indicates the recovery failed the Qc Criteria in the ICSAB

PREP BATCH: 42348

Instrument Type: ICP/HG

Analytical Me	thod(s):601	0/200.7/7	7470A/7471A/2	245.1				ICP units in pp	m, ICPMS ar	nd Hgin	ppb	
TxtQcType:	LCS	Ма	trix: AQUEC	OUS	Sample	elD: LC	SW 42348	-/-				
Analyte	Batchid	DF	Data Fil	Seq#:			Spk Conc:		Spk Adde	Recov	Qual Lo Lim	Hi Lim
Aluminum	42348	1	SW17586	13			4.5267		5.000	91	80	120
Barium	42348	1	SW17586	13			0.4533		0.500	91	80	120
Calcium	42348	1	SW17586	13			45.9178		50.00	92	80	120
Chromium	42348	1	SW17586	13			0.4535		0.500	91	80	120
Copper	42348	1	SW17586	13			0.4564		0.500	91	80	120
Iron	42348	1	SW17586	13			4.5576		5.000	91	80	120
Magnesium	42348	1	SW17586	13			45.8075		50.00	92	80	120
Manganese	42348	1	SW17586	13			0.4520		0.500	90	80	120
Mercury	42348	1	H17586S	12			10.0184		10	100	80	120
Nickel	42348	1	SW17586	13			0.4567		0.500	91	80	120
Potassium	42348	1	SW17586	12			45.1708		50	90	80	120
Silver	42348	1	SW17586	13			0.0853		0.100	85	80	120
Sodium	42348	1	SW17586	12			45.3039		50	91	80	120
Vanadium	42348	1	SW17586	13			0.4468		0.500	89	80	120
Zinc	42348	1	SW17586	13			0.4583		0.500	92	80	120
TxtQcType:	Batchid		trix: AQUE		Sample	eID: LC	SW MR 4234	8				
Analyte		DF	Data Fil	Seq#:		-	Spk Conc: 4.6667		Spk Adde	Recov		Hi Lim
Aluminum	42348	1	SW17586	14					5.000	93	80	120
Barium	42348	1	SW17586	14			0.4667		0.500	93	80	120
Calcium	42348	1	SW17586	14			47.1301		50.00	94	80	120
Chromium	42348	. 1	SW17586	14			0.4698		0.500	94	80	120
Copper	42348	1	SW17586	14			0.4705		0.500	94	80	120
Iron	42348	1	SW17586	14			4.7073		5.000	94	80 .	120
Magnesium	42348	1	SW17586	14			46.9471		50.00	94	80	120
Manganese	42348	1	SW17586	14			0.4663		0.500	93	80	120
Mercury	42348	1	H17586S	13			10.1297		10	101	80	120
Nickel	42348	1	SW17586	14			0.4708		0.500	94	80	120
Potassium	42348	1	SW17586	13			48.3141		50	97	80	120
Silver	42348	1	SW17586	14			0.0878		0.100	88	80	120
Sodium	42348	1	SW17586	13			47.3536		50	95	80	120
Vanadium	42348	1	SW17586	14			0.4606		0.500	92	80	120
Zinc	42348	1	SW17586	14			0.4717		0.500	94	80	120
TxtQcType:	MS	Mat	trix: AQUEC	ous	Sample	eID: AC	83807-033					
Analyte	Batchld	DF	Data Fil	Seq#:	NS Data Fil			NS Conc:	Spk Adde	Recov		Hi Lim
Aluminum	42348	1	SW17586	17	SW17586	15		0.2U	5.00	92	75 	125
Barium	42348	1	SW17586	17	SW17586	15		0.05U	0.50	97	75	125
Calcium	42348	1	SW17586	17	SW17586	15	55.9287	9.9460	50.0	92	75	125
Chromium	42348	1	SW17586	17	SW17586		0.4551	0.05U	0.50	91	75	125
Copper	42348	1	SW17586	17	SW17586		0.4625	0.05U	0.50	93	75	125
ron	42348	1	SW17586	17	SW17586	15	6.0963	1.5312	5.00	91	75	125
Magnesium	42348	1	SW17586	17	SW17586	15	49.4707	5U	50.0	99	75	125
Manganese	42348	1	SW17586	17	SW17586	15	0.5449	0.0943	0.50	90	75	125
Mercury	42348	1	H17586S	16	H17586S	14	9.2561	.70U	10	93	75	125
Nickel	42348	1	SW17586	17	SW17586	15	0.4569	0.05U	0.50	91	75	125
Potassium	42348	1	SW17586	16	SW17586	14	48.6099	5U	50.00	97	75	125
Silver	42348	1	SW17586	17	SW17586	15	0.0861	0.02U	.100	86	75	125
Sodium	42348	1	SW17586	16	SW17586		78.2538	31.6467	50.00	93	75	125
Vanadium	42348	1	SW17586	17	SW17586		0.4510	0.05U	0.50	90	75	125
Zinc	42348	1	SW17586	17	SW17586		0.4800	0.05U	0.50	96	75	125

PREP BATCH: 42348

Instrument Type: ICP/HG

Analytical Method(s):6010/200.7/7470A/7471A/245.1

TxtQcType: I	MSD	Ma	trix: AQUE	DUS	Sample	ID: AC	83807-034					
Analyte	Batchld	DF	Data Fil	Seq#:	NS Data Fil	Seq#	Spk Conc:	NS Conc:	Spk Adde	Recov	Qual Lo Lim	Hi Lim
Aluminum	42348	1	SW17586	18	SW17586	15	4.5889	0.2U	5.00	92	75	125
Barium	42348	1	SW17586	18	SW17586	15	0.4874	0.05U	0.50	97	75	125
Calcium	42348	1	SW17586	18	SW17586	15	56.9074	9.9460	50.0	94	75	125
Chromium	42348	1	SW17586	18	SW17586	15	0.4587	0.05U	0.50	92	75	125
Copper	42348	1	SW17586	18	SW17586	15	0.4635	0.05U	0.50	93	75	125
Iron	42348	1	SW17586	18	SW17586	15	5.9533	1.5312	5.00	88	75	125
Magnesium	42348	1	SW17586	18	SW17586	15	50.3683	5U	50.0	101	75	125
Manganese	42348	1	SW17586	18	SW17586	15	0.5233	0.0943	0.50	86	75	125
Mercury	42348	1	H17586S	17	H17586S	14	10.2408	.70U	10	102	75	125
Nickel	42348	1	SW17586	18	SW17586	15	0.4606	0.05U	0.50	92	75	125
Potassium	42348	1	SW17586	17	SW17586	14	48.6077	5U	50.0	97	75	125
Silver	42348	1	SW17586	18	SW17586	15	0.0865	0.02U	.100	86	75	125
Sodium	42348	1	SW17586	17	SW17586	14	77.2700	31.6467	50	91	75	125
Vanadium	42348	1	SW17586	18	SW17586	15	0.4533	0.05U	0.50	91	75	125
Zinc	42348	1	SW17586	18	SW17586	15	0.4901	0.05U	0.50	98	75	125

PREP BATCH: 42348

Instrument Type: ICPMS

Analytical Method(s):6020/200.8

TxtQcType:	LCS	Ma	trix: AQUEC	DUS	Sample	eID: LC	SW 42348					
Analyte	BatchId	DF	Data Fil	Seq#:			Spk Conc:	eng on our group of the control of t	Spk Adde	Recov	Qual Lo Lim	Hi Lim
Antimony	42348	1	SW32415	17			233.3000		250	93	80	120
Arsenic	42348	1	SW32415	17			221.2000		250	88	80	120
Beryllium	42348	1	SW32415	17			236.3000		250	95	80	120
Cadmium	42348	1	SW32415	17			224.4000		250	90	80	120
Cobalt	42348	1	SW32415	17			220.3000		250	88	80	120
_ead	42348	1	SW32415	17			227.6000		250	91	80	120
Selenium	42348	1	SW32415	17			219.1000		250	88	80	120
Thallium	42348	. 1	SW32415	17			216.3000		250	87	80	120
TxtQcType:	LCSMR	Ма	trix: AQUEC	ous	Sample	eID: LC	SW MR 4234	3				
Analyte	BatchId	DF	Data Fil	Seq#:			Spk Conc:		Spk Adde	Recov	Qual Lo Lim	Hi Lim
Antimony	42348	1	SW32415	18			238.9000		250	96	80	120
Arsenic	42348	1	SW32415	18			229.3000		250	92	80	120
Beryllium	42348	1	SW32415	18			243.7000		250	97	80	120
Cadmium	42348	1	SW32415	18			226.9000		250	91	80	120
Cobalt	42348	1	SW32415	18			229.0000		250	92	80	120
_ead	42348	1	SW32415	18			233.0000		250	93	80	120
Selenium	42348	1	SW32415	18			224.7000		250	90	80	120
Thallium	42348	1	SW32415	18			222.0000		250	89	80	120
TxtQcType:	MS	Ма	trix: AQUE	ous	Sample	elD: AC	83807-033					
Analyte	BatchId	DF	Data Fil	Seq#:	NS Data Fil	Seq#	Spk Conc:	NS Conc:	Spk Adde	Recov	Qual Lo Lim	Hi Lin
Antimony	42348	1	SW32415	22	SW32415	19	252.3000	1.5U	250	101	75	125
Arsenic	42348	1	SW32415	22	SW32415	19	245.8000	1U	250	98	75	125
Beryllium	42348	1	SW32415	22	SW32415	19	250.7000	0.5U	250	100	75	125
Cadmium	42348	1	SW32415	22	SW32415	19	239.2000	1U	250	96	75	125
Cobalt	42348	1	SW32415	22	SW32415	19	245.0000	1U	250	98	75	125
_ead	42348	1	SW32415	22	SW32415	19	244.7000	5.7380	250	96	75	125
Selenium	42348	1	SW32415	22	SW32415	19	235.3000	5U	250	94	75	125
Thallium	42348	1	SW32415	22	SW32415	19	233.1000	1U	250	93	75	125
TxtQcType:	MSD	Ма	trix: AQUEC	ous	Sample	eID: AC	83807-034					
Analyte	Batchld	DF	Data Fil	Seq#:	NS Data Fil			NS Conc:	Spk Adde		Qual Lo Lim	Hi Lin
Antimony	42348	1	SW32415	23	SW32415	19	243.3000	1.5U	250	97	75	125
Arsenic	42348	1	SW32415	23	SW32415	19	235.4000	1U	250	94	75	125
Beryllium	42348	1	SW32415	23	SW32415	19	243.2000	0.5U	250	97	75	125
Cadmium	42348	.1	SW32415	23	SW32415	19	229.0000	1U	250	92	75	125
Cobalt	42348	1	SW32415	23	SW32415	19	229.7000	1U	250	92	75	125
_ead	42348	1	SW32415	23	SW32415	19	235.7000	5.7380	250	92	75	125
Selenium	42348	1	SW32415	23	SW32415	19	228.9000	5U	250	92	75	125
					SW32415					89	75	125

PREP BATCH: 42348

Instrument Type: ICPMS

Analytical Method(s):6020/200.8

TxtQcType: PS	Ма	trix: AQUEC	ous	SampleID: AC83807-003							
Analyte	DF	Data Fil	Seq#:	NS Data Fil	Seq#	Spk Conc:	NS Conc:	Spk Adde	Recov	Qual Lo Lim	Hi Lim
Antimony	1	SW32415	24	SW32415	19	44.2900	1.5U	50	89	80	120
Arsenic	1	SW32415	24	SW32415	19	44.5700	1U	50	89	80	120
Beryllium	1	SW32415	24	SW32415	19	49.6100	0.5U	50	99	80	120
Cadmium	1	SW32415	24	SW32415	19	44.1100	1U	50	88	80	120
Cobalt	1	SW32415	24	SW32415	19	49.3100	1U	50	99	80	120
Lead	1	SW32415	24	SW32415	19	53.0000	5.7380	50	95	80	120
Selenium	1	SW32415	24	SW32415	19	209.9000	5U	250	84	80	120
Thallium	1	SW32415	24	SW32415	19	48.5300	1U	50	97	80	120

PREP BATCH: 42349

Instrument Type: ICP/HG

Analytical Me	thod(s):601	0/200.7/	7470A/7471A/	245.1				ICP units in pp	om, ICPMS ar	d Hg in	ppb	
TxtQcType:	LCS	Ma	atrix: AQUE	ous	Sample	eID: LC	SW 42349		-			
Analyte	BatchId	DF	Data Fil	Seq#:			Spk Conc:		Spk Adde	Recov	Qual Lo Lim	Hi Lim
Aluminum	42349	1	SW17587	13			4.9038		5.000	98	80	120
Barium	42349	1	SW17587	13			0.4916		0.500	98	80	120
Beryllium	42349	1	SW17587	13			0.4865		0.500	97	80	120
Calcium	42349	1	SW17587	13			47.0912		50.00	94	80	120
Chromium	42349	1	SW17587	13			0.4925		0.500	98	80	120
Copper	42349	1	SW17587	13			0.5106		0.500	102	80	120
ron	42349	1	SW17587	13			4.9276		5.000	99	80	120
Magnesium	42349	1	SW17587	13			47.1581		50.00	94	80	120
Manganese	42349	1	SW17587	13			0.4898		0.500	98	80	120
/lercury	42349	1	H17587S	12			9.6987		10	97	80	120
vickel	42349	1	SW17587	13			0.4942		0.500	99	80	120
otassium	42349	1	SW17587	12			46.2684		50	93	80	120
Silver	42349	1	SW17587	13			0.0976		0.100	98	80	120
Sodium	42349	1	SW17587	12			46.6422		50	93	80	120
/anadium	42349	1	SW17587	13			0.4853		0.500	97	80	120
Zinc	42349	1	SW17587	13			0.5019		0.500	100	80	120
-1110	42349		34417307				0.3013		0.000			120
TxtQcType:			atrix: AQUE	OUS	Sample	eID: LC	SW MR 4234	9				
Analyte	BatchId	DF	Data Fil	Seq#:			Spk Conc:		Spk Adde	Recov		Hi Lim
Numinum	42349	1	SW17587	14			4.9109		5.000	98	80	120
Barium	42349	1	SW17587	14			0.4890		0.500	98	80	120
Beryllium	42349	1	SW17587	14			0.4891		0.500	98	80	120
Calcium	42349	1	SW17587	14			47.6199		50.00	95	80	120
Chromium	42349	1	SW17587	14			0.4915		0.500	98	80	120
Copper	42349	1	SW17587	14			0.4946		0.500	99	80	120
ron	42349	1	SW17587	14			4.9084		5.000	98	80	120
Magnesium	42349	1	SW17587	14			47,5533		50.00	95	80	120
<i>M</i> anganese	42349	1	SW17587	14			0.4889		0.500	98	80	120
Mercury	42349	1	H17587S	13			9.7184		10	97	80	120
Nickel	42349	1	SW17587	14			0.4907		0.500	98	80	120
otassium	42349	1	SW17587	13			46.6715		50	93	80	120
Silver	42349	1	SW17587	14			0.0976		0.100	98	80	120
Sodium	42349	1	SW17587	13			47.3426		50	95	80	120
√anadium	42349	1	SW17587	14			0.4846		0.500	97	80	120
Zinc	42349	,1	SW17587	14			0.4869		0.500	97	80	120
TxtQcType:	MS	Ma	atrix: AQUE	ous	Sample	eID: AC	83807-035					
Analyte	BatchId	DF	Data Fil	Seq#:	NS Data Fil		Spk Conc:	NS Conc:	Spk Adde	Recov	Qual Lo Lim	Hi Lim
luminum	42349	1	SW17587	17	SW17587	15	4.9259	0.2U	5.00	99	75	125
Barium	42349	1	SW17587	17	SW17587	15	0.5268	0.05U	0.50	105	75	125
Beryllium	42349	1	SW17587	17	SW17587	15	0.4829	0.012U	0.50	97	75	125
alcium	42349	1	SW17587	17	SW17587	15	57.9706	11.2590	50.0	93	75	125
hromium	42349	1	SW17587	17	SW17587	15	0.4921	0.05U	0.50	98	75	125
opper	42349	1	SW17587	17	SW17587	15	0.4974	0.05U	0.50	99	75	125
on	42349	1	SW17587	17	SW17587	15	5.0694	0.3U	5.00	101	75	125
lagnesium	42349	1	SW17587	17	SW17587	15	50.7364	5U	50.0	101	75	125
langanese	42349	1	SW17587	17	SW17587	15	0.5201	0.04U	0.50	104	75	125
fercury	42349	1	H17587S	16	H17587S	14	10.0067	.70U	10	100	75	125
lickel	42349	1	SW17587	17	SW17587	15	0.4906	0.05U	0.50	98	75	125
otassium	42349	1	SW17587	16	SW17587	14	48.0664	5U	50.00	96	75	125
Silver	42349	· · ¦ · 1	SW17587	17	SW17587	15	0.0978	0.02U	.100	98	75	125
Sodium	42349 42349		SW17587 SW17587	16	SW17587 SW17587	14	83.9554	36.0153	50.00	96	75 75	125
		1				15		0.05U	0.50	98	75 75	125
∕anadium	42349	1	SW17587	17	SW17587	15	0.4901	0.050	0.50	90	75	120

1

SW17587

17

SW17587

42349

Zinc

0.05U

0.50

75

125

15 0.5084

PREP BATCH: 42349

Instrument Type: ICP/HG

Analytical Method(s):6010/200.7/7470A/7471A/245.1

TxtQcType:	MSD	Ma	trix: AQUEC	OUS	Sample	eID: AC	83807-036					
Analyte	Batchid	DF	Data Fil	Seq#:	NS Data Fil	Seq#	Spk Conc:	NS Conc:	Spk Adde	Recov	Qual Lo Lim	Hi Lim
Aluminum	42349	1	SW17587	18	SW17587	15	4.9973	0.2U	5.00	100	75	125
Barium	42349	1	SW17587	18	SW17587	15	0.5340	0.05U	0.50	107	75	125
Beryllium	42349	1	SW17587	18	SW17587	15	0.5039	0.012U	0.50	101	75	125
Calcium	42349	1	SW17587	18	SW17587	15	60.5604	11.2590	50.0	99	75	125
Chromium	42349	1	SW17587	18	SW17587	15	0.4986	0.05U	0.50	100	75	125
Copper	42349	1	SW17587	18	SW17587	15	0.5060	0.05U	0.50	101	75	125
lron	42349	1	SW17587	18	SW17587	15	5.0565	0.3U	5.00	101	75	125
Magnesium	42349	1	SW17587	18	SW17587	15	53.1418	5U	50.0	106	75	125
Manganese	42349	1	SW17587	18	SW17587	15	0.5390	0.04U	0.50	108	75	125
Mercury	42349	1	H17587S	17	H17587S	14	10.0803	.70U	10	101	75	125
Nickel	42349	1	SW17587	18	SW17587	15	0.4983	0.05U	0.50	100	75	125
Potassium	42349	1	SW17587	17	SW17587	14	48.8165	5U	50.0	98	75	125
Silver	42349	1	SW17587	18	SW17587	15	0.0995	0.02U	.100	100	75	125
Sodium	42349	1	SW17587	17	SW17587	14	84.3869	36.0153	50	97	75	125
Vanadium	42349	1	SW17587	18	SW17587	15	0.4975	0.05U	0.50	100	75	125
Zinc	42349	1	SW17587	18	SW17587	15	0.5166	0.05U	0.50	103	75	125

PREP BATCH: 42349

Instrument Type: ICPMS

Analytical Method(s):6020/200.8

Analytical Me	5(1)Ou(5).002	0/200.6						iCF units in pp	ill, ICFIVIS al	iu rigili	ppb	
TxtQcType:	LCS	Mat	rix: AQUE	DUS	Sample	eID: LC	SW 42349					
Analyte	Batchid	DF	Data Fil	Seq#:			Spk Conc:		Spk Adde	Recov	Qual Lo Lim	Hi Lin
Antimony	42349	1	SW32715	17			251.2000		250	100	80	120
Arsenic	42349	1	SW32715	17			232.9000		250	93	80	120
3eryllium	42349	1	SW32715	17			244.3000		250	98	80	120
Cadmium	42349	1	SW32715	17			236.2000		250	94	80	120
Cobalt	42349	1	SW32715	17			231.8000		250	93	80	120
Lead	42349	1	SW32715	17			242.8000		250	97	80	120
Selenium	42349	1	SW32715	17			239.2000		250	96	80	120
Thallium	42349	1	SW32315	17	· · · · · · · · · · · · · · · · · · ·		227.1000		250	91	80	120
TxtQcType:	LCSMR	Mat	rix: AQUE(DUS	Sample	eID: LC	SW MR 4234	9				
Analyte	Batchld	DF	Data Fil	Seq#:			Spk Conc:		Spk Adde	Recov	Qual Lo Lim	Hi Lir
Antimony	42349	1	SW32715	18			257.1000		250	103	80	120
Arsenic	42349	1	SW32715	18			238.5000		250	95	80	120
Beryllium	42349	1	SW32715	18			251.8000		250	101	80	120
Cadmium	42349	1	SW32715	18			240.6000		250	96	80	120
Cobalt	42349	1	SW32715	18			233.6000		250	93	80	120
Lead	42349	1	SW32715	18			250.6000		250	100	80	120
Selenium	42349	1	SW32715	18			245.1000		250	98	80	120
Thallium	42349		SW32315	18			230.6000		250	92	80	120
TxtQcType:	MS	Mat	rix: AQUE	ous	Sample	eID: AC	83807-035					
Analyte	BatchId	DF	Data Fil	Seq#:	NS Data Fil	Seq#	Spk Conc:	NS Conc:	Spk Adde	Recov	Qual Lo Lim	Hi Lir
Antimony	42349	1	SW32715	22	SW32715	19	260.5000	1.5U	250	104	75	125
Arsenic	42349	1	SW32715	22	SW32715	19	244.9000	1U	250	98	75	125
Beryllium	42349	1	SW32715	22	SW32715	19	243.9000	0.5U	250	98	75	125
Cadmium	42349	1	SW32715	22	SW32715	19	242.4000	1U	250	97	75	125
Cobalt	42349	1	SW32715	22	SW32715	19	234.9000	1U	250	94	75	125
Lead	42349	1	SW32715	22	SW32715	19	250.2000	1.5U	250	100	75	125
Selenium	42349	1	SW32715	22	SW32715	19	242.0000	5U	250	97	75	125
Thallium	42349	1	SW32315	22	SW32315	19	231.6000	1U	250	93	75	125
TxtQcType:	MSD	Mat	rix: AQUEC	ous	Sample	elD: AC	83807-036					
Analyte	BatchId	DF	Data Fil	Seq#:	NS Data Fil			NS Conc:	Spk Adde		Qual Lo Lim	Hi Lir
Antimony	42349	1	SW32715	23	SW32715	19	257.9000	1.5U	250	103	75	125
	42349	1	SW32715	23	SW32715	19	242.2000	1U	250	97	75	125
Arsenic		1	SW32715	23	SW32715	19	244.0000	0.5U	250	98	75	125
	42349	•	_				044 0000	41.1	250	97	75	125
Beryllium	42349 42349	1	SW32715	23	SW32715	19	241.3000	1U	200			
Beryllium Cadmium				23 23	SW32715 SW32715	19 19	235.2000	10	250	94	75	125
Arsenic Beryllium Cadmium Cobalt Lead	42349	1	SW32715									
Beryllium Cadmium Cobalt	42349 42349	1	SW32715 SW32715	23	SW32715	19	235.2000	1U	250	94	75	125

PREP BATCH: 42349

Instrument Type: ICPMS

Analytical Method(s):6020/200.8

TxtQcType: PS	Ma	trix: AQUE	DUS	SampleID: AC83807-004							
Analyte	DF	Data Fil	Seq#:	NS Data Fil	Seq#	Spk Conc:	NS Conc:	Spk Adde	Recov	Qual Lo Lim	Hi Lim
Antimony	1	SW32715	24	SW32715	19	51.0900	1.5U	50	102	80	120
Arsenic	1	SW32715	24	SW32715	19	50.2900	1U	50	101	80	120
Beryllium	1	SW32715	24	SW32715	19	50.1600	0.5U	50	100	80	120
Cadmium	1	SW32715	24	SW32715	19	49.8100	1U	50	100	80	120
Cobalt	1	SW32715	24	SW32715	19	49.7300	1U	50	99	80	120
Lead	1	SW32715	24	SW32715	19	51.8000	1.5U	50	104	80	120
Selenium	1	SW32715	24	SW32715	19	242,1000	5U	250	97	80	120
Thallium	1	SW32315	24	SW32315	19	51.2700	1U	50	103	80	120

FORM6/FORM9

RPD/%Difference Data

PREP BATCH: 42348

Instrument Type: ICP/HG

Analytical Method(s):6010/200.7/7470A/7471A/245.1

			_			<u> </u>			
Analyte	BatchId	Data Fil	Seq#:	NS File	Seq#	Result 1	Result 2	RPD	Limi
Aluminum	42348	SW17586	14	SW17586	13	4.6667	4.5267	3	20
Barium	42348	SW17586	14	SW17586	13	0.4667	0.4533	2.9	20
Calcium	42348	SW17586	14	SW17586	13	47.1301	45.9178	2.6	20
Chromium	42348	SW17586	14	SW17586	13	0.4698	0.4535	3.5	20
Copper	42348	SW17586	14	SW17586	13	0.4705	0.4564	3	20
Iron	42348	SW17586	14	SW17586	13	4.7073	4.5576	3.2	20
Magnesium	42348	SW17586	14	SW17586	13	46.9471	45.8075	2.5	20
Manganese	42348	SW17586	14	SW17586	13	0.4663	0.4520	3.1	20
Mercury	42348	H17586S	13	H17586S	12	10.1297	10.0184	1.1	20
Nickel	42348	SW17586	14	SW17586	13	0.4708	0.4567	3.1	20
Potassium	42348	SW17586	13	SW17586	12	48.3141	45.1708	6.7	20
Silver	42348	SW17586	14	SW17586	13	0.0878	0.0853	2.9	20
Sodium	42348	SW17586	13	SW17586	12	47.3536	45.3039	4.4	20
Vanadium	42348	SW17586	14	SW17586	13	0.4606	0.4468	3	20
Zinc	42348	SW17586	14	SW17586	13	0.4717	0.4583	2.9	20
TxtQcType: N	/IR	Matrix:	AQUEOUS	San	npleID: AC8	3807-003			
Analyte	BatchId	Data Fil	Seq#:	NS File	Seq#	Result 1	Result 2	RPD	Limi
Aluminum	42348	SW17586	16	SW17586	15	0.2U	0.2U		20
Barium	42348	SW17586	16	SW17586	15	0.05U	0.05U		20
Calcium	42348	SW17586	16	SW17586	15	10.2790	9.9460	3.3	20
Chromium	42348	SW17586	16	SW17586	15	0.05U	0.05U		20
Copper	42348	SW17586	16	SW17586	15	0.05U	0.05U		20
Iron	42348	SW17586	16	SW17586	15	1.4330	1.5312	6.6	20
Magnesium	42348	SW17586	16	SW17586	15	5U	5U		20
Manganese	42348	SW17586	16	SW17586	15	0.0921	0.0943	2.4	20
Mercury	42348	H17586S	15	H17586S	14	.70U	.70U	-	20
Nickel	42348	SW17586	16	SW17586	15	0.05∪	0.05U		20
Potassium	42348	SW17586	15	SW17586	14	5U	5U		20
Silver	42348	SW17586	16	SW17586	15	0.02U	0.02U		20
Sodium	42348	SW17586	15	SW17586	14	32.8071	31.6467	3.6	20
Vanadium	42348	SW17586	16	SW17586	15	0.05U	0.05U		20
Zinc	42348	SW17586	16	SW17586	15	0.05U	0.05U		20
ZIIIC	42340			34417300		0.000	0.000		
TxtQcType: N	/ISD	Matrix:	AQUEOUS	Sam	pleID: AC8:	3807-034			
Analyte	Batchld	Data Fil	Seq#:	MS File	Seq#	Result 1	Result 2	RPD	Lim
Aluminum	42348	SW17586	18	SW17586	17	4.5889	4.5761	.28	20
Barium	42348	SW17586	18	SW17586	17	0.4874	0.4852	.45	20
Calcium	42348	SW17586	18	SW17586	17	56.9074	55.9287	1.7	20
Chromium	42348	SW17586	18	SW17586	17	0.4587	0.4551	.79	20
Copper	42348	SW17586	18	SW17586	17	0.4635	0.4625	.22	20
Iron	42348	SW17586	18	SW17586	17	5.9533	6.0963	2.4	20
Magnesium	42348	SW17586	18	SW17586	17	50.3683	49.4707	1.8	20
Manganese	42348	SW17586	18	SW17586	17	0.5233	0.5449	4	20
Mercury	42348	H17586S	17	H17586S	16	10.2408	9.2561	10	20
Nickel	42348	SW17586	18	SW17586	17	0.4606	0.4569	.81	20
Potassium	42348	SW17586	17	SW17586	16	48.6077	48.6099	.0045	20
Silver	42348	SW17586	18	SW17586	17	0.0865	0.0861	.41	20
Sodium	42348	SW17586	17	SW17586	16	77.2700	78.2538	1.3	20
Vanadium	42348	SW17586	18	SW17586	17	0.4533	0.4510	.51	20
Zinc	42348	SW17586	18	SW17586	17	0.4901	0.4800	2.1	20

FORM6/FORM9

RPD/%Difference Data

PREP BATCH: 42348

Instrument Type: ICP/HG

Analytical Method(s):6010/200.7/7470A/7471A/245.1

TxtQcType: S	SD	Matrix:	AQUEOUS	Sam	pleID: AC838	307-003				
Analyte	Batchld	Data Fil	Seq#:	NS File	Seq# DF	Result 1	Result 2	%Diff		Limit
Aluminum	42348	SW17586	23	SW17586	15 5	-0.0113	0.0414			10
Barium	42348	SW17586	23	SW17586	15 5	0.0040	0.0246	18	а	10
Calcium	42348	SW17586	23	SW17586	15 5	1.9062	9.9460	4.2		10
Chromium	42348	SW17586	23	SW17586	15 5	-0.0009	-0.0006			10
Copper	42348	SW17586	23	SW17586	15 5	0.0001	0.0025			10
Iron	42348	SW17586	23	SW17586	15 5	0.2949	1.5312	3.7		10
Magnesium	42348	SW17586	23	SW17586	15 5	0.6314	3.5344	11	а	10
Manganese	42348	SW17586	23	SW17586	15 5	0.0179	0.0943	5.3		10
Nickel	42348	SW17586	23	SW17586	15 5	-0.0017	-0.0010			10
Potassium	42348	SW17586	22	SW17586	14 5	0.2256	1.1742	3.9		10
Silver	42348	SW17586	23	SW17586	15 5	-0.0001	0.0000			10
Sodium	42348	SW17586	22	SW17586	14 5	6.3575	31.6467	0.44		10
Vanadium	42348	SW17586	23	SW17586	15 5	-0.0013	-0.0003			10
Zinc	42348	SW17586	23	SW17586	15 5	0.0044	0.0225	2.1		10

FORM6/FORM9

RPD/%Difference Data PREP BATCH: 42348

Instrument Type: ICPMS
Analytical Method(s):6020/200.8

Analytical Me	thod(s):6020/2	200.8				IC	P units in ppm, IC	CPMS and Hg	in ppb
TxtQcType:	LCSMR	Matrix:	AQUEOUS	San	npleID: LCSW	/ MR 42348	-		
Analyte	Batchld	Data Fil	Seq#:	NS File	Seq#	Result 1	Result 2	RPD	Lim
Antimony	42348	SW32415	18	SW32415	17	238.9000	233.3000	2.4	20
Arsenic	42348	SW32415	18	SW32415	17	229.3000	221.2000	3.6	20
Beryllium	42348	SW32415	18	SW32415	17	243.7000	236.3000	3.1	20
Cadmium	42348	SW32415	18	SW32415	17	226.9000	224.4000	1.1	20
Cobalt	42348	SW32415	18	SW32415	17	229.0000	220.3000	3.9	20
Lead	42348	SW32415	18	SW32415	17	233.0000	227.6000	2.3	20
Selenium	42348	SW32415	18	SW32415	17	224.7000	219.1000	2.5	20
Thallium	42348	SW32415	18	SW32415	17	222.0000	216.3000	2.6	20
TxtQcType:	MR	Matrix:	AQUEOUS	San	npleID: AC838	807-003			
Analyte	Batchld	Data Fil	Seq#:	NS File	Seq#	Result 1	Result 2	RPD	Lim
Antimony	42348	SW32415	20	SW32415	19	1.5U	1.5U		20
Arsenic	42348	SW32415	20	SW32415	19	1U	1U		20
Beryllium	42348	SW32415	20	SW32415	19	0.5U	0.5U		20
Cadmium	42348	SW32415	20	SW32415	19	1U	1U		20
Cobalt	42348	SW32415	20	SW32415	19	1U	1U		20
Lead	42348	SW32415	20	SW32415	19	1.5U	5.7380		20
Selenium	42348	SW32415	20	SW32415	19	5U	5U	·	20
Thallium	42348	SW32415	20	SW32415	19	1U	1U		20
TxtQcType:	MSD	Matrix:	AQUEOUS	San	npleID: AC838	807-034			
Analyte	Batchld	Data Fil	Seq#:	MS File	Seq#	Result 1	Result 2	RPD	Lim
Antimony	42348	SW32415	23	SW32415	22	243.3000	252.3000	3.6	20
Arsenic	42348	SW32415	23	SW32415	22	235.4000	245.8000	4.3	20
Beryllium	42348	SW32415	23	SW32415	22	243.2000	250.7000	3	20
Cadmium	42348	SW32415	23	SW32415	22	229.0000	239.2000	4.4	20
Cobalt	42348	SW32415	23	SW32415	22	229.7000	245.0000	6.4	20
Lead	42348	SW32415	23	SW32415	22	235.7000	244.7000	3.7	20
Selenium	42348	SW32415	23	SW32415	22	228.9000	235.3000	2.8	20
Thallium	42348	SW32415	23	SW32415	22	222.5000	233.1000	4.7	20
TxtQcType:	SD	Matrix:	AQUEOUS	Sam	pleID: AC838	307-003			
Analyte	Batchld	Data Fil	Seq#:	NS File	Seq# DF	Result 1	Result 2	%Diff	Lim
Antimony	42348	SW32415	21	SW32415	19 5	0.0427	0.1163	84 c	10
Arsenic	42348	SW32415	21	SW32415	19 5	0.0654	0.3309	1.2	10
Beryllium	42348	SW32415	21	SW32415	19 5	-0.0003	0.0340		10
Cadmium	42348	SW32415	21	SW32415	19 5	0.1019	0.4694	8.5	10
Cobalt	42348	SW32415	21	SW32415	19 5	0.0651	0.4641		10
Lead	42348	SW32415	21	SW32415	19 5	1.1930	5.7380	4	10
Leau									
Selenium	42348	SW32415	21 21	SW32415	19 5 19 5	-0.0379	0.0299		10

20

20

20

FORM6/FORM9

RPD/%Difference Data PREP BATCH: 42349

Instrument Type: ICP/HG

Sodium

Zinc

Vanadium

42349

42349

42349

SW17587

SW17587

SW17587

15

16

16

SW17587

SW17587

SW17587

14

15

15

40.0570

0.05U

0.05U

36.0153

0.05U

0.05U

11

Analytical Method(s):6010/200.7/7470A/7471A/245.1

Analytical Meti	hod(s):6010/2	200.7/7470A/7	471A/245.1		.	IC	P units in ppm, I	CPMS and Hg	in ppb
TxtQcType: L	.CSMR	Matrix:	AQUEOUS	Sam	pleID: LCS	W MR 42349			
Analyte	Batchld	Data Fil	Seq#:	NS File	Seq#	Result 1	Result 2	RPD	Limi
Aluminum	42349	SW17587	14	SW17587	13	4.9109	4.9038	.14	20
Barium	42349	SW17587	14	SW17587	13	0.4890	0.4916	.51	20
Beryllium	42349	SW17587	14	SW17587	13	0.4891	0.4865	.53	20
Calcium	42349	SW17587	14	SW17587	13	47.6199	47.0912	1.1	20
Chromium	42349	SW17587	14	SW17587	13	0.4915	0.4925	.2	20
Copper	42349	SW17587	14	SW17587	13	0.4946	0.5106	3.2	20
Iron	42349	SW17587	14	SW17587	13	4.9084	4.9276	.39	20
Magnesium	42349	SW17587	14	SW17587	13	47.5533	47.1581	.83	20
Manganese	42349	SW17587	14	SW17587	13	0.4889	0.4898	.2	20
Mercury	42349	H17587S	13	H17587S	12	9.7184	9.6987	.2	20
Nickel	42349	SW17587	14	SW17587	13	0.4907	0.4942	.7	20
Potassium	42349	SW17587	13	SW17587	12	46.6715	46.2684	.87	20
Silver	42349	SW17587	14	SW17587	13	0.0976	0.0976	.0044	20
Sodium	42349	SW17587	13	SW17587	12	47.3426	46.6422	1.5	20
Vanadium	42349	SW17587	14	SW17587	13	0.4846	0.4853	.15	20
Zinc	42349	SW17587	14	SW17587	13	0.4869	0.5019	3	20
TxtQcType: N	<i>I</i> IR	Matrix:	AQUEOUS	San	npleID: AC8	3807-004			
Analyte	BatchId	Data Fil	Seq#:	NS File	Seq#	Result 1	Result 2	RPD	Limi
Aluminum	42349	SW17587	16	SW17587	15	0.2U	0.2U		20
Barium	42349	SW17587	16	SW17587	15	0.05U	0.05U		20
Beryllium	42349	SW17587	16	SW17587	15	0.012U	0.012U		20
Calcium	42349	SW17587	16	SW17587	15	12.4451	11.2590	10	20
Chromium	42349	SW17587	16	SW17587	15	0.05U	0.05U		20
Copper	42349	SW17587	16	SW17587	15	0.05U	0.05U		20
Iron	42349	SW17587	16	SW17587	15	0.3U	0.3U		20
Magnesium	42349	SW17587	16	SW17587	15	5U	5U		20
Manganese	42349	SW17587	16	SW17587	15	0.04U	0.04U		20
Mercury	42349	H17587S	15	H17587S	14	.70U	.70U		20
Nickel	42349	SW17587	16	SW17587	15	0.05U	0.05U		20
Potassium	42349	SW17587	15	SW17587	14	5U	5U		20
Silver	42349	SW17587	16	SW17587	15	0.02U	0.02U	7	20
O 11	40040	014/47507	45	014/47507	4.4	10.0570	20.0452	4.4	20

10

10

10

10

10

10

FORM6/FORM9

RPD/%Difference Data

PREP BATCH: 42349

Instrument Type: ICP/HG

Analytical Method(s):6010/200.7/7470A/7471A/245.1

ICP units in ppm, ICPMS and Hg in ppb

TxtQcType: N	MSD	Matrix:	AQUEQUS	Sam	pleID: AC838	807-036				
Analyte	Batchld	Data Fil	Seq#:	MS File	Seq#	Result 1	Result 2	RPD		Limit
Aluminum	42349	SW17587	18	SW17587	17	4.9973	4.9259	1.4		20
Barium	42349	SW17587	18	SW17587	17	0.5340	0.5268	1.4		20
Beryllium	42349	SW17587	18	SW17587	17	0.5039	0.4829	4.2		20
Calcium	42349	SW17587	18	SW17587	17	60.5604	57.9706	4.4		20
Chromium	42349	SW17587	18	SW17587	17	0.4986	0.4921	1.3		20
Copper	42349	SW17587	18	SW17587	17	0.5060	0.4974	1.7		20
Iron	42349	SW17587	18	SW17587	17	5.0565	5.0694	.26		20
Magnesium	42349	SW17587	18	SW17587	17	53.1418	50.7364	4.6		20
Manganese	42349	SW17587	18	SW17587	17	0.5390	0.5201	3.6		20
Mercury	42349	H17587S	17	H17587S	16	10.0803	10.0067	.73		20
Nickel	42349	SW17587	18	SW17587	17	0.4983	0.4906	1.5		20
Potassium	42349	SW17587	17	SW17587	16	48.8165	48.0664	1.5		20
Silver	42349	SW17587	18	SW17587	17	0.0995	0.0978	1.7		20
Sodium	42349	SW17587	17	SW17587	16	84.3869	83.9554	.51		20
Vanadium	42349	SW17587	18	SW17587	17	0.4975	0.4901	1.5		20
Zinc	42349	SW17587	18	SW17587	17	0.5166	0.5084	1.6		20
TxtQcType: S	SD	Matrix:	AQUEOUS	San	npleID: AC838	307-004				
Analyte	Batchld	Data Fil	Seq#:	NS File	Seq# DF	Result 1	Result 2	%Diff		Limit
Aluminum	42349	SW17587	23	SW17587	15 5	-0.0068	0.0418			10
Barium	42349	SW17587	23	SW17587	15 5	0.0060	0.0285	5.9		10
Beryllium	42349	SW17587	23	SW17587	15 5	0.0006	0.0007	347	С	10
Calcium	42349	SW17587	23	SW17587	15 5	2.3317	11.2590	3.5		10
Chromium	42349	SW17587	23	SW17587	15 5	0.0006	0.0007	337	С	10
Copper	42349	SW17587	23	SW17587	15 5	0.0007	0.0015			10
Iron	42349	SW17587	23	SW17587	15 5	0.0001	0.0111			10
Magnesium	42349	SW17587	23	SW17587	15 5	0.8750	4.0356	8.4		10
Manganese	42349	SW17587	23	SW17587	15 5	0.0070	0.0339	2.6		10
-										

42349

42349

42349

42349

42349

42349

Nickel

Silver

Zinc

Sodium

Vanadium

Potassium

SW17587

SW17587

SW17587

SW17587

SW17587

SW17587

23

22

23

22

23

23

SW17587

SW17587

SW17587

SW17587

SW17587

SW17587

15 5

14 5

15 5

14 5

15 5

15 5

0.0003

0.5528

0.0006

7.5226

-0.0001

0.0053

0.0006

1.5767

0.0003

36.0153

0.0016

0.0217

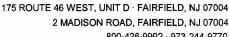
75

4.4

22

С

FORM6/FORM9


RPD/%Difference Data

PREP BATCH: 42349

Instrument Type: ICPMS Analytical Method(s):6020/200.8

ICP units in ppm, ICPMS and Hg in ppb

TxtQcType:	LCSMR	Matrix:	AQUEOUS	Sam	pleID: LCSW	MR 42349			
Analyte	BatchId	Data Fil	Seq#:	NS File	Seq#	Result 1	Result 2	RPD	Limit
Antimony	42349	SW32715	18	SW32715	17	257.1000	251.2000	2.3	20
Arsenic	42349	SW32715	18	SW32715	17	238.5000	232.9000	2.4	20
Beryllium	42349	SW32715	18	SW32715	17	251.8000	244.3000	3	20
Cadmium	42349	SW32715	18	SW32715	17	240.6000	236.2000	1.8	20
Cobalt	42349	SW32715	18	SW32715	17	233.6000	231.8000	.77	20
Lead	42349	SW32715	18	SW32715	17	250.6000	242.8000	3.2	20
Selenium	42349	SW32715	18	SW32715	17	245.1000	239.2000	2.4	20
Thallium	42349	SW32315	18	SW32315	17	230.6000	227.1000	1.5	20
TxtQcType:	MR	Matrix:	AQUEOUS	San	pleID: AC838	307-004			
Analyte	Batchid	Data Fil	Seq#:	NS File	Seq#	Result 1	Result 2	RPD	Limit
Antimony	42349	SW32715	20	SW32715	19	1.5U	1.5U		20
Arsenic	42349	SW32715	20	SW32715	19	1U	1U		20
Beryllium	42349	SW32715	20	SW32715	19	0.5U	0.5U		20
Cadmium	42349	SW32715	20	SW32715	19	1U	1U		20
Cobalt	42349	SW32715	20	SW32715	19	1U	1U		20
Lead	42349	SW32715	20	SW32715	19	1.5U	1.5U		20
Selenium	42349	SW32715	20	SW32715	19	5U	5U		20
Thallium	42349	SW32315	20	SW32315	19	1U	1U		20
TxtQcType:	MSD	Matrix:	AQUEOUS	San	npleID: AC838	307-036			
Analyte	Batchld	Data Fil	Seq#:	MS File	Seq#	Result 1	Result 2	RPD	Limit
Antimony	42349	SW32715	23	SW32715	22	257.9000	260.5000	1	20
Arsenic	42349	SW32715	23	SW32715	22	242.2000	244.9000	1.1	20
Beryllium	42349	SW32715	23	SW32715	22	244.0000	243.9000	.041	20
Cadmium	42349	SW32715	23	SW32715	22	241.3000	242.4000	.45	20
Cobalt	42349	SW32715	23	SW32715	22	235.2000	234.9000	.13	20
Lead	42349	SW32715	23	SW32715	22	250.5000	250.2000	.12	20
Selenium	42349	SW32715	23	SW32715	22	240.0000	242.0000	.83	20
Thallium	42349	SW32315	23	SW32315	22	220.6000	231.6000	4.9	20
TxtQcType:	SD	Matrix:	AQUEOUS	San	npleID: AC838	307-004			
Analyte	Batchld	Data Fil	Seq#:	NS File	Seq# DF	Result 1	Result 2	%Diff	Limit
Antimony	42349	SW32715	21	SW32715	19 5	0.0547	0.1349	103 c	10
Arsenic	42349	SW32715	21	SW32715	19 5	0.0548	0.3150	13 c	10
D 111	42349	SW32715	21	SW32715	19 5	0.0161	0.0776		10
Beryllium	42349	SW32715	21	SW32715	19 5	0.0182	0.0491	86 c	10
•	72373				40.5	0.0055	0.1070		10
Cadmium	42349	SW32715	21	SW32715	19 5	0.0255	0.1079		10
Cadmium Cobalt		SW32715 SW32715	21 21	SW32715 SW32715	19 5 19 5	0.0255	0.1079		10
Beryllium Cadmium Cobalt Lead Selenium	42349								

800-426-9992 · 973-244-9770

Project: Dzus

Client PO: 42420

Report To: AECOM

100 Red School House Rd.

Suite B-1

Chestnut Ridge, NY 10977

Attn: Paul Kareth

Received Date: 4/13/2015

Report Date: 4/28/2015

Deliverables: NYDOH-CatA

Lab ID: AC84282

Lab Project No: 5041306

This report is a true report of results obtained from our tests of this material. The report relates only to those samples received and analyzed by the laboratory. All results meet the requirements of the NELAC Institute standards. Laboratory reports may not be reproduced, except in full, without the written approval of the laboratory.

In lieu of a formal contract document, the total aggregate liability of Hampton-Clarke to all parties shall not exceed Hampton-Clarke's total fee for analytical services rendered.

Robin Cousineau - Quality Assurance Director

OR

Jean Revolus - Laboratory Director

(07071)

(68-00463)

NY (ELAP11408)

KY (90124)

CT (PH-0671)

Analytical & Field Services

THIS CATEGORY "A" REPORT IS NUMBERED FROM 1 to 105

HC Case Narrative

Client: AECOM Project: Dzus

HC Project: 5041306

Hampton-Clarke (HC) received the following samples on 4/13/2015:

Client ID	HC Sample ID	Matrix	Analysis
RC-2 SW MS	AC84282-001	Aqueous	Metals (6010C/6020A), Mercury (7470A)
RC-2 SW MSD	AC84282-002	Aqueous	Metals (6010C/6020A), Mercury (7470A)
SW-5 SW	AC84282-003	Aqueous	Metals (6010C/6020A), Mercury (7470A)
SW-6 SW	AC84282-004	Aqueous	Metals (6010C/6020A), Mercury (7470A)
SC-4 SW	AC84282-005	Aqueous	Metals (6010C/6020A), Mercury (7470A)
SED-1	AC84282-006	Sediment	Metals (6010C/6020A), Mercury (7471A)
SED-2	AC84282-007	Sediment	Metals (6010C/6020A), Mercury (7471A)
SED-3	AC84282-008	Sediment	Metals (6010C/6020A), Mercury (7471A)
SED-4	AC84282-009	Sediment	Metals (6010C/6020A), Mercury (7471A)
SED-5	AC84282-010	Sediment	Metals (6010C/6020A), Mercury (7471A)
SED-6	AC84282-011	Sediment	Metals (6010C/6020A), Mercury (7471A)
SW-1	AC84282-012	Aqueous	Metals (6010C/6020A), Mercury (7470A)
SW-2	AC84282-013	Aqueous	Metals (6010C/6020A), Mercury (7470A)
SW-3	AC84282-014	Aqueous	Metals (6010C/6020A), Mercury (7470A)
SW-4	AC84282-015	Aqueous	Metals (6010C/6020A), Mercury (7470A)
SC- 1 SED	AC84282-016	Sediment	Cadmium (6020A)
SC- 2 SED	AC84282-017	Sediment	Cadmium (6020A)
SC-3 SED	AC84282-018	Sediment	Cadmium (6020A)
SC- 4 SED	AC84282-019	Sediment	Metals (6010C/6020A), Mercury (7471A)
SC- 5 SED	AC84282-020	Sediment	Cadmium (6020A)
FQ-1 SED	AC84282-021	Sediment	Metals (6010C/6020A), Mercury (7471A)
FQ-2 SED MS	AC84282-022	Sediment	Metals (6010C/6020A), Mercury (7471A)
FQ-2 SED MSD	AC84282-023	Sediment	Metals (6010C/6020A), Mercury (7471A)
RC-1 SW	AC84282-024	Aqueous	Metals (6010C/6020A), Mercury (7470A)

This case narrative is in the form of an exception report. Method specific and/or QA/QC anomalies related to this report only are detailed below.

Metals Analysis:

The Matrix Spike and/or Matrix Spike Duplicate for batches 42515, 42514, 42513 had recoveries outside QC limits. Please refer to the applicable Form 5/7 for the recoveries.

The serial dilution for batches 42515, 42514, 42513 are outside QC limits for one or more analytes. Please refer to the applicable Form 6/9 for the recoveries.

The RPD between the QC sample and the Method Replicate had recoveries outside QC limits in batch 42515, 42514. Please refer to the applicable Form 6/9 for the recoveries.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Quality Assurance Director

Jean Revolus **Laboratory Director**

																												4:	<u>13</u>	<u>06</u>		00	0	<u> </u>
		Additional Notes					10), Relinquisped by:				2 8 Y				60	Lab Sample #		18480	Batch #	←	ONLY	USE		oena Report to:	10) Company	1c) Send Invoice to:		Address:	1a) Customer:			Service Cer	Ph: 800-42	Hamp 175 Route
		<u>tes</u>			180	1	bed/by:	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		5 Month	Se-4 SW	80-65D	5W-5 500	Re-2 SW MSD	RC-2 SW MS	4) Customer Sample ID		OT - Other (please specify under item 9, Comments)	WW - Waste Water OL - Oil	DW - Drinking Water S - Soil	Matrix Codes			シャト・ントの	<i>D</i> . (P4 : 1	0 70		PACK POR PACI	ဂ္ဂ	NELAC/NJ #07071 P	Service Center: 137-D Gaither Drive, Mount Laurei, New Jersey 08054 Ph (Service Center): 856-780-6057 Fax: 856-780-6056	Ph: 800-426-9992 973-244-9770 Fax: 973-244-9787 973-439-1458	Hampton-Clarke, Inc. (WBE/DBE/SBE) 175 Route 46 West and 2 Madison Road, Fairfield, New Jersey 07004
					- Marik	えん	Accepted by:			igifu	V 4/10 15:15	1/4/11 1040	11 11/14	4,1 3,4	DT 9/11 7:40	Matrix Date Time	5) 6) Sample	nder item 9, Comments)	OL - Oil	Soil A - Air		===> Check If Contingent ===>		1697	アントー	P HEROMICOIN		, CHO	KARETH	ion	NELACINJ #07071 PA #68-00463 NY #11408 CT #PH-0671 KY #90124 DE HSCA Approved	urel, New Jersey Udub4 ax: 856-780-6056	44-9787 973-439-1458	ield, New Jersey 07004
					CCC		ed by:				\ \ \				X	Gra	b (G)	ite (C)	TA.	Type //	Sample			And wholehout (in Applicable)		26) Project Location (City/State):	2b) Project Mgr:	45.50,5 VI	2a) Project:		PH-0671 KY #90124 DE	A Women-Owned,	Hampton-Clarke	<u>_</u>
					d/10/1020	054 118116	Date Time													-		Analysis (specify memous or	palveis (appoint mot	pilobie).	slicable).	Jiy/Siale):		1	といる	Project Information	HSCA Approved	#Up#Cise accessors A Women-Owned, Disadvantaged, Small Business Enterprise		CHAIN O
Please note NUI A fee of \$5/s	11) Sampler (print name):	High Contai	Check if applicable:	_	<u> </u>	<u> </u>																nous & parameter insts)										iness Enterprise	CORD	CHAIN OF CUSTODY
MBERED items. If not co	name):	High Contaminant Concentrations NJ LSRP Project (also check boxes above/right)	if applicable: Project-Specific Reporting Limits	SPLP (BN, BNA, Metals)	BN or BNA (8270D SIM)	Indicate if low-level methods required to meet current groundwater standards (SPLP for soil):	Comments, Notes, Special Requirements, HAZARDS									Non Me(## 0	-					Other: * Expedited TAT N	Other	5 Business Days (25%)	4 Business Days (35%)*	3 Business Days (50%)*	2 Business Days (75%)*	1 Business Day (100%)*	When Available:	Turnaround	3) Repo	クロイトのC (Triple associately Land Company) # 100m (Company)
ompleted your analytic storage should sample not be	Da	s above/right)		Other (specify):	NJDEP SRS	need to be met:	ecial Requirements.				<u> </u>				<u></u>	HCI H2S HNG	03	# of Bottles	!			<=== Check If Contingent <===		Expedited TAT Not Always Available Plea	Calegory >	Full / Category B	PA Reduced	NY Reduced	NJ Reduced	Results + QC (Waste)	Data Summary	Report Type	3) Reporting Requirements (Please Circle)	Page Page
Please note NUMBERED items. If not completed your analytical work may be delayed. A fee of \$5/sample will be assessed for storage should sample not be activated for any analysis.	Date:	Cooler Temperature		ecify):	S S	need to be met: N IDEB CWOC	HAZARDS				\				SURFACE 140	9) Comments	<u> У 1</u>			•			() 建设度	Please Check with Lab.	Char	A File (Specify below):	Excel - PA Regulatory	Excel - NY Regulatory	Excel - NJ Regulatory	EnviroData	Hazsite/CSV	Electronic Deliv.	Please Circle)	je of

					_							·		<u>-</u>						T	_								<u> </u>		30	6	0	00	3
		Additional Notes		(Jan 160	10) Relinguished by:	(10-14	400	₹ 30 30	218	-01-	<u>၂</u> ၀၀		40%	-087	~00¢	Lab Sample #		HC84782	Batch #	← [ONI V	FOR LAB		1d) Send Report to:	1c) Send Invoice to:	1b) Email/Cell/Fax/Ph:		Address:	1a) Customer:		Ph (Service Cer	Hamp 175 Route
		les				N.	hed by:	Sw-Y	Sw-3	SU-J	SW-1	500-6	SCO)-5	4- ass	Sc-)-3	500-2	560-1	4) Customer Sample ID		OT - Other (please specify under item 9, Comments)		DW - Drinking Water S - Soil	Matrix			to:	to:	ay/Ph:			PAUL KARETH	NELAC/NJ #07071 PA #58-00463 NY #11408 CT #PH-0671 KY #90124 DE HSCA Approved	Ph (Service Center): 856-780-6057 Fax: 856-780-6056	Service Center: 137-D Gaither Drive, Mount Laurel, New Jersey 08054	Hampton-Clarke, Inc. (WBE/DBE/SBE) 175 Route 46 West and 2 Madison Road, Fairfield, New Jersey 07004
					1						Ŏ	-					N	Matrix	5)	ify under item 9,	SL - Sludge		- 1	===> (A #68-00463	ax: 856-780-	urel, New Je	SE/DBE
					2000	1	Acc	1 8	9:10	9:	9,	0	-	00	9:10	9	41159	Date T	6) Sample	, Comments)		A - Air		Check If Contingent ===>								NY #11408	6056	ersey 08054	/SBE)
					X .	7	cepted by:	8:45	ā	9:40	1,30	(Sr. 4)	11:00	S4:8	õ	9:40	9:20	Time		<u> </u>		1 4	_	ntinger		N		N	N		N	CT #₽ -	L		
					1		by:	<				_					×	┡	npos b (G)	ite (C)		Type	Sample)		(d) Quo		C) Proje	2b) Project Mgr:		2a) Project:	0671 K	A W	I Week	T
					1			1				« -				_	X	7/	4	MER	A(_	2				2d) Quote/PO # (If Applicable):		2c) Project Location (City/State):	ect Mgr:		ct:	Y #90124	omen-O	Hampton-C	+
						_																		7) Ana		If Applica		ion (City/	1			I DE HS	wned, Di	larke	1
				-	lists	1/18/1	Date,																	lysis (spe		able):		State):			Project Information	CA Approve	sadvantaged,		유
					1020	OF BY	Time																	7) Analysis (specify methods &							rmation		A Women-Owned, Disadvantaged, Small Business Enterprise	אר כ	CHAIN OF CUSTODY
Plea	11) S	Ш	Check																														ess Ente	Š	SUS
se note	amplei	High C	if applicable:	SPLP (BN or	e if low-												-					_	parame									rprise		T OD\
Please note NUMBERED items. If not completed your analytical work may be delayed. A fee of \$5/sample will be assessed for storage should sample not be activated for any analysis.	Sampler (print name):	High Contaminant Concentrations NJ LSRP Project (also check boxes above/right)	cable:	SPLP (BN, BNA, Metals)	BN or BNA (8270D SIM)	Indicate if low-level methods required to meet current groundwater standards (SPLP for soil):	0		<u> </u>															parameter lists)		<u>_</u>		5	4	<u>ω</u>	2 -	<u> </u> :		Π	
SERED	me):	inant C		IA, Met	270D S	hods rec	Comments, Notes, Special Requirements, HAZARDS									-								's)		Other:	10 Business Days (Stand.)	5 Business Days (25%)	4 Business Days (35%)*	3 Business Days (50%)*	2 Business Days (75%)*	When	T _{ur}		
items.		oncen so che		8011) tals)	3	quired to	nts, No					₹	=	=	=	_	K	Non	ie				1	<u> </u>	* Exped		ss Days	Days (s Days (Days (s Day (1 s Days (When Available:	Turnaround	w.	304/
If not		tration				meet or soil):	tes, S	_								-		Me(OH Core	 #±				<=== Check If Contingent <===	Expedited TAT Not Always Available.		(Stand.)	25%)	35%)*	50%)*	75%)*	ole:	ā) Rep	7041306
compl		es abo	_			•	pecial											NaC		8) # of Bottles				k If Co	Not A	<u> </u>			L ₽					orting	(2) (S) (S) (S) (S) (S) (S) (S) (S) (S) (S
eted y		ove/ric		П		need For	Requ											HCI		ttles			Š	ntina	ways A	Electronic (PDF)	Category A	Full / Category B	PA Reduced	NY Reduced	NJ Reduced	Data Summary	Rep	Requ	inly)
our a		TE.	9	2 K	S S	to be r	Jirem	-			又			_				H2S						ent <	vailab	c (PDF	Þ	egory t	æd	ced		nmary	Report Type	ireme	
nalytic e not be	Da		Onter (specify).	NJDEP SPLP	NJDEP GWQS NJDEP SRS	RP proje	ents, F		-	_	Æ	_						Oth		J				ii ii	e. Please			w			vasie)		ĕ	ints (F	Page
al wor	Date:	N _o	icily).	Ţ	Š Š	cts, inc	IAZAF				505	 													Se Che	Other:	4-F	ΕΩ	EX	Exc	m <u>m</u>	ı <u>H</u>		3) Reporting Requirements (Please Circle)	نو
k may		ooler 1				dicate w	SQS	6	_	_	Surfaci							9) Co							Check with Lab	ĕ.	ile/EZ/N	ulS (<u>sp</u>	œl - PA	æl - NY	Excel - NJ F	Hazsite/CSV	Electro	Circle	of
be dela		Cooler Temperature				For NNJ LSRP projects, indicate which standards need to be met:					· 1420	,						9) Comments							Lab.		VYS/Reς	EQuIS (specify below):	Excel - PA Regulatory	Excel - NY Regulatory	Excel - NJ Regulatory	%	Electronic Deliv.	<u>ٿ</u>	W
ayed.		ture				ndards					(0)							ĪŜ									4-File/EZ/NYS/Reg. 2 or 5	low):	tory	tory	γίο		ĬŸ		

		-		,	~								1			1					la.		_									0 4		30	6	0	00	14
		Additional Notes				``	WM!	10) Relinguished by:	11	130 K	É	-022	\$		920	50	208	67	906	Lab Sample #	1387.AST		Batch #	←	ONLY	USE	EOD AD	ocina i copore io	1d) Sand Banat	1c) Send Invoice to:	1b) Email/Cell/Fax/Ph:	Address	Address:	1a) Customer		Ph (Service Cer	175 Route
		les .				1	1	hed by:	$\ \cdot\ $	PP-1 <1.1	Dew Cos that	FQ-2 SCO 1/45	1-0-1 See	30-6-00	SC-5 SED	Cas 1-35	Se-3 Sw	SC-2 SCON	SC-1 \$500	4) Customer Sample ID		OT - Other (please speci	7	•	Matr					to:	۲	のつついついつ	- г	PAN Customer Information	NELAC/NJ #0707	Ph (Service Center): 856-780-6057 Fax: 856-780-6056	Service Center: 137-D Gaither Drive, Mount Laurel, New Jersey 08054	175 Route 46 West and 2 Madison Road, Fairfield, New Jersey 07004 Ph: 800-426-9992 973-244-9770 Fax: 973-244-9787 973-439-1458
			-			1 Miss	1	Ace	- 	7 10			4/11/157	7777					5 4/10/15-1	5) 6) Sam Matrix Date		OT - Other (please specify under item 9, Comments)	SL - Sludge	S - Soil A - Air	Matrix Codes	===> Check If Co					- / 6	1550-		nation //	NELAC/NJ #07071 PA #68-00463 NY #11408 CT #PH-0671 KY #90124 DE HSCA Approved	Fax: 856-780-6056	t Laurel, New Jersey 08054	airfield, New Jersey 07004
						ことと	Z	Aceeptad by:		٠ <u>٠</u>	7:40	or:	7:30 X	7	A 0:161	12:12	14:45	N:30	X of:M	Time Compo	site (Туре	Sample	Check If Contingent ===>			3d)		2c) Project Loca	2 5) Brain		2a) Project	CT #PH-0671 KY	A Wo	Hamp	T
						Use	1		2	X	<		×		×	X			*	CHIA TAI			1/5				7) And	(in appropriate of	2/BO # /# Applica		2C) Project Location (City/State):		k	>	#90124 DE HS	A Women-Owned, Disadvantaged, Small Business Enterprise	Ver/DBE/SBE 800-424-9992	力
							16861 7	Date																		- Change	veie (spacify	inc):	No.		State)			<u>Project Information</u> Pいく	CA Approved	advantaged, Sma		CHAI
Plea A	ا من		Check			020	Indicate current	Time																										<u>tion</u>	2	all Business Ente	ארט ארט ארט ארט ארט ארט ארט ארט ארט ארט	CHAIN OF CUSTODY
ease note NUMBER	ampler (print na	High Contaminant Concentrations NJ LSRP Project (also check boxe)	Check if applicable:	SPLP (BN, BNA, Metals)	VOC (8260C SIM or 8011)	BN or BNA (8270D SIM)	Indicate if low-level methods required to meet current groundwater standards (SPLP for soil):	ار کا																				2	2 8	3 6	7 1		2 .) 1 N E		rprise		TODY
BERED items.	me)·	nant Concent ect (also chec		IA, Metals)	IM or 8011)	270D SIM)	hods required to	<u>omments, No</u>		•		_	×	7	Z				- <u>×</u>	None								Culer. * Expedi	TO BUSINESS Days (Stairt).	10 Business Days (20%)	F Business Days (25%)	Business Days (3	2 Business Days (50%)*	1 Business Day (100%)* 2 Business Days (75%)*	When Available:	Turnaround	ယ္	3
If not complet		High Contaminant Concentrations NJ LSRP Project (also check boxes above/right)	•					tes, Special F												MeOH En Cor NaOH	# of Bottles	8)				<=== Check If Contingent <===		Expedited TAT Not Always Available.	_								Reporting F	5041306
ed your analytic		e/right)		Other (specify):	NJDEP SPI P	NJDEP GWQS	need to be met:	Comments, Notes, Special Requirements, HAZARDS	Medica Total	×,										HCI H2SO4 HNO3	les					tingent <===	dum a factor	تاهوراناتار (۱۳۵۲) Always Available. Ple	Calegory A	Cotocon A	Catacan	PA Reduced	NY Reduced	Results + QC (Waste)	Data Summary	Report Type	Requirements (Page
ease note NUMBERED items. If not completed your analytical work may be delayed. A fee of \$5/sample will be assessed for storage should sample not be activated for any analysis.	Date:	Cooler Temperature	, , , , , , , , , , , , , , , , , , , ,	ecify):	9 30	BS WQS	need to be met:	HAZARDS		5. 1. that										Other: 9) Comments								Please Check with Lab.	4-File/cz/N13/Reg. 2 013	4 Elle/EZ/NVS/Beg 2 e	EDule (specify below):	Excel - BA Begulatory	Excel - NV Regulatory) EnviroData	Hazsite/CSV	Electronic Deliv.	3) Reporting Requirements (Please Circle)	ge S of S

PROJECT MODIFICATIONS

Client:	AECOM-CRNY	HC Project #: 5041306
Project:	Dzus	
krieton10		
	5 2:35:46 PM	
Per Paul	Kareth 4/13 report type should be 0	CatA and turnaround time should be standard - 4/13/15
		
	Kareth 4/14 AC84282-022 (FQ-2 S D) go with -015 (SW-4) - 4/14/15 Kds	ED MS) and -023 (FQ-2 SED MSD) go with -007 (SED-2); -001 (RC-2 SW MS) and -002 (RC-2 s

CONDITION UPON RECEIPT

Batch Number AC84282

Entered By: maxwell

Date Entered 4/13/2015 11:02:00 AM

1	Yes	Is there a corresponding COC included with the samples?
2	Yes	Are the samples in a container such as a cooler or Ice chest?
3	Yes	Are the COC seals intact?
4	Yes	Please specify the Temperature inside the container (in degC) 2.9
5	Yes	Are the samples refrigerated (where required)/have they arrived on ice?
6	Yes	Are the samples within the holding times for the parameters listed on the COC? IF no, list parameters and samples:
7	Yes	Are all of the sample bottles intact? If no, specify sample numbers broken/leaking
8	Yes	Are all of the sample labels or numbers legible? If no specify:
9	Yes	Do the contents match the CCC? If nc, specify
10	Yes	Is there enough sample sem for the analyses listed on the COC? If no, specify:
11	Yes	Are samples preserved correctly?
12	Yes	Was temperature blank present (Place comment below if not)? If not was temperature of samples verified?
13	NA	Other comments Specify
14	NA	Corrective actions (Specify item number and corrective action taken).

PRESERVATION DOCUMENT

Batch Number AC84282

Entered By: maxwell

Date Entered 4/13/2015 11:05:00 AM

Lab#:	Container Siz	Container Typ	Paramete	Preservative	PH
AC84282-001	1L .	Р	METALS	HNO3	1
AC84282-002	1L	P	METALS	HNO3	1
AC84282-003	1L	P	METALS	HNO3	1
AC84282-004	1L	Р	METALS	HNO3	1
AC84282-005	1L	P	METALS	HNO3	1
AC84282-006	NA	NA	NA	NA	NA
AC84282-007	NA	NA	NA	NA	NA
AC84282-008	NA	NA	NA	NA	NA
AC84282-009	NA	NA	NA	NA	NA
AC84282-010	NA	NA	NA	NA	NA
AC84282-011	1L	P	METALS	HNO3	1
AC84282-012	1L	P	METALS	HNO3	1
AC84282-013	1L	P	METALS	HNO3	1
AC84282-014	1L	P	METALS	HNO3	1
AC84282-015	1L	Р	METALS	HNO3	1
AC84282-016	NA	NA	NA	NA	NA
AC84282-017	NA	NA	NA	NA	NA
AC84282-018	NA	NA	NA	NA	NA
AC84282-019	NA	NA	NA	NA	NA
AC84282-020	NA	NA	NA	NA	NA
AC84282-021	NA	NA	NA	NA	NA
AC84282-022	NA	NA	NA	NA	NA
AC84282-023	NA	NA	NA	NA	NA
AC84282-024	1L	Р	METALS	HNO3	1
AC84282-025	NA	NA	NA	NA	NA

				-	1	***		1				-1	[
ļ		Loc	Bot	١,,							Loc		,		i
Lab#:	DateTime:	or User	Bot	A/	Analysis				Lab#:	DateTime:	or Bo User Nu	t ∣A/ M			ļ
	·	MAXW		==:										 	
AC84282-001 AC84282-001	04/13/15 10:20 04/13/15 11:02	MAXW		M	Received Login			-	AC84282-011 AC84282-011	04/14/15 07:24 04/14/15 08:16	DP 1 R12 1	A	,%solid NONE		Ì
AC84282-001	04/13/15 11:14	1	1	A	NONE				AC84282-011	04/17/15 08:46	AM 1	A	TDSI/HG		
AC84282-001	04/18/15 12:28	SP	1	A	r12			1	AC84282-011	04/17/15 08:47	R12 1	A	NONE		
AC84282-001	04/18/15 12:28	SP	1	Α	tdsw-hg			:	AC84282-012	04/13/15 10:20	MAXW 0	M	Received		
AC84282-002	04/13/15 10:20	MAXW	0	М	Received			İ	AC84282-012	04/13/15 11:02	MAXWO	M	Login		į
AC84282-002	04/13/15 11:02	MAXW	i o	М	Login			į	AC84282-012	04/13/15 11:14	R12 1	Α	NONE		1
AC84282-002	04/13/15 11:14	R12	1	Α	NONE				AC84282-012	04/18/15 12:28	SP 1	Α	r12		
AC84282-002	04/18/15 12:28	SP	1	Α	r12				AC84282-012	04/18/15 12:28	SP 1	Α	tdsw-hg		1
AC84282-002	04/18/15 12:28	SP	1	Α	tdsw-hg				AC84282-013	04/13/15 10:20	MAXW 0	M	Received		1
AC84282-003	04/13/15 10:20	MAXW	0	М	'Received			1	AC84282-013	04/13/15 11:02	MAXW 0	M	Login		
AC84282-003	04/13/15 11:02	MAXW	0	М	Login				AC84282-013	04/13/15 11:14	R12 1	Α	NONE		
AC84282-003	04/13/15 11:14		. 1	Α	NONE			i	AC84282-013	04/18/15 12:28	SP 1	Α	r12		
AC84282-003	04/18/15 12:28		1	Α	tdsw-hg				AC84282-013	04/18/15 12:28	SP 1	A	tdsw-hg		1
AC84282-003	04/18/15 12:28	SP	1	A	r12				AC84282-014	04/13/15 10:20	MAXW 0	M	Received		
AC84282-004	04/13/15 10:20	MAXW		М	Received				AC84282-014	04/13/15 11:02	MAXW 0	M	Login		
AC84282-004 AC84282-004	04/13/15 11:02 04/13/15 11:14	MAXW R12	1	M A	Login NONE			i	AC84282-014 AC84282-014	04/13/15 11:14 04/18/15 12:28	R12 1	A	NONE tdsw-hg		
AC84282-004	04/18/15 12:28	SP	1	A	r12				AC84282-014	04/18/15 12:28	SP 1	Ā	r12		•
AC84282-004	04/18/15 12:28	SP	1	A	tdsw-hg				AC84282-015	04/13/15 10:20	MAXW 0	М	Received		
AC84282-005	04/13/15 10:20	MAXW		M	Received				AC84282-015	04/13/15 11:02	MAXW 0	М	Login		1
AC84282-005	04/13/15 11:02	MAXW	i	м	Login			1	AC84282-015	04/13/15 11:14	R12 1	A	NONE		!
AC84282-005	04/13/15 11:14		1	Α	NONE				AC84282-015	04/18/15 12:28	SP 1	Α	tdsw-hg		
AC84282-005	04/18/15 12:28	SP	1	Α	r12				AC84282-015	04/18/15 12:28	SP 1	Α	r12		
AC84282-005	04/18/15 12:28	SP	1	Α	itdsw-hg			:	AC84282-016	04/13/15 10:20	MAXW 0	M	Received		- 1
AC84282-006	04/13/15 10:20	MAXW	0	М	Received			ļ	AC84282-016	04/13/15 11:02	MAXW 0	M	Login		!
AC84282-006	04/13/15 11:02	MAXW	0	M	Login			•	AC84282-016	04/13/15 11:14	R12 1	Α	NONE		
AC84282-006	04/13/15 11:14		1	Α	NONE				AC84282-016	04/13/15 21:35	PA 1	Α.	mixing		
AC84282-006	04/13/15 21:35	PA	1	Α	mixing			i	AC84282-016	04/13/15 21:36	R12 1	Α.	NONE		İ
AC84282-006	04/13/15 21:36		.1	Α	NONE			1	AC84282-016	04/14/15 07:24	DP 1	Α	'%solid		
AC84282-006	04/14/15 07:24	DP D13	1	A	%solid				AC84282-016	04/14/15 08:16	R12 1	A	NONE		
AC84282-006	04/14/15 08:16	R12	1	A	NONE				AC84282-016	04/17/15 08:46	AM 1	A	TDSI/HG NONE		
AC84282-006 AC84282-006	04/17/15 08:46 04/17/15 08:47	1	1	A	TDSI/HG NONE				AC84282-016 AC84282-017	04/17/15 08:47 04/13/15 10:20	R12 1 MAXW 0	A M	Received		!
AC84282-007	04/13/15 10:20	MAXW		M	Received			:	AC84282-017	04/13/15 11:02	MAXW 0	M	Login		
AC84282-007	04/13/15 11:02	MAXW		M	Login		***		AC84282-017	04/13/15 11:14	R12 1	A	NONE		
AC84282-007	04/13/15 11:14		i 1	Α	NONE				AC84282-017	04/13/15 21:35	PA 1	Α.	mixing		i
AC84282-007	04/13/15 21:35	:	1	Α	mixing			1	AC84282-017	04/13/15 21:36	R12 1	A	NONE		1
AC84282-007	04/13/15 21:36	R12	1	Α	NONE				AC84282-017	04/14/15 07:24	DP 1	Α	%solid		
AC84282-007	04/14/15 07:24	DP	1	Α	%solid				AC84282-017	04/14/15 08:16	R12 1	Α	NONE		
AC84282-007	04/14/15 08:16	R12	1	Α	NONE			į	AC84282-017	04/17/15 08:46	AM 1	Α	TDSI/HG		
AC84282-007	04/17/15 08:46		11	Α	TDSI/HG				AC84282-017	04/17/15 08:47	R12 1	Α	NONE		
AC84282-007	04/17/15 08:47		1	Α	NONE				AC84282-018	04/13/15 10:20	MAXW 0	М	Received		
AC84282-008	04/13/15 10:20	MAXW		М	Received			;	AC84282-018	04/13/15 11:02	MAXW 0	М	Login	 	1
AC84282-008 AC84282-008	04/13/15 11:02	MAXW		M	Login				AC84282-018	04/13/15 11:14	R12 1	A	NONE		
AC84282-008	04/13/15 11:14 04/13/15 21:35	R12 PA	1	A	NONE mixing			!	AC84282-018 AC84282-018	04/13/15 21:35 04/13/15 21:36	R12 1	A	mixing NONE		
AC84282-008	04/13/15 21:36		.1	A	NONE				AC84282-018	04/13/15 07:24	DP 1	A	%solid		
AC84282-008	04/14/15 07:24	i	1	Α	%solid			İ	AC84282-018	04/14/15 08:16	R12 1	iA	NONE		
AC84282-008	04/14/15 08:16		1	Α	NONE			į	AC84282-018	04/17/15 08:46	AM 1	Α	TDSI/HG		- 1
AC84282-008	04/17/15 08:46	AM	1	A	TDSI/HG				AC84282-018	04/17/15 08:47	R12 1	Α	NONE		
AC84282-008	04/17/15 08:47	R12	1	Α	NONE			:	AC84282-019	04/13/15 10:20	MAXW, 0	м	Received		i
AC84282-009	04/13/15 10:20	MAXW	1	М	Received			!	AC84282-019	04/13/15 11:02	MAXW 0	M	Login		-
AC84282-009	04/13/15 11:02	MAXW	60	М	Login			İ	AC84282-019	04/13/15 11:14	R12 1	_ :A	NONE	 	
AC84282-009	04/13/15 11:14		<u>,</u> 1	Α.	NONE				AC84282-019	04/13/15 21:35	PA 1	Α	mixing		1
AC84282-009	04/13/15 21:35	i i	11	A	mixing			i	AC84282-019	04/13/15 21:36	R12 1	A	NONE		
AC84282-009 AC84282-009	04/13/15 21:36	R12 DP	1	A	NONE %solid				AC84282-019 AC84282-019	04/14/15 07:24 04/14/15 08:16	DP 1 R12 1	A	%solid		
AC84282-009	04/14/15 07:24 04/14/15 08:16		;	A	NONE			1	AC84282-019	04/17/15 08:46	AM 1	A	TDSI/HG		
AC84282-009	04/17/15 08:46	AM	1	A	TDSI/HG			1	AC84282-019	04/17/15 08:47	R12 1	Ā	NONE	 	-
AC84282-009	04/17/15 08:47	· · · · · · · · · · · · · · · · · · · 	1	A	NONE			ì	AC84282-020	04/13/15 10:20	MAXW 0	м	Received		l
AC84282-010	04/13/15 10:20	MAXW		М	Received			1	AC84282-020	04/13/15 11:02	MAXW 0	м	Login		!
AC84282-010	04/13/15 11:02	MAXW		M	Login			;	AC84282-020	04/13/15 11:14	R12 1	Α	NONE		
AC84282-010	04/13/15 11:14	R12	1	Α	NONE			i	AC84282-020	04/13/15 21:35	PA 1	Α	mixing		İ
AC84282-010	04/13/15 21:35		1	Α	mixing			ļ	AC84282-020	04/13/15 21:36	R12 1	Α	NONE	 	
AC84282-010	04/13/15 21:36		1	Α	NONE				AC84282-020	04/14/15 07:24	DP 1	Α	%solid		:
AC84282-010	04/14/15 07:24	DP	1	Α	%solid			1	AC84282-020	04/14/15 08:16	R12 1	Α	NONE		
AC84282-010	04/14/15 08:16	1	1	Α	NONE				AC84282-020	04/17/15 08:46	AM 1	A	TDSI/HG		ļ
AC84282-010	04/17/15 08:46	ì	11	A	TDSI/HG				AC84282-020	04/17/15 08:47	R12 1	^	NONE	 	
AC84282-010	04/17/15 08:47	R12		A	NONE				AC84282-021	04/13/15 10:20	MAXW 0	M	Received		- 1
AC84282-011 AC84282-011	04/13/15 10:20 04/13/15 11:02	MAXW	ì	M	Received Login			İ	AC84282-021 AC84282-021	04/13/15 11:02 04/13/15 11:14	MAXW 0 R12 1	M A	Login NONE		j
AC84282-011 AC84282-011	04/13/15 11:02	R12	i	A	NONE			1	AC84282-021	04/13/15 11:14	PA 1	A	mixing		}
AC84282-011	04/13/15 21:35	PA	1	Â	mixing			1	AC84282-021	04/13/15 21:36	R12 1	A	NONE		!
AC84282-011	04/13/15 21:36		1	A	NONE			i	AC84282-021	04/14/15 07:24	DP 1	<u>^</u>	%solid	 	
			· -	-					-				- "		

Samples marked as received are stored in coolers or refrigerator R12, or R24 at 4 deg C until Login

Internal Chain of Custody

							,			
		Loc	<u> </u>	ĺ		i	1		Loc	
-1-44.	Data Time an	or	Bot		A ali i-		ļu.	D-4-Times	or Bot	
.ab#:	DateTime:	User	Nu		Analysis		Lab#:	DateTime:	<u>User Nu</u>	M Anal
C84282-021	04/14/15 08:16	R12	1	3 1	NONE	ļ				
C84282-021	04/17/15 08:46	AM	1	- 1	TDSI/HG	ļ				
084282-021	04/17/15 08:47	R12	1	Α	NONE	!				
084282-022	04/13/15 10:20	MAXW	0	М	Received	:				
084282-022	04/13/15 11:02	MAXW	0	М	Login					
C84282-022	04/13/15 11:14	R12	2	Α	NONE					
84282-022	04/13/15 21:35	PA	2	Α	mixing					
C84282-022	04/13/15 21:36	R12	2	Α	NONE					
C84282-022	04/14/15 07:24	DP	2	Α	%solid					
C84282-022	04/14/15 08:16	R12	2	Α	NONE					
C84282-022	04/17/15 08:46	AM	2	Α	TDSI/HG					
C84282-022	04/17/15 08:47	R12	2	Α	NONE					
C84282-023	04/13/15 10:20	MAXW	0	М	Received					
C84282-023	04/13/15 11:02	MAXW	0	M	Login					
C84282-023	04/13/15 11:14	R12	2	Α	NONE					
C84282-023	04/13/15 21:35	PA	2	Α	mixing					
C84282-023	04/13/15 21:36	R12	2	Α	NONE					
C84282-023	04/14/15 07:24	DP	2	Α	%solid					
C84282-023	04/14/15 08:16	R12	2	Α	NONE	:				
AC84282-023	04/17/15 08:46	AM	2	Α	TDSI/HG	į				
C84282-023	04/17/15 08:47	R12	2	Α	NONE	ļ				
C84282-024	04/13/15 10:20	MAXW	0	М	Received	!				
84282-024	04/13/15 11:02	MAXW	0	M	Login					
C84282-024	04/13/15 11:14	R12	1	Α	NONE					
84282-024	04/18/15 12:28	SP	1	Α	r12					
C84282-024	04/18/15 12:28	SP	1	Α	tdsw-hg					

Client: AECOM

Project: Dzus

HC Project #: 5041306

Lab#: AC84282-001

Sample ID: RC-2 SW MS

	Prep	Prep		Analytical	Analysis	
Test Code	Method	Date	Ву	Method	Date	Ву
Mercury (Water) 7470A	EPA 7470A	04/18/15	snezana	EPA 7470A	4/20/15 16:27	CJA
TAL Metals 6010	3005&10/3050	04/18/15	snezana	EPA 6010C	4/20/15 14:40	SRB
TAL Metals 6010	3005&10/3050	04/18/15	snezana	EPA 6010C	4/20/15 19:23	SRB
TAL Metals 6020	3005&10/3050	04/18/15	snezana	EPA 6020A	4/21/15 18:59	PC

Lab#: AC84282-002

Sample ID: RC-2 SW MSD

	Prep	Prep		Analytical	Analysis	
Test Code	Method	Date By		Method	Date	Ву
Mercury (Water) 7470A	EPA 7470A	04/18/15	snezana	EPA 7470A	4/20/15 16:29	CJA
TAL Metals 6010	3005&10/3050	04/18/15	snezana	EPA 6010C	4/20/15 14:44	SRB
TAL Metals 6010	3005&10/3050	04/18/15	snezana	EPA 6010C	4/20/15 19:25	SRB
TAL Metals 6020	3005&10/3050	04/18/15	snezana	EPA 6020A	4/21/15 19:05	PC

Lab#: AC84282-003

Sample ID: SW-5 SW

	Prep	Prep		Analytical	Analysis	
Test Code	Method	Date By		Method	Date	Ву
Mercury (Water) 7470A	EPA 7470A	04/18/15	snezana	EPA 7470A	4/20/15 16:30	CJA
TAL Metals 6010	3005&10/3050	04/18/15	snezana	EPA 6010C	4/20/15 15:05	SRB
TAL Metals 6010	3005&10/3050	04/18/15	snezana	EPA 6010C	4/20/15 19:43	SRB
TAL Metals 6020	3005&10/3050	04/18/15	snezana	EPA 6020A	4/21/15 19:41	PC

Lab#: AC84282-004

Sample ID: SW-6 SW

	Prep	Prep		Analytical	Analysis		
Test Code	Method	Date	Ву	Method	Date	Ву	
Mercury (Water) 7470A	EPA 7470A	04/18/15	snezana	EPA 7470A	4/20/15 16:32	CJA	
ΓAL Metals 6010	3005&10/3050	04/18/15	snezana	EPA 6010C	4/20/15 19:47	SRB	
ΓAL Metals 6010	3005&10/3050	04/18/15	snezana	EPA 6010C	4/20/15 15:08	SRB	
ΓAL Metals 6020	3005&10/3050	04/18/15	snezana	EPA 6020A	4/21/15 19:47	PC	

Project #: 5041306

Client: AECOM

HC Project #: 5041306

Project: Dzus

Lab#: AC84282-005

Sample ID: SC-4 SW

	Prep	Prep	_	Analytical	Analysis	_	
Test Code	Method	Date By		Method	Date	Ву	
Mercury (Water) 7470A	EPA 7470A	04/18/15	snezana	EPA 7470A	4/20/15 16:36	CJA	
TAL Metals 6010	3005&10/3050	04/18/15	snezana	EPA 6010C	4/20/15 15:12	SRB	
TAL Metals 6010	3005&10/3050	04/18/15	snezana	EPA 6010C	4/20/15 19:50	SRB	
TAL Metals 6020	3005&10/3050	04/18/15	snezana	EPA 6020A	4/21/15 19:53	PC	

Lab#: AC84282-006

Sample ID: SED-1

	Prep	Prep		Analytical	Analysis	Ву
Test Code	Method	Date	Ву	Method	Date	
% Solids SM2540G				SM 2540G	4/14/15 00:00	disham
Mercury (Soil/Waste) 7471A	EPA 7471B	04/17/15	AADEWUSI	EPA 7471B	4/23/15 11:57	CJA
TAL Metals 6010	3005&10/3050	04/17/15	AADEWUSI	EPA 6010C	4/17/15 23:57	OA
AL Metals 6010	3005&10/3050	04/17/15	AADEWUSI	EPA 6010C	4/17/15 21:36	OA
TAL Metals 6020	3005&10/3050	04/17/15	AADEWUSI	EPA 6020A	4/18/15 05:30	PC

Lab#: AC84282-007

Sample ID: SED-2

	Prep	Prep		Analytical	Analysis	Ву
Test Code	Method	Date	Ву	Method	Date	
% Solids SM2540G				SM 2540G	4/14/15 00:00	disham
Mercury (Soil/Waste) 7471 A	EPA 7471B	04/17/15	AADEWUSI	EPA 7471B	4/23/15 11:50	CJA
TAL Metals 6010	3005&10/3050	04/17/15	AADEWUSI	EPA 6010C	4/17/15 21:06	OA
TAL Metals 6010	3005&10/3050	04/17/15	AADEWUSI	EPA 6010C	4/17/15 23:28	OA
TAL Metals 6020	3005&10/3050	04/17/15	AADEWUSI	EPA 6020A	4/18/15 04:32	PC

Lab#: AC84282-008

Sample ID: SED-3

	Prep	Prep		Analytical	Analysis	Ву
Test Code	Method	Date	Ву	Method	Date	
% Solids SM2540G				SM 2540G	4/14/15 00:00	disham
Mercury (Soil/Waste) 7471 A	EPA 7471B	04/17/15	AADEWUSI	EPA 7471B	4/23/15 12:01	CJA
ΓAL Metals 6010	3005&10/3050	04/17/15	AADEWUSI	EPA 6010C	4/17/15 21:39	OA
FAL Metals 6010	3005&10/3050	04/17/15	AADEWUSI	EPA 6010C	4/18/15 00:01	OA
TAL Metals 6020	3005&10/3050	04/17/15	AADEWUSI	EPA 6020A	4/18/15 05:36	PC

Client: AECOM
Project: Dzus

HC Project #: 5041306

Lab#: AC84282-009

Sample ID: SED-4

	Prep	Prep		Analytical	Analysis		
Test Code	Method	Date	Ву	Method	Date	Ву	
% Solids SM2540G				SM 2540G	4/14/15 00:00	disham	
Mercury (Soil/Waste) 7471 A	EPA 7471B	04/17/15	AADEWUSI	EPA 7471B	4/23/15 12:03	CJA	
TAL Metals 6010	3005&10/3050	04/17/15	AADEWUSI	EPA 6010C	4/18/15 00:04	OA	
TAL Metals 6010	3005&10/3050	04/17/15	AADEWUSI	EPA 6010C	4/17/15 21:42	OA	
TAL Metals 6020	3005&10/3050	04/17/15	AADEWUSI	EPA 6020A	4/18/15 05:42	PC	

Lab#: AC84282-010

Sample ID: SED-5

	Prep	Prep		Analytical	Analysis		
Test Code	Method	Date	Ву	Method	Date	Ву	
% Solids SM2540G				SM 2540G	4/14/15 00:00	disham	
Mercury (Soil/Waste) 7471 A	EPA 7471B	04/17/15	AADEWUSI	EPA 7471B	4/23/15 12:04	CJA.	
FAL Metals 6010	3005&10/3050	04/17/15	AADEWUSI	EPA 6010C	4/17/15 21:45	OA	
FAL Metals 6010	3005&10/3050	04/17/15	AADEWUSI	EPA 6010C	4/18/15 00:08	OA	
TAL Metals 6020	3005&10/3050	04/17/15	AADEWUSI	EPA 6020A	4/18/15 05:48	PC	

Lab#: AC84282-011

Sample ID: SED-6

	Prep	Prep		Analytical	Analysis	
Test Code	Method	Date	Ву	Method	Date	Ву
% Solids SM2540G				SM 2540G	4/14/15 00:00	disham
Mercury (Soil/Waste) 7471 A	EPA 7471B	04/17/15	AADEWUSI	EPA 7471B	4/23/15 12:06	CJA
TAL Metals 6010	3005&10/3050	04/17/15	AADEWUSI	EPA 6010C	4/17/15 21:49	OA
ΓAL Metals 6010	3005&10/3050	04/17/15	AADEWUSI	EPA 6010C	4/18/15 00:11	OA
TAL Metals 6020	3005&10/3050	04/17/15	AADEWUSI	EPA 6020A	4/18/15 05:54	PC

Lab#: AC84282-012

Sample ID: SW-1

Test Code	Prep Method	Prep Date	Ву	Analytical Method	Analysis Date	Ву
Mercury (Water) 7470A	EPA 7470A	04/18/15	snezana	EPA 7470A	4/20/15 16:38	CJA
TAL Metals 6010	3005&10/3050	04/18/15	snezana	EPA 6010C	4/20/15 15:15	SRB
TAL Metals 6010	3005&10/3050	04/18/15	snezana	EPA 6010C	4/20/15 19:53	SRB
TAL Metals 6020	3005&10/3050	04/18/15	snezana	EPA 6020A	4/21/15 19:59	PC

Client: AECOM

HC Project #: 5041306

Project: Dzus

Lab#: AC84282-013

Sample ID: SW-2

Test Code	Prep Method	Prep Date	Ву	Analytical Method	Analysis Date	Ву
Mercury (Water) 7470A	EPA 7470A	04/18/15	snezana	EPA 7470A	4/20/15 16:39	CJA
TAL Metals 6010	3005&10/3050	04/18/15	snezana	EPA 6010C	4/20/15 15:19	SRB
TAL Metals 6010	3005&10/3050	04/18/15	snezana	EPA 6010C	4/20/15 19:57	SRB
TAL Metals 6020	3005&10/3050	04/18/15	snezana	EPA 6020A	4/21/15 20:05	PC

Lab#: AC84282-014

Sample ID: SW-3

	Prep	Prep		Analytical		
Test Code	Method	Date	Ву	Method	Analysis Date	Ву
Mercury (Water) 7470A	EPA 7470A	04/18/15	snezana	EPA 7470A	4/20/15 16:41	CJA
TAL Metals 6010	3005&10/3050	04/18/15	snezana	EPA 6010C	4/20/15 20:00	SRB
TAL Metals 6010	3005&10/3050	04/18/15	snezana	EPA 6010C	4/20/15 15:22	SRB
TAL Metals 6020	3005&10/3050	04/18/15	snezana	EPA 6020A	4/21/15 20:11	PC

Lab#: AC84282-015

Sample ID: SW-4

	Prep	Prep		Analytical Analysis		
Test Code	Method	Date	Ву	Method	Date	Ву
Mercury (Water) 7470A	EPA 7470A	04/18/15	snezana	EPA 7470A	4/20/15 16:24	CJA
TAL Metals 6010	3005&10/3050	04/18/15	snezana	EPA 6010C	4/20/15 14:33	SRB
TAL Metals 6010	3005&10/3050	04/18/15	snezana	EPA 6010C	4/20/15 19:16	SRB
TAL Metals 6020	3005&10/3050	04/18/15	snezana	EPA 6020A	4/21/15 18:42	PC

Lab#: AC84282-016

Sample ID: SC-1 SED

Test Code	Prep Method	Prep Date	Ву	Analytical Method	Analysis Date	Ву
% Solids SM2540G Metals (single) 6020	3005&10/3050	04/17/15	AADEWUSI	SM 2540G EPA 6020A	4/14/15 00:00 4/18/15 06:12	disham PC

Lab#: AC84282-017

Sample ID: SC- 2 SED

Test Code	Prep Method	Prep Date	Ву	Analytical Method	Analysis Date	Ву
% Solids SM2540G Metals (single) 6020	3005&10/3050	04/17/15	AADEWUSI	SM 2540G EPA 6020A	4/14/15 00:00 4/18/15 06:18	disham PC

Project #: 5041306

Client: AECOM

Project: Dzus

HC Project #: 5041306

Lab#: AC84282-018

Sample ID: SC- 3 SED

Test Code	Prep Method	Prep Date	Ву	Analytical Method	Analysis Date	Ву
% Solids SM2540G				SM 2540G	4/14/15 00:00	disham
Metals (single) 6020	3005&10/3050	04/17/15	AADEWUSI	EPA 6020A	4/18/15 06:47	PC:

Lab#: AC84282-019

Sample ID: SC- 4 SED

	Prep	Prep		Analytical	Analysis	
Test Code	Method	Date	Ву	Method	Date	Ву
% Solids SM2540G				SM 2540G	4/14/15 00:00	disham
Mercury (Soil/Waste) 7471 A	EPA 7471B	04/17/15	AADEWUSI	EPA 7471B	4/23/15 12:07	CJA
ΓAL Metals 6010	3005&10/3050	04/17/15	AADEWUSI	EPA 6010C	4/17/15 22:09	OA
TAL Metals 6010	3005&10/3050	04/17/15	AADEWUSI	EPA 6010C	4/18/15 00:32	OA
TAL Metals 6020	3005&10/3050	04/17/15	AADEWUSI	EPA 6020A	4/18/15 06:00	PC

Lab#: AC84282-020

Sample ID: SC- 5 SED

Test Code	Prep Method	Prep Date	Ву	Analytical Method	Analysis Date	Ву
% Solids SM2540G Metals (single) 6020	3005&10/3050	04/17/15	AADEWUSI	SM 2540G EPA 6020A	4/14/15 00:00 4/18/15 06:53	disham PC

Lab#: AC84282-021

Sample ID: FQ-1 SED

	Prep	Prep		Analytical	Analysis	
Test Code	Method	Date	Ву	Method	Date	Ву
% Solids SM2540G				SM 2540G	4/14/15 00:00	disham
Mercury (Soil/Waste) 7471 A	EPA 7471B	04/17/15	AADEWUSI	EPA 7471B	4/23/15 12:09	CJA
ΓAL Metals 6010	3005&10/3050	04/17/15	AADEWUSI	EPA 6010C	4/17/15 22:12	OA
TAL Metals 6010	3005&10/3050	04/17/15	AADEWUSI	EPA 6010C	4/18/15 00:35	OA
TAL Metals 6020	3005&10/3050	04/17/15	AADEWUSI	EPA 6020A	4/18/15 06:06	PC

Client: AECOM

Project: Dzus

HC Project #: 5041306

Lab#: AC84282-022

Sample ID: FQ-2 SED MS

	Prep	Prep		Analytical	Analysis	Bv	
Test Code	Method	Date	Ву	Method	Date	Ву	
% Solids SM2540G				SM 2540G	4/14/15 00:00	disham	
Mercury (Soil/Waste) 7471 A	EPA 7471B	04/17/15	AADEWUSI	EPA 7471B	4/23/15 11:53	CJA	
TAL Metals 6010	3005&10/3050	04/17/15	AADEWUSI	EPA 6010C	4/17/15 23:34	OA	
TAL Metals 6010	3005&10/3050	04/17/15	AADEWUSI	EPA 6010C	4/17/15 21:12	OA	
TAL Metals 6020	3005&10/3050	04/17/15	AADEWUSI	EPA 6020A	4/18/15 04:49	PC	

Lab#: AC84282-023

Sample ID: FQ-2 SED MSD

	Prep	Prep		Analytical	Analysis		
Test Code	Method	Date	Ву	Method	Date	Ву	
% Solids SM2540G				SM 2540G	4/14/15 00:00	disham	
Mercury (Soil/Waste) 7471 A	EPA 7471B	04/17/15	AADEWUSI	EPA 7471B	4/23/15 11:55	CJA	
TAL Metals 6010	3005&10/3050	04/17/15	AADEWUSI	EPA 6010C	4/17/15 21:16	OA	
TAL Metals 6010	3005&10/3050	04/17/15	AADEWUSI	EPA 6010C	4/17/15 23:37	OA	
TAL Metals 6020	3005&10/3050	04/17/15	AADEWUSI	EPA 6020A	4/18/15 04:55	PC	

Lab#: AC84282-024

Sample ID: RC-1 SW

	Prep	Prep	•	Analytical	Analysis	
Test Code	Method	Date	Ву	Method	Date	Ву
Mercury (Water) 7470A	EPA 7470A	04/18/15	snezana	EPA 7470A	4/20/15 16:42	CJA
TAL Metals 6010	3005&10/3050	04/18/15	snezana	EPA 6010C	4/20/15 15:26	SRB
TAL Metals 6010	3005&10/3050	04/18/15	snezana	EPA 6010C	4/20/15 20:04	SRB
TAL Metals 6020	3005&10/3050	04/18/15	snezana	EPA 6020A	4/21/15 20:17	PC

HC Reporting Limit Definitions/Data Qualifiers

REPORTING DEFINITIONS

DF = Dilution Factor

MDL = Method Detection Limit

RL* = Reporting Limit

ND = Not Detected

RT = Retention Time

NA = Not Applicable

DATA QUALIFIERS

- **B-** Indicates analyte was present in the Method Blank and sample.
- **d-** For Pesticide and PCB analysis, the concentration between primary and secondary columns is greater than 40%. The lower concentration is generally reported.
- **E-** Indicates the concentration exceeded the upper calibration range of the instrument.
- J- Indicates the value is estimated because it is either a Tentatively Identified Compound (TIC) or the reported concentration is greater than the MDL but less than the RL. For samples results between the MDL and RL there is a possibility of false positives or misidentification at the quantitation levels. Additionally, the acceptance criteria for QC samples may not be met.

^{*}Samples with elevated Reporting Limits (RLs) as a result of a dilution may not achieve client reporting limits in some cases. The elevated RLs are unavoidable consequences of sample dilution required to quantitate target analytes that exceed the calibration range of the instrument.

HC Report of Analysis

Client: AECOM

HC Project #: 5041306

Project: Dzus

Sample ID: RC-2 SW MS

Lab#: AC84282-001

Matrix: Aqueous

Collection Date: 4/11/2015

Receipt Date: 4/13/2015

Mercury (W	ater)	7470A
------------	-------	-------

Analyte	DF	Units	RL	Result	
Mercury	1	ug/l	0.70	10	
AL Metals 6010			***		
Analyte	DF	Units	RL	Result	
Aluminum	1	ug/l	200	5200	
Barlum	1	ug/l	50	540	
Calcium	1	ug/l	5000	66000	
Chromium	1	ug/l	50	510	
Copper	1	ug/l	50	520	
Iron	1	ug/l	300	5400	
Magnesium	1	ug/l	5000	54000	
Manganese	1	ug/l	40	1200	
Nickel	1	ug/l	50	510	
Potassium	, 1	ug/l	5000	52000	
Silver	1	ug/l	20	100	
Sodium	1	ug/l	5000	75000	
Vanadium	1	ug/l	50	520	
Zinc	1	ug/l	50	520	
AL Metals 6020	**				
Analyte	DF	Units	RL	Result	
Antimony	1	ug/l	3.0	560	
Arsenic	1	ug/l	2.0	530	
Beryllium	1	ug/l	1.0	560	
Cadmium	1	ug/l	2.0	530	
Cobalt	. 1	ug/l	2.0	530	
Lead	1	ug/l	3.0	550	
Selenium	1	ug/l	10	530	

ug/l

Thallium

Sample ID: RC-2 SW MSD Lab#: AC84282-002

Matrix: Aqueous

Collection Date: 4/11/2015 Receipt Date: 4/13/2015

Mercury (Water) 7470A

Analyte	 DF	Units	RL	Result
Mercury	 1	ug/l	0.70	10
L Metals 6010				
Analyte	 DF	Units	RL	Result
Aluminum	1	ug/l	200	5100
Barium	1	ug/l	50	520
Calcium	1	ug/l	5000	63000
Chromium	1	ug/l	50	500
Copper	1	ug/l	50	510
Iron	1	ug/l	300	5300
Magnesium	1	ug/l	5000	52000
Manganese	1	ug/l	40	1100
Nickel	1	ug/l	50	500
Potassium	1	ug/l	5000	50000
Silver	1	ug/l	20	97
Sodium	1	ug/l	5000	71000
Vanadium	1	ug/l	50	510
Zinc	1	ug/l	50	510
AL Metals 6020				
Analyte	DF	Units	RL	Result
Antimony	1	ug/l	3.0	500
Arsenic	1	ug/l	2.0	480
Beryllium	1	ug/l	1.0	510
Cadmium	1	ug/I	2.0	480
Cobalt	1	ug/l	2.0	470
Lead	1	ug/l	3.0	500
Selenium	1	ug/l	10	480
Thallium	1	ug/l	2.0	460

Sample ID: SW-5 SW

Lab#: AC84282-003

Collection Date: 4/11/2015 Receipt Date: 4/13/2015

Matrix: Aqueous

Mercury	/18/ata=\	7470A
Mercury	(water)	/4/VA

Analyte	DF	Units	RL	Result
Mercury	1	ug/l	0.70	ND
. Metals 6010				
Analyte	DF	Units	RL	Result
Aluminum	1	ug/l	200	ND
Barium	· 1	ug/l	50	ND
Calcium	1	ug/l	5000	15000
Chromium	1	ug/l	50	ND
Copper	1	ug/l	50	ND
Iron	1	ug/l	300	460
Magnesium	1	ug/l	5000	ND
Manganese	1	ug/l	40	280
Nickel	1	ug/l	50	ND
Potassium	1	ug/I	5000	ND
Silver	1	ug/l	20	ND
Sodium	1	ug/l	5000	24000
Vanadium	1	ug/l	50	ND
Zinc	1	ug/l	50	ND
. Metals 6020				
Analyte	DF	Units	RL	Result
Antimony	1	ug/l	3.0	ND
Arsenic	1	ug/l	2.0	ND
Beryllium	1	ug/l	1.0	ND
Cadmium	1	ug/l	2.0	6.9
Cobalt	1	ug/l	2.0	ND
Lead	1	ug/l	3.0	ND
Selenium	1	ug/l	10	ND
Thallium	1	ug/l	2.0	ND

Sample ID: SW-6 SW Lab#: AC84282-004

Matrix: Aqueous

Collection Date: 4/11/2015

Receipt Date: 4/13/2015

Mercury ((Water)	7470A
-----------	---------	-------

Analyte	DF	Units	RL	Result
Mercury	1	ug/t	0.70	ND
AL Metals 6010				
Analyte	DF	Units	RL	Result
Aluminum	1	ug/l	200	ND
Barium	1	ug/l	50	ND
Calcium	1	ug/l	5000	21000
Chromium	1	ug/l	50	ND
Copper	1	ug/l	50	ND
Iron	1	ug/l	300	2000
Magnesium	1	ug/l	5000	ND
Manganese	1	ug/l	40	550
Nickel	1	ug/l	50	ND
Potassium	1	ug/l	5000	ND
Silver	1	ug/l	20	ND
Sodium	1	ug/l	5000	28000
Vanadium	1	ug/l	50	ND
Zinc	1	ug/l	50	ND
AL Metals 6020				
Analyte	DF	Units	RL	Result
Antimony	1	ug/l	3.0	ND
Arsenic	1	ug/l	2.0	ND
Beryllium	1	ug/l	1.0	ND
Cadmium	1	ug/l	2.0	ND
Cobalt	1	ug/l	2.0	ND
Lead	1	ug/l	3.0	ND
Selenium	1	ug/l	10	ND
Thallium	1	ug/l	2.0	ND

Sample ID: SC-4 SW Lab#: AC84282-005

Matrix: Aqueous

Collection Date: 4/11/2015 Receipt Date: 4/13/2015

Mercury (Water) 7470A

Analyte	DF	Units	RL	Result
Mercury	 1	ug/l	0.70	ND
AL Metals 6010				**
Analyte	 DF	Units	RL	Result
Aluminum	1	ug/l	200	ND
Barium	1	ug/l	50	ND
Calcium	1	ug/l	5000	15000
Chromium	1	ug/l	50	ND
Copper	1	ug/l	50	ND
Iron	1	u g /l	300	ND
Magnesium	1	ug/l	5000	ND
Manganese	1	ug/l	40	640
Nickel	1	ug/l	50	ND
Potassium	1	ug/l	5000	ND
Silver	1	ug/l	20	ND
Sodium	1	ug/l	5000	23000
Vanadium	1	ug/l	50	ND
Zinc	1	ug/l	50	ND
AL Metals 6020		•		
Analyte	DF	Units	RL	Result
Antimony	1	ug/l	3.0	ND
Arsenic	1	ug/l	2.0	ND
Beryllium	1	ug/l	1.0	ND
Cadmium	1	ug/l	2.0	ND
Cobalt	1	ug/l	2.0	ND
Lead	1	ug/l	3.0	ND
Selenium	1	ug/l	10	ND
Thallium	1	ug/l	2.0	ND

Lab#: AC84282-006

Matrix: Sediment

Collection Date: 4/11/2015

Receipt Date: 4/13/2015

Solids SM2540G				
Analyte	DF	Units	RL	Result
% Solids	1	percent		32
lercury (Soil/Waste) 7471A				
Analyte	DF	Units	RL	Result
Mercury	1	mg/kg	0.26	ND
AL Metals 6010				
Analyte	DF	Units	RL	Result
Aluminum	1	mg/kg	620	2600
Barium	1	mg/kg	31	39
Calcium	1	mg/kg	3100	ND
Chromium	1	mg/kg	16	ND
Cobalt	1	mg/kg	7.8	ND
Copper	1	mg/kg	16	220
Iron	1	mg/kg	620	8600
Lead	1	mg/kg	16	72
Magnesium	1	mg/kg	1600	ND
Manganese	1	mg/kg	31	310
Nickel	1	mg/kg	16	ND
Potassium	1	mg/kg	1600	ND
Sodium	1	mg/kg	780	ND
Vanadium	1	mg/kg	31	ND
Zinc	1	mg/kg	31	140
AL Metals 6020				
Analyte	DF	Units	RL	Result
Antimony	1	mg/kg	2.5	ND
Arsenic	1	mg/kg	0.62	5.6
Beryllium	1	mg/kg	0.62	ND
Cadmium	1	mg/kg	1.2	26
Selenium	1	mg/kg	6.3	ND
Silver	1	mg/kg	0.62	ND
Thallium	1	mg/kg	1.2	ND

Lab#: AC84282-007

Matrix: Sediment

Collection Date: 4/11/2015 Receipt Date: 4/13/2015

Analyte	DF	Units	RL	Result
% Solids	1	percent		25
ercury (Soil/Waste) 7471A		•	•	
Analyte	DF	Units	RL	Result
Mercury	1	mg/kg	0.33	0.35
AL Metals 6010				
Analyte	DF	Units	RL	Result
Aluminum	1	mg/kg	800	12000
Barium	1	mg/kg	40	91
Calcium	1	mg/kg	4000	ND
Chromium	1	mg/kg	20	49
Cobalt	1	mg/kg	10	13
Copper	1	mg/kg	20	130
Iron	1	mg/kg	800	17000
Lead	1	mg/kg	20	340
Magnesium	1	mg/kg	2000	ND
Manganese	1	mg/kg	40	1900
Nickel	1	mg/kg	20	ND
Potassium	1	mg/kg	2000	ND
Sodium	1	mg/kg	1000	ND
Vanadium	1	mg/kg	40	ND
Zinc	1	mg/kg	40	480
AL Metals 6020			190	
Analyte	DF	Units	RL	Result
Antimony	1	mg/kg	3.2	ND

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

0.80

0.80

1.6

8.0

0.80

1.6

15

ND

150

ND

ND

ND

Arsenic

Beryllium

Cadmium

Selenium

Thallium

Silver

Lab#: AC84282-008 Matrix: Sediment Collection Date: 4/11/2015 Receipt Date: 4/13/2015

% Solids SM2540G

Analyte	DF	Units	RL	Result	
% Solids	1	percent		17	
fercury (Soil/Waste) 7471A					
Analyte	DF	Units	RL	Result	
Mercury	1	mg/kg	0.49	ND	
AL Metals 6010					
Analyte	DF	Units	RL	Result	
Aluminum	1	mg/kg	1200	6600	
Barium	1	mg/kg	59	ND	
Calcium	1	mg/kg	5900	ND	
Chromium	1	mg/kg	29	ND	
Cobalt	1	mg/kg	15	ND	
Copper	1	mg/kg	29	70	
Iron	1	mg/kg	1200	9200	
Lead	1	mg/kg	29	150	
Magnesium	1	mg/kg	2900	ND	
Manganese	1	mg/kg	59	370	
Nickel	1	mg/kg	29	ND	
Potassium	1	mg/kg	2900	ND	
Sodium	1	mg/kg	1500	ND .	
Vanadium	1	mg/kg	59	ND	
Zinc		mg/kg	59	250	
AL Metals 6020					
Analyte	DF	Units	RL	Result	
Antimony	1	mg/kg	4.7	ND	
Arsenic	1	mg/kg	1.2	4.2	
Beryllium	1	mg/kg	1.2	ND	
Cadmium	1	mg/kg	2.4	64	
Selenium	1	mg/kg	12	ND	
Silver	1	mg/kg	1.2	ND	
Thallium	1	mg/kg	2.4	ND	

Lab#: AC84282-009

Matrix: Sediment

Collection Date: 4/11/2015

Receipt Date: 4/13/2015

٥/_	80	lids	SM	254	nc

Analyte	DF	Units	RL	Result	
% Solids	1	percent		24	
Mercury (Soil/Waste) 7471A				-	
Analyte	DF	Units	RL	Result	
Mercury	1	mg/kg	0.35	ND	
TAL Metals 6010					
Analyte	DF	Units	RL	Result	
Aluminum	1	mg/kg	830	4800	
Barium	1	mg/kg	42	66	
Calcium	1	mg/kg	4200	ND	
Chromium	1	mg/kg	21	ND	
Cobalt	1	mg/kg	10	11	
Copper	1	mg/kg	21	54	
Iron	1	mg/kg	830	9000	
Lead	1	mg/kg	21	110	
Magnesium	1	mg/kg	2100	ND	
Manganese	1	mg/kg	42	1100	
Nickel	1	mg/kg	21	ND	
Potassium	1	mg/kg	2100	ND	
Sodium	1	mg/kg	1000	ND .	
Vanadium	1 .	mg/kg	42	ND	
Zinc	1	mg/kg	42	250	
TAL Metals 6020					
Analyte	DF	Units	RL	Result	
Antimony	1	mg/kg	3.3	ND	
Arsenic	1	mg/kg	0.83	4.8	
Beryllium	1	mg/kg	0.83	ND	
Cadmium	1	mg/kg	1.7	57	
Selenium	1	mg/kg	8.3	ND	
Silver	1	mg/kg	0.83	ND	
Thallium	1	mg/kg	1.7	ND	

Lab#: AC84282-010 Matrix: Sediment Collection Date: 4/11/2015 Receipt Date: 4/13/2015

6 Solids SM2540G				
Analyte	DF	Units	RL	Result
% Solids	1	percent		30
fercury (Soil/Waste) 7471A				
Analyte	DF	Units	RL	Result
Mercury	1	mg/kg	0.28	1.2
'AL Metals 6010				
Analyte	DF	Units	RL	Result
Aluminum	1	mg/kg	670	5300
Barium	1	mg/kg	33	120
Calcium	1	mg/kg	3300	4300
Chromium	1	mg/kg	17	35
Cobalt	1	mg/kg	8.3	13
Copper	1	mg/kg	17	110
fron	1	mg/kg	670	32000
Lead	1	mg/kg	17	190
Magnesium	1	mg/kg	1700	ND
Manganese	1	mg/kg	33	3500
Nickel	1	mg/kg	17	ND
Potassium	1	mg/kg	1700	ND
Sodium	1	mg/kg	830	ND
Vanadium	1	mg/kg	33	60
Zinc	1	mg/kg	33	360
AL Metals 6020				
Analyte	DF	Units	RL	Result
Antimony	1	mg/kg	2.7	ND
Arsenic	1	mg/kg	0.67	11
Berylfium	1	mg/kg	0.67	ND
Cadmium	1	mg/kg	1.3	62
Selenium	1	mg/kg	6.7	ND
Silver	1	mg/kg	0.67	ND
Thallium	1	mg/kg	1.3	ND

Lab#: AC84282-011 Matrix: Sediment Collection Date: 4/11/2015 Receipt Date: 4/13/2015

% Solids SM2540G

Analyte	DF	Units	RL	Result
% Solids	1	percent		77
	•	porcom		••
ercury (Soil/Waste) 7471A				
Analyte	DF	Units	RL	Result
Mercury	1	mg/kg	0.11	ND
AL Metals 6010				
Analyte	DF	Units	RL	Result
Aluminum	1	mg/kg	260	810
Barium	1	mg/kg	13	ND
Calcium	1	mg/kg	1300	ND
Chromium	1	mg/kg	6.5	ND
Cobalt	1	mg/kg	3.2	ND
Copper	1	mg/kg	6.5	8.7
Iron	1	mg/kg	260	2600
Lead	1	mg/kg	6.5	7.2
Magnesium	1	mg/kg	650	ND
Manganese	1	mg/kg	13	18
Nickel	1	mg/kg	6.5	ND
Potassium	1	mg/kg	650	ND
Sodium	1	mg/kg	320	ND
Vanadium	1	mg/kg	13	ND
Zinc	1	mg/kg	13	32
AL Metals 6020				
Analyte	DF	Units	RL	Result
Antimony	1	mg/kg	1.0	ND
Arsenic	1	mg/kg	0.26	0.56
Beryllium	1	mg/kg	0.26	ND
Cadmium	1	mg/kg	0.52	ND
Selenium	1	mg/kg	2.6	ND
Silver	1	mg/kg	0.26	ND
Thallium	1	mg/kg	0.52	ND

Sample ID: SW-1

Lab#: AC84282-012 Matrix: Aqueous

Collection Date: 4/11/2015 Receipt Date: 4/13/2015

Analyte	 DF	Units	RL	Result
Mercury	 1	ug/l	0.70	ND
_ Metals 6010				
Analyte	 DF	Units	RL	Result
Aluminum	1	ug/l	200	ND
Barium	1	ug/l	50	ND
Calcium	1	ug/l	5000	15000
Chromium	1	ug/l	50	ND
Copper	1	ug/l	50	ND
Iron	1	ug/l	300	370
Magnesium	1	ug/l	5000	ND
Manganese	1	ug/l	40	760
Nickel	1	ug/l	50	ND
Potassium	1	ug/l	5000	ND
Silver	1	ug/l	20	ND
Sodium	1	ug/l	5000	24000
Vanadium	1	ug/l	50	ND
Zinc	 1	ug/l	50	ND
_ Metals 6020				
Analyte	DF	Units	RL.	Result
Antimony	1	ug/l	3.0	ND
Arsenic	1	ug/l	2.0	ND
Beryllium	1	ug/l	1.0	ND
Cadmium	1	ug/l	2.0	3.4
Cobalt	1	ug/l	2.0	ND
Lead	1	ug/l	3.0	ND
Selenium	. 1	ug/l	10	ND
Thallium	1	ug/l	2.0	ND

Sample ID: SW-2 Collection Date: 4/11/2015 Lab#: AC84282-013 Receipt Date: 4/13/2015 Matrix: Aqueous

Manasama	/14/ -41	74704
Mercury	(Water)	/4/UA

Analyte	DF	Units	RL	Result	
Mercury	1	ug/l	0.70	ND	
AL Metals 6010					
Analyte	DF	Units	RL	Result	
Aluminum	1	ug/l	200	ND	
Barium	1	ug/l	50	ND	
Calcium	1	ug/l	5000	15000	
Chromium	1	ug/l	50	ND	
Copper		ug/l	50	ND	
Iron	1	ug/l	300	510	
Magnesium	1	ug/l	5000	ND	
Manganese	1	ug/l	40	840	
Nickel	1	ug/t	50	ND	
Potassium	1	ug/l	5000	ND	
Silver	1	ug/l	20	ND	
Sodium	1	ug/t	5000	24000	
Vanadium	1	ug/l	50	ND	
Zinc	1	ug/l	50	ND .	
AL Metals 6020	. 100 .				
Analyte	DF	Units	RL	Result	
Antimony	1	ug/l	3.0	ND	
Arsenic	1	ug/l	2.0	ND	
Beryllium	1	ug/l	1.0	ND	
Cadmium	1	ug/I	2.0	2.8	
Cobalt	1	ug/l	2.0	ND	
Lead	1	ug/I	3.0	ND	
Selenium	1	ug/l	10	ND	
Thallium	1	ug/l	2.0	ND	

Sample ID: SW-3
Lab#: AC84282-014
Matrix: Aqueous

Collection Date: 4/11/2015 Receipt Date: 4/13/2015

Mercury	(Water)	7470A
---------	---------	-------

Cadmium

Selenium

Thallium

Cobalt

Lead

Analyte	DF	Units	RL	Result
Mercury	1	ug/l	0.70	ND
AL Metals 6010		-		
Analyte	DF	Units	RL	Result
Aluminum	1	ug/l	200	ND
Barium	1	ug/l	50	ND
Calcium	1	ug/l	5000	15000
Chromium	1	ug/l	50	ND
Copper	1	ug/l	50	ND
Iron	1	ug/l	300	ND
Magnesium	1	ug/l	5000	ND
Manganese	1	ug/l	40	640
Nickel	1	ug/l	50	ND
Potassium	1	ug/l	5000	ND
Silver	1	ug/l	20	ND
Sodium	1	ug/i	5000	23000
Vanadium	1	ug/l	50	ND
Zinc	1	ug/l	50	ND
AL Metals 6020				
Analyte	DF	Units	RL	Result
Antimony	1	ug/l	3.0	ND
Arsenic	1	ug/l	2.0	ND
Beryllium	1	ug/l	1.0	ND

ug/l

ug/l

ug/l

ug/l

ug/l

2.0

2.0

3.0

10

2.0

ND

ND

ND

ND

ND

Sample ID: SW-4

Lab#: AC84282-015

Matrix: Aqueous

Collection Date: 4/11/2015

Receipt Date: 4/13/2015

Mercury	/M/atarl	74708
MEICUIV	ITTACLE	14100

Beryllium

Cadmium

Selenium

Thallium

Cobalt

Lead

Analyte	DF	Units	RL	Result	
Mercury	1	ug/l	0.70	ND	
AL Metals 6010					
Analyte	DF	Units	RL	Result	
Aluminum	1	ug/l	200	ND	
Barium	1	ug/l	50	ND	
Calcium	1	ug/l	5000	13000	
Chromium	1	ug/l	50	ND	
Copper	1	ug/l	50	ND	
Iron	1	ug/l	300	390	
Magnesium	1	ug/l	5000	ND	
Manganese	1	ug/l	40	550	
Nickel	1	ug/l	50	ND	
Potassium	1	ug/l	5000	ND	
Silver	1	ug/l	20	ND	
Sodium	1	ug/i	5000	17000	
Vanadium	1	ug/I	50	ND	
Zinc	1	ug/I	50	ND	
AL Metals 6020					
Analyte	DF	Units	RL	Result	
Antimony	1	ug/l	3.0	ND	
Arsenic	1	ug/l	2.0	ND	

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

1.0

2.0

2.0

3.0

10

2.0

ND

ND

3.1

ND

ND

2.0

Sample ID: SC-1 SED

Lab#: AC84282-016

Matrix: Sediment

Collection Date: 4/10/2015

Receipt Date: 4/13/2015

% Solids SM2540G

Analyte	DF	Units	RL	Result
% Solids	1	percent		18
als (single) 6020	 			
ais (Siliule) ovzv				
(0g.0) 0020				
Analyte	DF	Units	RL	Result

Sample ID: SC- 2 SED

Lab#: AC84282-017

Matrix: Sediment

Collection Date: 4/10/2015

Receipt Date: 4/13/2015

% Solids SM2540G

Analyte	DF	Units	RL	Result	
% Solids	1	percent	"	67	
tals (single) 6020		TORNE WAY			
Analyte	DF	Units	RL	Result	
Cadmium	4	malka	0.60	0.82	

Sample ID: SC- 3 SED

Lab#: AC84282-018

Matrix: Sediment

Collection Date: 4/10/2015

Receipt Date: 4/13/2015

% Solids SM2540G

Analyte DF Units RL Result

% Solids 1 percent 39

Metals (single) 6020

 Analyte
 DF
 Units
 RL
 Result

 Cadmium
 1
 mg/kg
 1.0
 ND

Collection Date: 4/10/2015

Lab#: AC84282-019 Receipt Date: 4/13/2015 Matrix: Sediment % Solids SM2540G Analyte DF Units RL Result % Solids 1 66 percent Mercury (Soil/Waste) 7471A Analyte DF Units RL Result Mercury 1 0.13 ND mg/kg **TAL Metals 6010** Analyte DF Units RL Result Aluminum 300 600 mg/kg Barium mg/kg 15 ND ND Calcium 1500 mg/kg Chromium mg/kg 7.6 ND Cobalt ND mg/kg 3.8 Copper mg/kg 7.6 ND 1400 mg/kg 300 Iron Lead mg/kg 7.6 ND ND Magnesium 760 mg/kg 15 61 Manganese mg/kg 7.6 ND Nickel mg/kg Potassium 760 ND mg/kg ND Sodium 380 mg/kg Vanadium 15 ND mg/kg Zinc 15 ND mg/kg **TAL Metals 6020** DF Units RL. Result **Analyte** Antimony mg/kg 1.2 ND mg/kg 0.30 0.52 Arsenic ND Beryllium mg/kg 0.30 mg/kg 0.61 ND Cadmium ND Selenium mg/kg 3.0 0.30 ND Silver mg/kg 0.61 ND Thallium mg/kg

Sample ID: SC-4 SED

Sample ID: SC- 5 SED

Lab#: AC84282-020

Matrix: Sediment

Collection Date: 4/10/2015

Receipt Date: 4/13/2015

% Solids SM2540G

RL Analyte DF Units Result % Solids 62 percent

Metals (single) 6020

Analyte DF Units RL Result Cadmium 1.4 mg/kg 0.65

Sample ID: FQ-1 SED

Lab#: AC84282-021 Matrix: Sediment Collection Date: 4/11/2015 Receipt Date: 4/13/2015

% Solids SM2540G

Analyte	DF	Units	RL	Result
% Solids	1	percent		70
ercury (Soil/Waste) 7471A				
Analyte	DF	Units	RL	Result
Mercury	1	mg/kg	0.12	ND
AL Metals 6010		•		• "
Analyte	DF	Units	RL	Result
Aluminum	1	mg/kg	290	910
Barium	1	mg/kg	14	ND
Calcium	1	mg/kg	1400	ND
Chromium	1	mg/kg	7.1	ND
Cobalt	1	mg/kg	3.6	ND
Copper	1	mg/kg	7.1	ND
Iron	1	mg/kg	290	2400
Lead	1	mg/kg	7.1	ND
Magnesium	1	mg/kg	710	ND
Manganese	1	mg/kg	14	120
Nickel	1	mg/kg	7.1	ND
Potassium	1	mg/kg	710	ND
Sodium	. 1	mg/kg	360	ND
Vanadium	1	mg/kg	14	17
Zinc	1	mg/kg	14	ND
AL Metals 6020				
Analyte	DF	Units	RL	Result
Antimony	1	mg/kg	1.1	ND
Arsenic	1	mg/kg	0.29	0.89
Beryllium	1	mg/kg	0.29	ND
Cadmium	1	mg/kg	0.57	0.83
Selenium	1	mg/kg	2.9	ND
Silver	1	mg/kg	0.29	ND
Thallium	1	mg/kg	0.57	ND

Sample ID: FQ-2 SED MS

Lab#: AC84282-022

Collection Date: 4/11/2015 Receipt Date: 4/13/2015

Matrix: Sediment

•	•		-	^-	•	_
7/	20	lids	- 5 M	754	241	4

Analyte	DF	Units	RL	Result	
% Solids	1	percent		21	
lercury (Soil/Waste) 7471A					
Analyte	DF	Units	RL	Result	
Mercury	1	mg/kg	0.40	6.4	
AL Metals 6010					
Analyte	DF	Units	RL	Result	-
Aluminum	1	mg/kg	950	8500	
Barium	1	mg/kg	48	260	
Calcium	1	mg/kg	4800	27000	
Chromium	1	mg/kg	24	240	
Cobalt	1	mg/kg	12	240	
Copper	1	mg/kg	24	280	
Iron	1	mg/kg	950	9400	
Lead	1	mg/kg	24	330	
Magnesium	1	mg/kg	2400	24000	
Manganese	1	mg/kg	48	610	
Nickel	1	mg/kg	24	250	
Potassium	1	mg/kg	2400	23000	
Sodium	1	mg/kg	1200	23000	
Vanadium	1	mg/kg	48	250	
Zinc	1	mg/kg	48	420	
AL Metals 6020					
Analyte	DF	Units	RL	Result	
Antimony	1	mg/kg	3.8	170	
Arsenic	1	mg/kg	0.95	230	
Beryllium	1	mg/kg	0.95	220	
Cadmium	1	mg/kg	1.9	290	
Selenium	1	mg/kg	9.5	220	
Silver	1	mg/kg	0.95	36	
Thallium	1	mg/kg	1.9	230	

Sample ID: FQ-2 SED MSD

Lab#: AC84282-023

Matrix: Sediment

Collection Date: 4/11/2015

Receipt Date: 4/13/2015

Analyte	DF	Units	RL	Result
% Solids	1	percent		19
		percent		
lercury (Soil/Waste) 7471A				
Analyte	DF	Units	RL	Result
Mercury	1	mg/kg	0.44	8.1
AL Metals 6010				
Analyte	DF	Units	RL	Result
Aluminum	1	mg/kg	1100	10000
Barium	1	mg/kg	53	290
Calcium	1	mg/kg	5300	29000
Chromium	1	mg/kg	26	270
Cobalt	1	mg/kg	13	260
Copper	1	mg/kg	26	310
Iron	1	mg/kg	1100	11000
Lead	1	mg/kg	26	380
Magnesium	1	mg/kg	2600	27000
Manganese	1	mg/kg	53	640
Nickel	1	mg/kg	26	270
Potassium	1	mg/kg	2600	25000
Sodium	1	mg/kg	1300	25000
Vanadium	1	mg/kg	53	280
Zinc	1	mg/kg	53	480
AL Metals 6020			• • • • • • • • • • • • • • • • • • •	
Analyte	DF	Units	RL	Result
Antimony	1	mg/kg	4.2	170
Arsenic	1	mg/kg	1.1	270
Beryllium	1	mg/kg	1.1	250
Cadmium	1	mg/kg	2.1	360
Selenium	1	mg/kg	11	250
Silver	1	mg/kg	- 1.1	41
Thallium	1	mg/kg	2.1	260

Sample ID: RC-1 SW Lab#: AC84282-024

Matrix: Aqueous

Collection Date: 4/10/2015

Receipt Date: 4/13/2015

Mercury (Water) 7470A

Analyte	 	DF	Units	RL	Result
Mercury		1	ug/l	0.70	ND
_ Metals 6010	1 Hamile 100				
Analyte		DF	Units	RL	Result
Aluminum	•	1	ug/l	200	320
Barium		1	ug/l	50	ND
Calcium		1	ug/l	5000	13000
Chromium		1	ug/l	50	ND
Copper		1	ug/l	50	ND
Iron		1	ug/l	300	600
Magnesium		1	ug/l	5000	ND
Manganese		1	ug/l	40	700
Nickel		1	ug/l	50	ND
Potassium		1	ug/l	5000	ND
Silver		1	ug/l	20	ND
Sodium		1	ug/l	5000	18000
Vanadium		1	ug/l	50	ND
Zinc		1	ug/l	50	ND
_ Metals 6020			111 100 1	an 111 1	weets
Analyte		DF	Units	RL	Result
Antimony		1	ug/l	3.0	ND
Arsenic		1	ug/l	2.0	ND
Beryllium		1	ug/l	1.0	ND
Cadmium		1	ug/l	2.0	ND
Cobalt		1	ug/l	2.0	3.9
Lead		1	ug/l	3.0	3.2
Selenium		1	ug/l	10	ND
Thallium		1	ug/l	2.0	ND

Sample ID: MB 42513 (1)

% Solid: 0

Lab Name: Veritech

Client Id: MB 42513 (1)

Units: UG/L

Lab Code:

Matrix: AQUEOUS Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol		Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7429-90-5	Aluminum	200	ND	1	50	50	04/20/15	42513BW	V17712A2	12	Р	PEICP2A
7440-39-3	Barium	50	ND	1	50	50	04/20/15	425135W	V17712A2	12	Р	PEICP2A
7440-70-2	Calcium	5000	ND	1	50	50	04/20/15	425135W	V17712A2	12	P	PEICP2A
7440-47-3	Chromium	50	ND	1,	50	50	04/20/15	425135W	V17712A2	12	Р	PEICP2A
7440-50-8	Copper	50	ND	1	50	50	04/20/15	42513BW	V17712A2	12	Р	PEICP2A
7439-89-6	Iron	300	ND	1	50	50	04/20/15	425135W	V17712A2	12	Р	PEICP2A
7439-95-4	Magnesium	5000	ND	1	50	50	04/20/15	42513SW	V17712A2	12	Р	PEICP2A
7439-96-5	Manganese	40	ND	1	50	50	04/20/15	425135W	V17712A2	12	Р	PEICP2A
7439-97-6	Mercury	0.70	ND	1	25	25	04/20/15	42513 H	17712SW	11	CV	HGCV2A
7439-98-7	Molybdenum	20	ND	1:	50	50	04/20/15	425135W	V17712A2	12	P	PEICP2A
7440-02-0	Nickel	50	ND	1	50	50	04/20/15	425135W	V17712A2	12	P	PEICP2A
7440-09-7	Potassium	5000	ND	1	50	50	04/20/15	425135W	V17712B2	11 -	Р	PEICPRAD2A
7440-22-4	Silver	20	ND	1	50	50	04/20/15	425135W	/17712A2	12	Р	PEICP2A
7440-23-5	Sodium	5000	ND	1;	50	50	04/20/15	425135W	/17712B2	11	Р	PEICPRAD2A
7440-31-5	Tin	50	ND	1	50	50	04/20/15	425135W	/17712A2	12	Р	PEICP2A
7440-32-6	Titanium	50	ND	1	50	50	04/20/15	425135W	/17712A2	12	Р	PEICP2A
7440-62-2	Vanadium	50	ND;	1	50	50	04/20/15	42513SW	/17712A2	12	P	PEICP2A
7440-66-6	Zinc	50	ND	1	50	50	04/20/15	42513SW	/17712A2	12	Р	PEICP2A

Comments:					

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES CV -ColdVapor

Sample ID: MB 42514 (100)

% Solid: 0

Lab Name: Veritech

Client Id: MB 42514 (100)

Units: MG/KG

Lab Code:

Matrix: SOIL

Level: LOW

Instr	M	Seq Num	File:	Prep Batch	Analysis Date	Final Wt/Vol	Initial Wt/Vol	Dil Fact	Conc	RL	Analyte	Cas No.
PEICPRAD3A	Р	11	S17713B3	42514	04/17/15	50	0.5	1	ND	200	Aluminum	7429-90-5
PEICP3A	P	12	S17713A3	42514	04/17/15	50	0.5	1	ND	4.0	Antimony	7440-36-0
PEICP3A	Р	12	S17713A3	42514	04/17/15	50	0.5	1	ND	4.0	Arsenic	7440-38-2
PEICP3A	P	12	S17713A3	42514	04/17/15	50	0.5	1	ND	10	Barium	7440-39-3
PEICP3A	Р	12	S17713A3	42514	04/17/15	50	0.5	1	ND	1.2	Beryllium	7440-41-7
PEICP3A	Р	12	S17713A3	42514	04/17/15	50	0.5	1	ND	1.2	Cadmium	7440-43-9
PEICPRAD3A	Р	11	S17713B3	42514 _;	04/17/15	50	0.5	1	ND	1000	Calcium	7440-70-2
PEICP3A	Р	12	S17713A3	42514	04/17/15	50	0.5	1	ND	5.0	Chromium	7440-47-3
PEICP3A	P	12	S17713A3	42514	04/17/15	50	0.5	1	ND	2.5	Cobalt	7440-48-4
PEICP3A	P	12	S17713A3	42514	04/17/15	50	0.5	1	ND	5.0	Copper	7440-50-8
PEICPRAD3A	P	11	S17713B3	42514	04/17/15	50	0.5	1	ND	200	Iron	7439-89-6
PEICP3A	P	12	S17713A3	42514	04/17/15	50	0.5	1	ND	5.0	Lead	7439-92-1
PEICPRAD3A	P	11	S17713B3	42514	04/17/15	50	0.5	1	ND	500	Magnesium	7439-95-4
PEICP3A	Р	12	S17713A3	42514	04/17/15	50	0.5	1	ND	10	Manganese	7439-96-5
PEICP3A	Р	12	S17713A3	42514	04/17/15	50	0.5	1	ND	2.5	Molybdenum	7439-98-7
PEICP3A	P	12	S17713A3	42514	04/17/15	50	0.5	1	ND	5.0	Nickel	7440-02-0
PEICPRAD3A	P	11	S17713B3	42514	04/17/15	50	0.5	1	ND	500	Potassium	7440-09-7
PEICP3A	Р	12	S17713A3	42514	04/17/15	50	0.5	1.	ND	1.5	Silver	7440-22-4
PEICPRAD3A	P	11	S17713B3	42514	04/17/15	50	0.5	1	ND	250	Sodium	7440-23-5
PEICP3A	P	12	S17713A3	42514	04/17/15	50	0.5	1	ND	1.5	Thallium	7440-28-0
PEICP3A	Р	12	S17713A3	42514	04/17/15	50	0.5	1	ND	10	Titanium	7440-32-6
PEICP3A	P;	12	S17713A3	42514	04/17/15	50	0.5	1	ND	10	Vanadium	7440-62-2
PEICP3A	Р	12	S17713A3	42514	04/17/15	50	0.5	1	ND!	10	Zinc	7440-66-6

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: MB 42513

% Solid: 0

Lab Name: Veritech

Client Id: MB 42513

Units: UG/L

Lab Code:

Matrix: AQUEOUS Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	M	Instr
7440-36-0	Antimony	3.0	ND	1	50	100	04/21/15	42513	SW42115A	16	MSVS2	7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	04/21/15	42513	SW42115A	16	MSMS2	_7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	04/21/15	42513	SW42115A	16	MSVIS2	_7500SWA
7440-43-9	Cadmium	2.0	ND	1	50	100	04/21/15	42513	SW42115A	16	MSMS2	_7500SWA
7440-48-4	Cobalt	2.0	ND	1	50	100	04/21/15	42513	SW42115A	16	MSMS2	_7500SWA
7439-92-1	Lead	3.0	ND	1	50	100	04/21/15	42513	SW42115A	16	MSMS2	_7500SWA
7782-49-2	Selenium	10	ND	1	50	100	04/21/15	42513	SW42115A	16	MSMS2	_7500SWA
7440-28-0	Thallium	2.0	ND	1	50	100	04/21/15	42513	SW42115A	16	MSMS2	_7500SWA

Comments:				

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: MB 42515

% Solid: 0

Lab Name: Veritech

Client Id: MB 42515

Units: MG/KG

Lab Code:

Matrix: SOIL Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7440-36-0	Antimony	0.80	ND	1	0.5	100	04/18/15	42515	S041715C	16	MSM	S2_7500SWA
7440-38-2	Arsenic	0.20	ND	1	0.5	100	04/18/15	42515	S041715C	16	MSM	S2_7500SWA
7440-41-7	Beryllium	0.20	ND	1	0.5	100	04/18/15	42515	S041715C	16	MSM	S2_7500SWA
7440-43-9	Cadmium	0.40	ND	1	0.5	100	04/18/15	42515	S041715C	16	мѕм	S2_7500SWA
7782-49-2	Selenium	2.0	ND	1	0.5	100	04/18/15	42515	S041715C	16	MSM	S2_7500SWA
7440-22-4	Silver	0.20	ND	1	0.5	100	04/18/15	42515	S041715C	. 16	MSM	S2_7500SWA
7440-28-0	Thallium	0.40	ND	1	0.5	100	04/18/15	42515	S041715C	16	MSM	S2_7500SWA

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: MB 42514 (167)

% Solid: 0

Lab Name: Veritech

Client Id: MB 42514 (167)

Units: MG/KG

Lab Code:

Matrix: SOIL Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7439-97-6	Mercury	0.083	ND	1	0.15	25	04/23/15	42514	H17713S	11	CV	HGCV1A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES

CV -ColdVapor

Sample ID: AC84282-001

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: RC-2 SW MS Matrix: AQUEOUS

Units: UG/L Date Rec: 4/13/2015 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

				511.5	Initial	Final	Analysis	Prep		Seq	•	
Cas No.	Analyte	RL	Conc	Dil Fact	Wt/Vol	Wt/Vol	Date	Batch	File:	Num	M	Instr
7429-90-5	Aluminum	200	5200	1	50	50	04/20/15	42513	W17712A2	17	P	PEICP2A
7440-39-3	Barium	50	540	1	50.	50	04/20/15	42513	W17712A2	17	P	PEICP2A
7440-70-2	Calcium	5000	66000	1	50	50	04/20/15	42513	W17712A2	17	Р	PEICP2A
7440-47-3	Chromium	50	510	1	50	50	04/20/15	42513	W17712A2	17	Ρ	PEICP2A
7440-50-8	Copper	50	520	1	50	50	04/20/15	42513	W17712A2	17	Р	PEICP2A
7439-89-6	Iron	300	5400	1	50	50	04/20/15	42513	W17712A2	17	Р	PEICP2A
7439-95-4	Magnesium	5000	54000	1	50	50	04/20/15	42513	W17712A2	17	Р	PEICP2A
7439-96-5	Manganese	40	1200	1	50	50	04/20/15	42513	W17712A2	17	Р	PEICP2A
7439-97-6	Mercury	0.70	10	1,	25	25	04/20/15	425131	H17712SW	16	CV	HGCV2A
7440-02-0	Nickel	50	510	1	50	50	04/20/15	42513	W17712A2	17	Р	PEICP2A
7440-09-7	Potassium	5000	52000	1	50	50	04/20/15	42513	W17712B2	16	Р	PEICPRAD2A
7440-22-4	Silver	20	100	1	50	50	04/20/15	42513	W17712A2	17	Р	PEICP2A
7440-23-5	Sodium	5000	75000	1	50	50	04/20/15	42513	W17712B2	16	Р	PEICPRAD2A
7440-62-2	Vanadium	50	520	1	50	50	04/20/15	42513	W17712A2	17 :	Р	PEICP2A
7440-66-6	Zinc	50	520	1	50	50	04/20/15	42513	W17712A2	17	Р	PEICP2A

Comments:						
	,					
	 		 	 	 	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC84282-001

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client Id: RC-2 SW MS

Units: UG/L Date Rec: 4/13/2015 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	M.	Instr
7440-36-0	Antimony	3.0	560	1	50	100	04/21/15	42513 SW	42115A	22	MSMS2_	7500SWA
7440-38-2	Arsenic	2.0	530	1	50	100	04/21/15	42513 SW	42115A	22	MSVIS2_	7500SWA
7440-41-7	Beryllium	1.0	560	1;	50	100	04/21/15	42513 SW	42115A	22	MSVIS2_	7500SWA
7440-43-9	Cadmium	2.0	530	1	50	100	04/21/15	42513 SW	42115A	22	MSVIS2_7	7500SWA
7440-48-4	Cobalt	2.0	530	1	50	100	04/21/15	42513 SW	42115A	22	MSVIS2_7	7500SWA
7439-92-1	Lead	3.0	550	1.	50	100	04/21/15	42513 SW	42115A	22	MSMS2_7	7500SWA
7782-49-2	Selenium	10	530	1	50	100	04/21/15	42513 SW	42115A	22	MSMS2_	7500SWA
7440-28-0	Thallium	2.0	500	1	50	100	04/21/15	42513 SW	42115A	22	MSMS2_7	7500SWA

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES CV -ColdVapor

Sample ID: AC84282-002

% Solid: 0

Lab Name:

Veritech

Nras No:

Matrix: AQUEOUS

Client Id: RC-2 SW MSD

Units: UG/L Date Rec: 4/13/2015 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7429-90-5	Aluminum	200	5100	1	50	50	04/20/15	42513iV	/17712A2	18	Р	PEICP2A
7440-39-3	Barium	50	520	1	50	50	04/20/15	42513:V	/17712A2	18	Р	PEICP2A
7440-70-2	Calcium	5000	63000	1	50	50	04/20/15	42513:W	/17712A2	18	Ρ	PEICP2A
7440-47-3	Chromium	50	500	1	50	50	04/20/15	42513iV	/17712A2	18	Р	PEICP2A
7440-50-8	Copper	50:	510	1	50	50	04/20/15	42513 W	/17712A2	18	Р	PEICP2A
7439-89-6	Iron	300	5300	1	50	50	04/20/15	42513 V	/17712A2	18	P	PEICP2A
7439-95-4	Magnesium	5000	52000	1	50	50°	04/20/15	42513iV	/17712A2	18	Ρ	PEICP2A
7439-96-5	Manganese	40	1100	1	50	50	04/20/15	42513iV	/17712A2	18	Ρ	PEICP2A
7439-97-6	Mercury	0.70	10	1	25	25	04/20/15	42513H	17712SW	17	CV	HGCV2A
7440-02-0	Nickel	50	500	1	50	50	04/20/15	42513iV	/17712A2	18	Ρ	PEICP2A
7440-09-7	Potassium	5000	50000	1	50	50	04/20/15	42513:W	/17712B2	17	Ρ	PEICPRAD2A
7440-22-4	Silver	20	97	1	50	50	04/20/15	42513:W	/17712 A 2	18	Ρ	PEICP2A
7440-23-5	Sodium	5000	71000	1-	50	50	04/20/15	42513W	/17712 B 2	17	Р	PEICPRAD2A
7440-62-2	Vanadium	50	510	1	50	50	04/20/15	42513iV	/17712A2	18	Р	PEICP2A
7440-66-6	Zinc	50	510	1	50	50	04/20/15	42513;W	/17712A2	18	Р	PEICP2A

Comments:					

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES

CV -ColdVapor

Sample ID: AC84282-002

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client Id: RC-2 SW MSD

Units: UG/L Date Rec: 4/13/2015 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol-	Analysis Date	Prep Batch	File:	Seq Num	M	Instr
7440-36-0	Antimony	3.0	500	1	50	100	04/21/15	42513 SW	42115A	23	MSVS2	7500SWA
7440-38-2	Arsenic	2.0	480	1	50	100	04/21/15	42513 SW	42115A	23	MSVIS2_	_7500SWA
7440-41-7	Beryllium	1.0	510	1	50	100	04/21/15	42513 SW	42115A	23	MSVIS2_	_7500SWA
7440-43-9	Cadmium	2.0	480	1	50	100	04/21/15	42513SW	42115A	23	MSVIS2_	_7500SWA
7440-48 - 4	Cobalt	2.0	470	1	50	100	04/21/15	42513 SW	42115A	23	MSVIS2_	_7500SWA
7439-92-1	Lead	3.0	500	1	50	100	04/21/15	42513 SW	42115A	23	MSVIS2_	_7500SWA
7782-49-2	Selenium	10	480	1	50	100	04/21/15	42513 SW	42115A	23	MSVIS2_	_7500SWA
7440-28-0	Thallium	2.0	460	1	50	100	04/21/15	42513 SW	42115A	23	MSVIS2	_7500SWA

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES CV -ColdVapor MS - ICP-MS

Sample ID: AC84282-003

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client Id: SW-5 SW

Units: UG/L Date Rec: 4/13/2015

Lab Code: Contract:

Sdg No:

Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol		Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7429-90-5	Aluminum	200	ND	1	50	50	04/20/15	42513/\	W17712A2	24	Р	PEICP2A
7440-39-3	Barium	50	ND	1	50	50	04/20/15	42513	N17712A2	24	Р	PEICP2A
7440-70-2	Calcium	5000	15000	1,	50	50	04/20/15	42513	N17712A2	24	Р	PEICP2A
7440-47-3	Chromium	50	ND	1	50	50	04/20/15	42513	W17712A2	24	Р	PEICP2A
7440-50-8	Copper	50	ND	1	50	50	04/20/15	42513\	N17712A2	24	Ρ	PEICP2A
7439-89-6	Iron	300	460	1	50	50	04/20/15	42513i\	N17712A2	24	Ρ	PEICP2A
7439-95-4	Magnesium	5000	ND	1	50	50	04/20/15	42513	W17712A2	24	Р	PEICP2A
7439-96-5	Manganese	40	280	1	50	50	04/20/15	425131	N17712A2	24	P	PEICP2A
7439-97-6	Mercury	0.70	ND	1	25	25	04/20/15	42513H	117712SW	18	CV	HGCV2A
7440-02-0	Nickel	50	ND	1.	50	50	04/20/15	42513	N17712A2	24	Р	PEICP2A
7440-09-7	Potassium	5000	ND	1	50	50	04/20/15	42513	N17712B2	23	Р	PEICPRAD2A
7440-22-4	Silver	20:	ND	1	50	50	04/20/15	42513	N17712A2	24	Р	PEICP2A
7440-23-5	Sodium	5000	24000	1	50	50	04/20/15	42513	W17712B2	23	P	PEICPRAD2A
7440-62-2	Vanadium	50	ND	1	50	50	04/20/15	42513	N17712A2	24	P	PEICP2A
7440-66-6	Zinc	50	ND	1	50	50:	04/20/15	42513N	W17712A2	24	Р	PEICP2A

Comments:	 	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC84282-003

Client Id: SW-5 SW

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Units: UG/L Date Rec: 4/13/2015

Lab Code: Contract:

Sdg No:

Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol		Analysis Date	Prep Batch	File:	Seq Num	М	Inst
7440-36-0	Antimony	3.0	ND	1	50	100	04/21/15	42513 SW	42115A	29	MSMS2_	_7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	04/21/15	42513 SW	42115A	29	MSMS2_	_7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	04/21/15	42513 SW	42115A	29	MSMS2_	_7500SWA
7440-43-9	Cadmium	2.0	6.9	1	50	100	04/21/15	42513 SW	42115A	29	MSVIS2_	_7500SWA
7440-48-4	Cobalt	2.0	ND	1	50	100	04/21/15	42513 SW	42115A	29	MSVS2	_7500SWA
7439-92-1	Lead	3.0	ND	1	50	100	04/21/15	42513 SW	42115A	29	MSVIS2_	_7500SWA
7782-49-2	Selenium	10	ND	1:	50	100	04/21/15	42513 SW	42115A	29	MSMS2_	_7500SWA
7440-28-0	Thallium	2.0	ND	1	50	100	04/21/15	42513 SW	42115A	29	MSMS2	_7500SWA

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES CV -ColdVapor

Sample ID: AC84282-004

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: SW-6 SW

Matrix: AQUEOUS

Units: UG/L Date Rec: 4/13/2015 Lab Code: Contract: Sdg No:

Case No:

Level	: 1	LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7429-90-5	Aluminum	200	ND	1	50	50	04/20/15	42513/W17	712A2	25	Р	PEICP2A
7440-39-3	Barium	50	ND	1	50	50	04/20/15	42513/W17	712A2	25	Р	PEICP2A
7440-70-2	Calcium	5000	21000	1	50	50	04/20/15	42513;W17	712 A 2	25	Р	PEICP2A
7440-47-3	Chromium	50	ND	1	50	50	04/20/15	42513/W17	712 A 2	25	Ρ	PEICP2A
7440-50-8	Copper	50	ND	1	50	50	04/20/15	42513;W17	712A2	25	Р	PEICP2A
7439-89-6	Iron	300	2000	1	50	50	04/20/15	42513;W17	712A2	25	Ρ	PEICP2A
7439-95-4	Magnesium	5000	ND	1	50	50	04/20/15	42513;W17	712 A 2	25	Р	PEICP2A
7439-96-5	Manganese	40	550	1	50	50	04/20/15	42513;W17	712 A 2	25	Р	PEICP2A
7439-97-6	Mercury	0.70	ND	1	25	25	04/20/15	42513H177	12SW	19	CV	HGCV2A
7440-02-0	Nickel	50	ND	1	50	50	04/20/15	42513;W17	712A2	25	Р	PEICP2A
7440-09-7	Potassium	5000	ND	1	50	50	04/20/15	42513/W17	712B2	24	Р	PEICPRAD2A
7440-22-4	Silver	20	ND	1	50	50	04/20/15	42513/W17	712A2	25	Р	PEICP2A
7440-23-5	Sodium	5000	28000	1	50	50	04/20/15	42513iW17	712B2	24	Р	PEICPRAD2A
7440-62-2	Vanadium	50	ND	1	50	50	04/20/15	42513:W17	712A2	25	P	PEICP2A
7440-66-6	Žinc	50	ND	1	50	50	04/20/15	42513;W17	712A2	25	Р	PEICP2A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES

CV -ColdVapor

Sample ID: AC84282-004

% Solid: 0

Lab Name: Veritech

Nras No:

Level: LOW

Client Id: SW-6 SW Matrix: AQUEOUS

Units: UG/L Date Rec: 4/13/2015 Lab Code:

Sdg No:

Contract:

Case No:

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	M	Instr
7440-36-0	Antimony	3.0	ND	1	50	100	04/21/15	42513 SV	V42115A	30	MSVIS2_	_7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	04/21/15	42513 SV	V42115A	30 :	MSVIS2_	_7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	04/21/15	42513 SV	V42115A	30	MSVIS2	_7500SWA
7440-43-9	Cadmium	2.0	ND	1	50	100	04/21/15	42513 SV	V42115A	30	MSVIS2_	_7500SWA
7440-48-4	Cobalt	2.0	ND	1	50	100	04/21/15	42513 SV	V42115A	30	MSVIS2_	_7500SWA
7439-92-1	Lead	3.0	ND	1	50	100	04/21/15	42513 SV	V42115A	30	MSVIS2_	_7500SWA
7782-49-2	Selenium	10	ND	1	50	100	04/21/15	42513 SV	V42115A	30	MSVIS2_	_7500SWA
7440-28-0	Thallium	2.0	ND	1	50	100	04/21/15	42513 SV	V42115A	30	MSVIS2_	_7500SWA

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC84282-005

Client Id: SC-4 SW

% Solid: 0

Lab Name:

Veritech

Nras No:

Level: LOW

Matrix: AQUEOUS

Units: UG/L Date Rec: 4/13/2015 Lab Code: Contract: Sdg No:

Case No:

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7429-90-5	Aluminum	200	ND	1	50	50	04/20/15	42513	W17712A2	26	Р	PEICP2A
7440-39-3	Barium	50	ND	1	50	50	04/20/15	42513/\	N17712A2	26	Р	PEICP2A
7440-70-2	Calcium	5000	15000	1	50	50	04/20/15	42513	N17712A2	26	Р	PEICP2A
7440-47-3	Chromium	50	ND	1	50	50	04/20/15	42513	N17712A2	26	P	PEICP2A
7440-50-8	Copper	50	ND	1.	50	50	04/20/15	42513	N17712A2	26	Р	PEICP2A
7439-89-6	Iron	300	ND	1	50	50	04/20/15	42513	N17712A2	26	Р	PEICP2A
7439-95-4	Magnesium	5000	ND	1	50	50	04/20/15	42513	N17712A2	26	Ρ	PEICP2A
7439-96-5	Manganese	40	640	1	50	50	04/20/15	42513	N17712A2	26	Ρ	PEICP2A
7439-97-6	Mercury	0.70	ND	1	25	25	04/20/15	42513	117712SW	22	cv	HGCV2A
7440-02-0	Nickel	50	ND	1	50	50	04/20/15	42513	N17712A2	26	Р	PEICP2A
7440-09-7	Potassium	5000	ND	1	50	50	04/20/15	42513	N17712B2	25	P	PEICPRAD2A
7440-22-4	Silver	20	ND	1.	50	50	04/20/15	42513/\	N17712A2	26	Р	PEICP2A
7440-23-5	Sodium	5000	23000	1	50	50	04/20/15	425131	W17712B2	25	P	PEICPRAD2A
7440-62-2	Vanadium	50	ND	1	50	50	04/20/15	425131	N17712A2	26	P	PEICP2A
7440-66-6	Zinc	50	ND	. 1	50	50	04/20/15	42513\	N17712A2	26	Р	PEICP2A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC84282-005

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix:

Client Id: SC-4 SW **AQUEOUS**

Units: UG/L Date Rec: 4/13/2015 Lab Code: Contract:

Sdg No: Case No:

Level:

LOW

Cas No.	Analyte	RL	Conc [Dil Fact	Initial Wt/Vol	Final Wt/Vol		Prep Batch	File:	Seq Num	M	Instr
7440-36-0	Antimony	3.0	ND ₁	1	50	100	04/21/15	42513 SW42	2115A	31	MSMS2_7	500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	04/21/15	42513 SW42	2115A	31	MSVIS2_7	500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	04/21/15	42513 SW42	2115A	31	MSVS2_7	500SWA
7440-43-9	Cadmium	2.0	ND	1	50	100	04/21/15	42513 SW42	2115A	31	MS/MS2_7	500SWA
7440-48-4	Cobalt	2.0	ND	1	50	100	04/21/15	42513 SW42	2115A	31	MSMS2_7	500SWA
7439-92-1	Lead	3.0	ND ¹	1.	50	100	04/21/15	42513 SW42	2115A	31	MSVIS2_7	500SWA
7782-49-2	Selenium	10	ND	1	50	100	04/21/15	42513 SW42	2115A	31	MSMS2_7	500SWA
7440-28-0	Thallium	2.0	ND	1	50.	100	04/21/15	42513SW42	2115A	31	MSMS2_7	500SWA

Comments:	 	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES CV -ColdVapor

Sample ID: AC84282-006

Client Id: SED-1 Matrix: SOIL

% Solid:

32

Units: MG/KG

Lab Name: Lab Code:

Veritech

Nras No:

Sdg No:

Level: LOW

Date Rec: 4/13/2015 Contract: Case No:

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7429-90-5	Aluminum	620	2600	1:	0.5	50	04/17/15	42514	S17713B3	23	Р	PEICPRAD3A
7440-39-3	Barium	31	39	1	0.5	50	04/17/15	42514	S17713A3	24	P	PEICP3A
7440-70-2	Calcium	3100	ND	1	0.5	50	04/17/15	42514	S17713B3	23	Р	PEICPRAD3A
7440-47-3	Chromium	16	ND	1.	0.5	50	04/17/15	42514	S17713A3	24	P;	PEICP3A
7440-48-4	Cobalt	7.8	ND	1	0.5	50	04/17/15	42514	S17713A3	24	Р	PEICP3A
7440-50-8	Copper	16	220	1,	0.5	50	04/17/15	42514	S17713A3	24	P	PEICP3A
7439-89-6	Iron	620	8600	1	0.5	50	04/17/15	42514	S17713B3	23	Ρ	PEICPRAD3A
7439-92-1	Lead	16	72	1;	0.5	50	04/17/15	42514	S17713A3	24	P	PEICP3A
7439-95-4	Magnesium	1600	ND	1	0.5	50	04/17/15	42514	S17713B3	23	P	PEICPRAD3A
7439-96-5	Manganese	31	310	1	0.5	50	04/17/15	42514	S17713A3	24	Ρ	PEICP3A
7439-97-6	Mercury	0.26	ND	1	0.15	25	04/23/15	42514	H17713S	20	cv	HGCV1A
7440-02-0	Nickel	16	ND	1	0.5	50	04/17/15	42514	S17713A3	24	P	PEICP3A
7440-09-7	Potassium	1600	ND	1	0.5	50	04/17/15	42514	S17713B3	23	Р	PEICPRAD3A
7440-23-5	Sodium	780	ND	1	0.5	50	04/17/15	42514	S17713B3	23	P	PEICPRAD3A
7440-62-2	Vanadium	31	ND	1	0.5	50	04/17/15	42514	S17713A3	24	Р	PEICP3A
7440-66-6	Zinc	31	140	1	0.5	50	04/17/15	42514	S17713A3	24	Р	PEICP3A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC84282-006

% Solid: 32

Lab Name: Veritech

Nras No:

Client Id: SED-1 Matrix: SOIL

Units: MG/KG Date Rec: 4/13/2015 Lab Code: Contract:

Sdg No:

Case No:

Level: LOW

Cas No.	Analyte	RL	Conc I	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7440-36-0	Antimony	2.5	ND	1	0.5	100	04/18/15	42515	S041715C	29	MS/NS2	_7500SWA
7440-38-2	Arsenic	0.62	5.6	1	0.5	100	04/18/15	42515	S041715C	29	MSVISZ	_7500SWA
7440-41-7	Beryllium	0.62	ND	1	0.5	100	04/18/15	42515	S041715C	29	MSVIS2	_7500SWA
7440-43-9	Cadmium	1.2	26	1	0.5	100	04/18/15	42515	S041715C	29	MSWS2	_7500SWA
7782-49-2	Selenium	6.3	ND:	1	0.5	100	04/18/15	42515	S041715C	29	MSVIS2	_7500SWA
7440-22-4	Silver	0.62	ND	1	0.5	100	04/18/15	42515	S041715C	29	MSVIS2	_7500SWA
7440-28-0	Thallium	1.2	ND	1	0.5	100	04/18/15	42515	S041715C	29	MSVIS2	_7500SWA

Comments:			

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC84282-007

% Solid: 25

Lab Name: Veritech Nras No:

Client Id: SED-2 Matrix:

SOIL

Units: MG/KG Date Rec: 4/13/2015 Lab Code: Contract: Sdg No:

Case No:

Level: LOW

Cas No.	Analyte	RL.	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol		Prep Batch	File:	Seq Num	М	Instr
7429-90-5	Aluminum	800	12000	1	1	100	04/17/15	42514	S17713B3	14	Р	PEICPRAD3A
7440-39-3	Barium	40	91	1;	1	100	04/17/15	42514	S17713A3	15	P	PEICP3A
7440-70-2	Calcium	4000	ND	1	1	100	04/17/15	42514	S17713B3	14	P	PEICPRAD3A
7440-47-3	Chromium	20	49	1	1	100	04/17/15	42514	S17713A3	15	P	PEICP3A
7440-48-4	Cobalt	10	13	1	1	100	04/17/15	42514	S17713A3	15	Р	PEICP3A
7440-50-8	Copper	20	130	1	1	100	04/17/15	42514	S17713A3	15	P	PEICP3A
7439-89-6	Iron	800	17000	1	1	100	04/17/15	42514	S17713B3	14	Ρ	PEICPRAD3A
7439-92-1	Lead	20	340	1	1	100	04/17/15	42514	S17713A3	15	Ρ	PEICP3A
7439-95-4	Magnesium	2000	ND	1	1	100	04/17/15	42514	S17713B3	14	Р	PEICPRAD3A
7439-96-5	Manganese	40	1900	1:	1	100	04/17/15	42514	S17713A3	15	P.	PEICP3A
7439-97-6	Mercury	0.33	0.35	1	0.15	25	04/23/15	42514	H17713S	16	CV	HGCV1A
7440-02-0:	Nickel	20	ND;	1	1	100	04/17/15	42514	S17713A3	15	P	PEICP3A
7440-09-7	Potassium	2000	ND	1	1	100	04/17/15	42514	S17713B3	14	P	PEICPRAD3A
7440-23-5	Sodium	1000	ND	1	1	100	04/17/15	42514	S17713B3	14	Р	PEICPRAD3A
7440-62-2	Vanadium	40	ND	1,	1:	100	04/17/15	42514	S17713A3	15	P	PEICP3A
7440-66-6	Zinc	40	480	1	1	100	04/17/15	42514	S17713A3	15	P	PEICP3A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC84282-007

% Solid: 25

Lab Name: Veritech

Nras No:

Client Id: SED-2 Matrix: SOIL

Units: MG/KG

Date Rec: 4/13/2015

Lab Code: Contract:

Sdg No:

Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol		Prep i Batch	File:	Seq Num	M	Instr
7440-36-0	Antimony	3.2	ND	1	0.5	100	04/18/15	42515	S041715C	19	MSVIS2_750	00SWA
7440-38-2	Arsenic	0.80	15	1	0.5	100	04/18/15	42515	S041715C	19	MSMS2_750	00SWA
7440-41-7	Beryllium	0.80	ND	1	0.5	100	04/18/15	42515	S041715C	19	MSMS2_750	00SWA
7440-43-9	Cadmium	1.6	150	1,	0.5	100	04/18/15	42515	S041715C	19	MSVIS2_750	00SWA
7782-49-2	Selenium	8.0	ND	1	0.5	100	04/18/15	42515	S041715C	19	MSMS2_750	00SWA
7440-22-4	Silver	0.80	ND	1	0.5	100	04/18/15	42515	S041715C	19	MSNS2_750	00SWA
7440-28-0	Thallium	1.6	ND	1	0.5	100	04/18/15	42515	S041715C	19	MSMS2_750	00SWA

Comments:			
	•	 	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC84282-008

% Solid:

Lab Name: Veritech Nras No:

Client Id: Matrix:

SED-3 SOIL

Units: MG/KG Date Rec: 4/13/2015

17

Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	M	Instr
7429-90-5	Aluminum	1200	6600	1	0.5	50;	04/18/15	42514	S17713B3	24	Р	PEICPRAD3A
7440-39-3	Barium	59	ND	1	0.5	50	04/17/15	42514	S17713A3	25	Р	PEICP3A
7440-70-2	Calcium	5900	ND	1	0.5	50	04/18/15	42514	S17713B3	24	P	PEICPRAD3A
7440-47-3	Chromium	29	ND	1	0.5	50	04/17/15	42514	S17713A3	25	P	PEICP3A
7440-48-4	Cobalt	15	ND:	1	0.5	50	04/17/15	42514	S17713A3	25	P	PEICP3A
7440-50-8	Copper	29	70	1,	0.5	50	04/17/15	42514	S17713A3	25	Р	PEICP3A
7439-89-6	Iron	1200	9200	1	0.5	50	04/18/15	42514	S17713B3	24	Р	PEICPRAD3A
7439-92-1	Lead	29	150	1	0.5	50	04/17/15	42514	S17713A3	25	P	PEICP3A
7439-95-4	Magnesium	2900	ND	1	0.5	50	04/18/15	42514	S17713B3	24	Р	PEICPRAD3A
7439-96-5	Manganese	59	370	1	0.5	50	04/17/15	42514	S17713A3	25	P	PEICP3A
7439-97-6	Mercury	0.49	ND	1	0.15	25	04/23/15	42514	H17713S	23	CV	HGCV1A
7440-02-0	Nickel	29	ND	1	0.5	50	04/17/15	42514	S17713A3	25	P	PEICP3A
7440-09-7	Potassium	2900	ND	1	0.5	50	04/18/15	42514	S17713B3	24	Р	PEICPRAD3A
7440-23-5	Sodium	1500	ND	1	0.5	50	04/18/15	42514	\$17713B3	24	Р	PEICPRAD3A
7440-62-2	Vanadium	59 ⁻	ND.	1	0.5	50	04/17/15	42514	S17713A3	25	Р	PEICP3A
7440-66-6	Zinc	59:	250	1.	0.5	50	04/17/15	42514	S17713A3	25	Р	PEICP3A

Comments:	
	•

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC84282-008

% Solid: 17

Lab Name: Veritech

Nras No:

Client Id: Matrix: SOIL

SED-3

Units: MG/KG Date Rec: 4/13/2015

Lab Code: Contract: Sdg No:

Case No:

Cas No.	Analyte	RL	Conc [Dil Fact	Initial Wt/Vol	Final: Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	M	Instr
7440-36-0	Antimony	4.7	ND	1	0.5	100	04/18/15	42515	S041715C	30	MSVIS2	7500SWA
7440-38-2	Arsenic	1.2	4.2	1	0.5	100	04/18/15	42515	S041715C	30	MSVIS2_	_7500SWA
7440-41-7	Beryllium	1.2	ND	1	0.5	100	04/18/15	42515	S041715C	30	MSVIS2_	_7500SWA
7440-43-9	Cadmium	2.4	64	1	0.5	100	04/18/15	42515	S041715C	30	MSVIS2_	_7500SWA
7782-49-2	Selenium	12	ND	1;	0.5	100	04/18/15:	42515	S041715C	30	MSMS2_	_7500SWA
7440-22-4	Silver	1.2	ND	1	0.5	100	04/18/15	42515	S041715C	30	MSVS2	7500SWA
7440-28-0	Thallium	2.4	ND	1	0.5	100	04/18/15	42515	S041715C	30	MSMS2_	7500SWA

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC84282-009

% Solid: 24

Lab Name: Veritech

Nras No:

Client Id: Matrix: SED-4 SOIL

Units: MG/KG Date Rec: 4/13/2015

Lab Code: Contract:

Sdg No:

Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7429-90-5	Aluminum	830	4800	1	0.5	50	04/18/15	42514	S17713B3	25	Р	PEICPRAD3A
7440-39-3	Barium	42	66	1	0.5	50 ¹	04/17/15	42514	S17713A3	26	Р	PEICP3A
7440-70-2	Calcium	4200	ND ³	1	0.5 ¹	50	04/18/15	42514	S17713B3	25	P	PEICPRAD3A
7440-47-3	Chromium	21	ND	1.	0.5	50	04/17/15	42514	S17713A3	26	P	PEICP3A
7440-48-4	Cobalt	10	11	1	0.5	50	04/17/15	42514	\$17713A3	26	P	PEICP3A
7440-50-8	Copper	21	54	1	0.5	50	04/17/15	42514	S17713A3	26	P	PEICP3A
7439-89-6	Iron	830	9000	1	0.5	50	04/18/15	42514	S17713B3	25	P	PEICPRAD3A
7439-92-1	Lead	21	110	1	0.5	50	04/17/15	42514	S17713A3	26	P	PEICP3A
7439-95-4	Magnesium	, 2100	ND	1	0.5	50	04/18/15	42514	S17713B3	25	Р	PEICPRAD3A
7439-96-5	Manganese	42	1100	1,	0.5	50	04/17/15	42514	S17713A3	26	Ρ	PEICP3A
7439-97-6	Mercury	0.35	ND.	1	0.15	25	04/23/15	42514	H17713S	24	CV,	HGCV1A
7440-02-0	Nickel	21	ND	1	0.5	50	04/17/15	42514	S17713A3	26	Ρ	PEICP3A
7440-09-7	Potassium	2100	ND	1	0.5	50	04/18/15	42514	S17713B3	25	Р	PEICPRAD3A
7440-23-5	Sodium	1000	ND	1	0.5	50	04/18/15	42514	S17713B3	25	P	PEICPRAD3A
7440-62-2	Vanadium	42	ND	1	0.5	50	04/17/15	42514	S17713A3	26	Р	PEICP3A
7440-66-6	Zinc	42	250	1	0.5	50	04/17/15	42514	S17713A3	26	P	PEICP3A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC84282-009

% Solid: 24

Lab Name: Veritech Nras No:

Client Id: Matrix: SED-4 SOIL

Units: MG/KG Date Rec: 4/13/2015 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	M	Instr
7440-36-0	Antimony	3.3	ND	1.	0.5		04/18/15		S041715C			7500SWA
7440-38-2	Arsenic	0.83	4.8	1	0.5	:			S041715C			_7500SWA
7440-41-7	Beryllium	0.83	ND	1	0.5	100	04/18/15	42515	S041715C	31	MSVIS2	_ _7500SWA
7440-43-9	Cadmium	1.7,	57 :	1	0.5	100	04/18/15	42515	S041715C	31	MSVIS2	_7500SWA
7782-49-2	Selenium	8.3	ND	1	0.5	100	04/18/15	42515	S041715C	31	MSVIS2	_7500SWA
7440-22-4	Silver	0.83	ND	1	0.5	100	04/18/15	42515	S041715C	31	MSVS2	_7500SWA
7440-28-0	Thallium	1.7	ND	1,	0.5	100	04/18/15	42515	S041715C	31 :	MSMS2	_7500SWA

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC84282-010

% Solid: 30

Lab Name:

Veritech

Nras No:

Client Id: Matrix:

SED-5 SOIL

Units: MG/KG Date Rec: 4/13/2015 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	M	Instr
7429-90-5	Aluminum	670	5300	1	0.5	50	04/18/15	42514	S17713B3	26	P	PEICPRAD3A
7440-39-3	Barium	33	120	1	0.5	50	04/17/15	42514	S17713A3	27	Р	PEICP3A
7440-70-2	Calcium	3300	4300	1	0.5	50	04/18/15	42514	S17713B3	26	Р	PEICPRAD3A
7440-47-3	Chromium	17	35	1	0.5	50 i	04/17/15	42514	S17713A3	27	Р	PEICP3A
7440-48-4	Cobalt	8.3	13	1!	0.5	50	04/17/15	42514	S17713A3	27	Р	PEICP3A
7440-50-8	Copper	17	110	1:	0.5	50	04/17/15	42514	S17713A3	27	Ρ	PEICP3A
7439-89-6	Iron	670·	32000	1.	0.5	50	04/18/15	42514	S17713B3	26	Р	PEICPRAD3A
7439-92-1	Lead	17:	190	16	0.5	50	04/17/15	42514	S17713A3	27	P	PEICP3A
7439-95-4	Magnesium	1700	ND	1	0.5	50	04/18/15	42514	S17713B3	26	P	PEICPRAD3A
7439-96-5	Manganese	33	3500	1	0.5	50	04/17/15	42514	S17713A3	27	P	PEICP3A
7439-97-6	Mercury	0.28	1.2	1	0.15	25.	04/23/15	42514	H17713S	25	CV	HGCV1A
7440-02-0	Nickel	17	ND	1	0.5	50	04/17/15	42514	S17713A3	27	Р	PEICP3A
7440-09-7	Potassium	1700	ND.	1.	0.5	50	04/18/15	42514	S17713B3	26	P	PEICPRAD3A
7440-23-5	Sodium	830	ND,	1	0.5	50	04/18/15	42514	S17713B3	26	P	PEICPRAD3A
7440-62-2	Vanadium	33	60	1	0.5	50	04/17/15	42514	S17713A3	27	P,	PEICP3A
7440-66-6	Zinc	33	360	1	0.5	50	04/17/15	42514	S17713A3	27	P	PEICP3A

Comments:	 	 	 	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC84282-010

% Solid: 30

Lab Name: Veritech

Nras No:

Client Id: SED-5 Matrix:

SOIL

Units: MG/KG Date Rec: 4/13/2015 Lab Code: Contract: Sdg No:

Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	M Ins	itr
7440-36-0	Antimony	2.7	ND	1	0.5	100	04/18/15	42515	S041715C	32	MSMS2_7500SW	Α
7440-38-2	Arsenic	0.67	11	1	0.5	100	04/18/15	42515	S041715C	32	MS/IS2_7500SW	Α
7440-41-7	Beryllium	0.67	ND	1	0.5	100	04/18/15	42515	S041715C	32	MS/IS2_7500SW	Α
7440-43-9	Cadmium	1.3	62	1	0.5	100	04/18/15	42515	S041715C	32	MSMS2_7500SW	Ά
7782-49-2	Selenium	6.7	ND	1	0.5	100	04/18/15	42515	S041715C	32	MSMS2_7500SW	Α
7440-22-4	Silver	0.67	ND	1	0.5	100	04/18/15	42515	S041715C	32	MSVIS2_7500SW	Ά
7440-28-0	Thallium	1.3	ND	1	0.5	100	04/18/15	42515	S041715C	32	MSVIS2_7500SW	Α

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC84282-011

SED-6

% Solid: 77

Lab Name: Veritech Nras No:

Client Id: Matrix:

SOIL

Units: MG/KG Date Rec: 4/13/2015

Lab Code: Contract: Sdg No:

Case No:

Level: LOW

C N-	A	Di	0	Dil 5	Initial		Analysis	Prep	Fil	Seq	M	l==4=
Cas No.	Analyte	RL		Dil Fact		Wt/Vol	Date	Batch	File:	Num		Instr
7429-90-5	Aluminum	260	810	1	0.5	50	04/18/15	42514	S17713B3	27	Р	PEICPRAD3A
7440-39-3	Barium	13	ND	1	0.5	50	04/17/15	42514	S17713A3	28	Р	PEICP3A
7440-70-2	Calcium	1300	ND	1	0.5	50	04/18/15	42514	S17713B3	27	Р	PEICPRAD3A
7440-47-3	Chromium	6.5	ND	1.	0.5	50	04/17/15	42514	S17713A3	28 ,	Р	PEICP3A
7440-48-4	Cobalt	3.2	ND:	1:	0.5	50	04/17/15	42514	S17713A3	28	P	PEICP3A
7440-50-8	Copper	6.5	8.7	1	0.5	50·	04/17/15	42514	S17713A3	28	Р	PEICP3A
7439-89-6	Iron	260	2600	1	0.5	50 ¹	04/18/15	42514	S17713B3	27	Р	PEICPRAD3A
7439-92-1	Lead	6.5	7.2	1	0.5	50	04/17/15	42514 ¹	S17713A3	28	P	PEICP3A
7439-95-4	Magnesium	650	ND	1	0.5	50	04/18/15	42514	S17713B3	27	Р	PEICPRAD3A
7439-96-5	Manganese	13 [:]	18	1	0.5	50	04/17/15	42514	S17713A3	28	Р	PEICP3A
7439-97-6	Mercury	0.11	ND	1	0.15	25	04/23/15	42514	H17713S	26	CV	HGCV1A
7440-02-0	Nickel	6.5	ND	1	0.5	50	04/17/15	42514	S17713A3	28	Ρ	PEICP3A
7440-09-7	Potassium	650	ND	1	0.5	50	04/18/15	42514	S17713B3	27	P	PEICPRAD3A
7440-23-5	Sodium	320	ND	1,	0.5	50	04/18/15	42514	S17713B3	27	P	PEICPRAD3A
7440-62-2	Vanadium	13	ND	1	0.5	50	04/17/15	42514	S17713A3	28	P	PEICP3A
7440-66-6	Zinc	13	32	1	0.5	50	04/17/15	42514	S17713A3	28	P	PEICP3A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC84282-011

% Solid: 77

Lab Name: Veritech

Nras No:

Client Id: SED-6

Matrix: SOIL

Units: MG/KG Date Rec: 4/13/2015 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

					Initial	Final	Analysis	Prep		Seq		
Cas No.	Analyte	RL	Conc	Dil Fact	Wt/Vol	Wt/Vol	Date	Batch	File:	Num	M	Instr
7440-36-0	Antimony	1.0	ND	1	0.5	100	04/18/15	42515	S041715C	33	MSMS2_	7500SWA
7440-38-2	Arsenic	0.26	0.56	1	0.5	100	04/18/15	42515	S041715C	33	MSMS2_	7500SWA
7440-41-7	Beryllium	0.26	ND	1	0.5	100	04/18/15	42515	S041715C	33	MSMS2_	7500SWA
7440-43-9	Cadmium	0.52	ND	1	0.5	100	04/18/15	42515	S041715C	33	MSVIS2_	7500SWA
7782-49-2	Selenium	2.6	ND	1	0.5	100	04/18/15	42515	S041715C	33	MSVIS2_	7500SWA
7440-22-4	Silver	0.26	ND	1	0.5	100	04/18/15	42515	S041715C	33	MSVIS2_	7500SWA
7440-28-0	Thallium	0.52	NĐ	1	0.5	100	04/18/15	42515	S041715C	33	MSVS2_	7500SWA

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC84282-012

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: Matrix: AQUEOUS

Units: UG/L Date Rec: 4/13/2015 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL :	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol.	Analysis Date	Prep Batch	File:	Seq Num	M.	Instr
7429-90-5	Aluminum	200	ND	1:	50	50	04/20/15	42513 W17	712A2	27	P	PEICP2A
7440-39-3	Barium	50	ND	1	50	50	04/20/15	42513 W17	712 A 2	27	P,	PEICP2A
7440-70-2 ¹	Calcium	5000 ¹	15000	1	50	50	04/20/15	42513 W17	712A2	27	P	PEICP2A
7440-47-3	Chromium	50	ND	1	50	50	04/20/15	42513 W17	712A2	27	Р	PEICP2A
7440-50-8	Copper	50	ND	1,	50	50	04/20/15	42513iW17	712A2	27	Р	PEICP2A
7439-89-6	Iron	300°	370	1:	50	50	04/20/15	42513IW17	712A2	27	P	PEICP2A
7439-95-4	Magnesium	5000	ND	1	50	50	04/20/15	42513 W17	712A2	27	Р	PEICP2A
7439-96-5	Manganese	40	760	1	50	50	04/20/15	42513 W17	712A2	27	Р	PEICP2A
7439-97-6	Mercury	0.70	ND	1	25	25.	04/20/15	42513H177	712SW	23	CV	HGCV2A
7440-02-0	Nickel	50	ND	1	50	50	04/20/15	42513;W17	712A2	27	Р	PEICP2A
7440-09-7	Potassium	5000	ND	1	50	50°	04/20/15	42513;W17	712B2	26	Р	PEICPRAD2A
7440-22-4	Silver	20	ND.	1	50	50	04/20/15	42513;W17	712A2	27	Р	PEICP2A
7440-23-5	Sodium	5000	24000	1	50	50	04/20/15	42513 _i W17	712B2	26	Р	PEICPRAD2A
7440-62-2	Vanadium	50	ND	1,	50	50	04/20/15	42513 W17	712A2	27	Р	PEICP2A
7440-66-6	Zinc	50°	ND	1	50	50	04/20/15	42513IW17	712A2	27	Р	PEICP2A

Comments:			
	 · · · · · · · · · · · · · · · · · · ·	 	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES CV -ColdVapor MS - ICP-MS

Sample ID: AC84282-012

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client Id: SW-1

Units: UG/L

Date Rec: 4/13/2015

Lab Code: Contract:

Sdg No:

Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	M	Instr
7440-36-0	Antimony	3.0	ND	1,	50	100	04/21/15	42513/SW4	2115A	32	MSVIS2	_7500SWA
7440-38-2	Arsenic	2.0	ND-	1.	50	100	04/21/15	42513 SW4	2115A	32	MS/IS2	_7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	04/21/15	42513 SW4	2115A	32	MSWS2	_7500SWA
7440-43-9	Cadmium	2.0	3.4	1	50	100	04/21/15	42513 SW4	2115A	32	MSVIS2	_7500SWA
7440-48-4	Cobalt	2.0	ND	1	50	100	04/21/15	42513 SW4	2115A	32	MSVIS2	_7500SWA
7439-92-1	Lead	3.0	ND	1	50	100	04/21/15	42513 SW4	2115A	32	MSVIS2	_7500SWA
7782-49-2	Selenium	10	ND	1	50	100	04/21/15	42513 SW4	2115A	32	MSMS2	_7500SWA
7440-28-0	Thallium	2.0	ND	1:	50	100	04/21/15	42513.SW4	2115A	32	MSMS2	_7500SWA

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC84282-013

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client Id: SW-2

Units: UG/L Date Rec: 4/13/2015 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7429-90-5	Aluminum	200	ND	1	50	50	04/20/15	42513:W	17712A2	28	Р	PEICP2A
7440-39-3	Barium	50	ND	1	50	50	04/20/15	42513iW	17712A2	28	P	PEICP2A
7440-70-2	Calcium	5000	15000	1	50	50	04/20/15	42513;W	17712A2	28	Ρ	PEICP2A
7440-47-3	Chromium	50	ND	1	50	50	04/20/15	42513 W	17712A2	28	P	PEICP2A
7440-50-8	Copper	50	ND	1:	50	50	04/20/15	42513;W	17712A2	28	P	PEICP2A
7439-89-6	Iron	300	510	1	50	50	04/20/15	42513iW	17712A2	28	Ρ	PEICP2A
7439-95-4	Magnesium	5000	ND:	1	50	50	04/20/15	42513;W	17712A2	28	P	PEICP2A
7439-96-5	Manganese	40	840	1	50	50	04/20/15	42513 W	17712A2	28	Р	PEICP2A
7439-97-6	Mercury	0.70	ND	1	25	25	04/20/15	42513H1	17712SW	24	CV.	HGCV2A
7440-02-0	Nickel	50	ND	1	50	50	04/20/15	42513;W	17712A2	28	Р	PEICP2A
7440-09-7	Potassium	5000	ND	1	50	50	04/20/15	42513 W	17712B2	27	Р	PEICPRAD2A
7440-22 - 4	Silver	20	ND	1	50	50	04/20/15	42513 W	17712A2	28	Р	PEICP2A
7440-23-5	Sodium	5000	24000	1	50	50	04/20/15	42513;W	17712B2	27	Р	PEICPRAD2A
7440-62-2	Vanadium	50	ND	1	50	50	04/20/15	42513iW	17712A2	28	Р	PEICP2A
7440-66-6	Zinc	50	ND	1	50	50	04/20/15	42513;W	17712A2	28	Р	PEICP2A

Comments:		

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC84282-013

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: SW-2 Matrix: AQUEOUS

Units: UG/L Date Rec: 4/13/2015 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq: Num	M	Instr
7440-36-0	Antimony	3.0	ND	1	50	100	04/21/15	42513	SW42115A	33	MSVIS2	_7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	04/21/15	42513	SW42115A	33	MSVIS2	_7500SWA
7440-41-7	Beryllium	1.0 ¹	ND	1	50	100	04/21/15	42513	SW42115A	33	MSMS2	_7500SWA
7440-43-9	Cadmium	2.0	2.8	1.	50	100	04/21/15	42513	SW42115A	33	MSMS2	_7500SWA
7440-48-4	Cobalt	2.0	ND	1:	50	100	04/21/15	425138	SW42115A	33	MSMS2	_7500SWA
7439-92-1	Lead	3.0	ND	1.	50	100	04/21/15:	42513	SW42115A	33	MSMS2	_7500SWA
7782-49-2	Selenium	10	ND	1	50	100	04/21/15	42513	SW42115A	33	MSMS2	_7500SWA
7440-28-0	Thallium	2.0	ND	1	50	100	04/21/15	42513	SW42115A	33	MSVIS2	_7500SWA

Comments:		

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC84282-014

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client Id: SW-3

Units: UG/L Date Rec: 4/13/2015 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

as No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	M	Instr
29-90-5	Aluminum	200	ND	1	50	50	04/20/15	42513;W17	712A2	29	Р	PEICP2A
10-39-3	Barium	50	ND	1	50	50	04/20/15	42513;W17	712A2	29	Р	PEICP2A
10-70-2	Calcium	5000	15000	1,	50	50	04/20/15	42513iW17	712A2	29	P	PEICP2A
10-47-3	Chromium	50	ND	1	50°	50	04/20/15	42513 W17	712A2	29	P	PEICP2A
10-50-8	Copper	50	ND	1	50	50	04/20/15	42513 W17	712A2	29	P	PEICP2A
39-89-6	Iron	300	ND.	1.	50	50,	04/20/15	42513 W17	712A2	29	Р	PEICP2A
39-95-4	Magnesium	5000	ND:	1	50	50	04/20/15	42513iW17	712A2	29	P	PEICP2A
39-96-5	Manganese	40	640	1.	50°	50	04/20/15	42513 W17	712A2	29	P	PEICP2A
39-97-6	Mercury	0.70	ND	1	25	25	04/20/15	42513H177	12SW	25	CV	HGCV2A
10-02-0	Nickel	50	ND	1	50	50	04/20/15	42513 W17	712A2	29	Р	PEICP2A
10-09-7	Potassium	5000	ND	1	50	50	04/20/15	42513;W17	712B2	28	P	PEICPRAD2A
10-22-4	Silver	20	ND	1:	50	50	04/20/15	42513/W17	712A2	29	Ρ	PEICP2A
10-23-5	Sodium	5000	23000	1	50	50	04/20/15	42513 W17	712B2	28	P	PEICPRAD2A
10-62-2	Vanadium	50	ND	1	50	50	04/20/15	42513 W17	712A2	29	Р	PEICP2A
10-66-6	Zinc	50	ND	1	50	50	04/20/15	42513iW17	712A2	29 ,	P	PEICP2A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC84282-014

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client Id: SW-3

Units: UG/L

Date Rec: 4/13/2015

Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc Dil F	=act	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq: Num	M	instr
7440-36-0	Antimony	3.0	ND	1	50	100	04/21/15	42513.SV	V42115A	34	MSMS2_7	7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	04/21/15	42513 SV	V42115A	34	MSMS2_7	7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	04/21/15	42513 SV	V42115A	34	MSMS2_7	7500SWA
7440-43-9	Cadmium	2.0	ND.	1	50	100	04/21/15	42513 SV	V42115A	34	MSMS2_7	7500SWA
7440-48-4	Cobalt	2.0	ND	1	50	100	04/21/15	42513 SV	V42115A	34	MSMS2_7	7500SWA
7439-92 - 1	Lead	3.0	ND.	1	50	100	04/21/15	42513 SV	V42115A	34	MSVS2_7	7500SWA
7782-49-2	Selenium	10	ND	1,	50	100	04/21/15	42513.SV	V42115A	34	MSMS2_7	7500SWA
7440-28-0	Thallium	2.0	ND	1	50	100	04/21/15	42513 SV	V42115A	34	MSVIS2_7	500SWA

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC84282-015

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client Id: SW-4

Units: UG/L Date Rec: 4/13/2015 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL ,	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol		Prep Batch	File:	Seq Num	M	Instr
7429-90-5	Aluminum	200	ND	1	100	100	04/20/15	42513:W1	7712A2	15	Р	PEICP2A
7440-39-3	Barium	50	ND	1	100	100	04/20/15	42513 W1	7712A2	15	Р	PEICP2A
7440-70-2	Calcium	5000	13000	1	100	100	04/20/15	42513 W1	7712A2	15	Р	PEICP2A
7440-47-3	Chromium	50	ND	1	100	100	04/20/15	42513 W1	7712A2	15	Р	PEICP2A
7440-50-8	Copper	50	ND	1:	100	100	04/20/15	42513 W1	7712A2	15	P	PEICP2A
7439-89-6	Iron	300	390	1	100	100	04/20/15	42513;W1	7712A2	15	Р	PEICP2A
7439-95-4	Magnesium	5000	ND	1	100	100	04/20/15	42513 W1	7712A2	15	P	PEICP2A
7439-96-5	Manganese	40	550	1,	100	100	04/20/15	42513 W1	7712A2	15	Р	PEICP2A
7439-97-6	Mercury	0.70	ND	1	25	25	04/20/15	42513H17	712SW	14	CV	HGCV2A
7440-02-0	Nickel	50	ND	1.	100	100	04/20/15	42513 W1	7712A2	15	Р	PEICP2A
7440-09-7	Potassium	5000	ND	1	100	100	04/20/15	42513iW1	7712B2	14	Р	PEICPRAD2A
7440-22-4	Silver	20	ND	1	100	100	04/20/15	42513 W1	7712A2	15	P	PEICP2A
7440-23-5	Sodium	5000	17000	1,	100	100	04/20/15	42513 W1	7712 B 2	14	P	PEICPRAD2A
7440-62-2	Vanadium	50	ND	1	100	100	04/20/15	42513 W1	7712A2	15	Р	PEICP2A
7440-66-6	Zinc	50	ND	1	100	100	04/20/15	42513 W1	7712A2	15	P:	PEICP2A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES CV -ColdVapor MS - ICP-MS

Sample ID: AC84282-015

% Solid: 0

Lab Name: Veritech

Nras No:

Client Id: Matrix: AQUEOUS

SW-4

Units: UG/L Date Rec: 4/13/2015

Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	M	Instr
7440-36-0	Antimony	3.0	ND	1	100	200	04/21/15	42513 SW	12115A	19	MSVIS2	7500SWA
7440-38-2	Arsenic	2.0	ND	1	100	200	04/21/15	42513 SW	42115A	19	MSMS2_	_7500SWA
7440-41-7	Beryllium	1.0	ND	1	100	200	04/21/15	42513 SW	42115A	19	MSVS2_	7500SWA
7440-43-9	Cadmium	2.0	ND	1	100	200	04/21/15	42513 SW4	42115A	19	MSMS2_	_7500SWA
7440-48-4	Cobalt	2.0	3.1	1	100	200	04/21/15	42513 SW4	42115A	19	MSVS2_	_7500SWA
7439-92-1	Lead	3.0	ND:	1	100	200	04/21/15	42513 SW4	42115A	19	MSMS2_	_7500SWA
7782-49-2	Selenium	10	ND	1	100	200	04/21/15	42513 SW4	42115A	19	MS/MS2_	_7500SWA
7440-28-0	Thailium	2.0	2.0	1	100	200	04/21/15	42513 SW4	42115A	19	MSMS2_	_7500SWA

Comments:				
		 		-

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC84282-016

% Solid: 18 Lab Name: Veritech

Nras No:

Client Id: Matrix:

SC- 1 SED SOIL

Units: MG/KG Date Rec: 4/13/2015 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc D	il Fact	Initial Wt/Vol	Final [®] Wt/Vol		Prep Batch	File:	Seq Num	М	Instr
7440-43-9	Cadmium	2.2	12	1	0.5	100	04/18/15	42515	S041715C	36	MSVIS2_	7500SWA

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC84282-017

% Solid: 67

Lab Name: Veritech

Nras No:

Matrix: SOIL

Client Id: SC- 2 SED

Units: MG/KG Date Rec: 4/13/2015 Lab Code:

Sdg No: Case No:

Level: LOW

Contract:

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol		Analysis Date	Prep Batch	File:	Seq Num	M	Instr
7440-43-9	Cadmium	0.60	0.82	1	0.5	100	04/18/15	42515	S041715C	37	MS/IS2_	7500SWA

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC84282-018

% Solid: 39

Lab Name: Veritech

Nras No:

Client Id: SC- 3 SED

Units: MG/KG Date Rec: 4/13/2015 Lab Code:

Sdg No:

Matrix: SOIL

Level: LOW

Contract:

Case No:

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol		Analysis Date	Prep Batch	File:	Seq Num	M	Instr
7440-43-9	Cadmium	1.0	ND	1	0.5	100	04/18/15	42515	S041715C	42	MS/VS2	_7500SWA

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor MS - ICP-MS

Sample ID: AC84282-019

Client Id: SC- 4 SED

% Solid: 66

Lab Name: Veritech

Nras No:

Matrix:

SOIL

Date Rec: 4/13/2015

Units: MG/KG

Lab Code: Contract: Sdg No:

Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	M	Instr
7429-90-5	Aluminum	300	600	1	0.5	50	04/18/15	42514	S17713B3	33	Р	PEICPRAD3A
7440-39-3	Barium	15	ND	1	0.5	50	04/17/15	42514	S17713A3	34	P	PEICP3A
7440-70-2	Calcium	1500	ND	1	0.5	50	04/18/15	42514	S17713B3	33	Р	PEICPRAD3A
7440-47-3	Chromium	7.6	ND	1	0.5	50	04/17/15	42514	S17713A3	34	Р	PEICP3A
7440-48-4	Cobalt	3.8	ND	1	0.5	50	04/17/15	42514	\$17713A3	34	Р	PEICP3A
7440-50-8	Copper	7.6	ND	1	0.5	50	04/17/15	42514	S17713A3	34	Ρ	PEICP3A
7439-89-6	Iron	300	1400	1.	0.5	50	04/18/15	42514	S17713B3	. 33	Р	PEICPRAD3A
7439-92-1	Lead	7.6	ND	1	0.5	50	04/17/15	42514	\$17713A3	34	Р	PEICP3A
7439-95-4	Magnesium	760	ND	1	0.5	50	04/18/15	42514	S17713B3	33	P	PEICPRAD3A
7439-96-5	Manganese	15	61	1	0.5	50	04/17/15	42514	S17713A3	34	P	PEICP3A
7439-97-6	Mercury	0.13	ND	1	0.15	25	04/23/15	42514	H17713S	27	CV	HGCV1A
7440-02-0	Nickel	7.6	ND	1	0.5	50	04/17/15	42514	S17713A3	34	Р	PEICP3A
7440-09-7	Potassium	760	ND	1	0.5	50	04/18/15	42514	S17713B3	33	Ρ	PEICPRAD3A
7440-23-5	Sodium	380	ND.	1	0.5	50	04/18/15	42514	S17713B3	33	Р	PEICPRAD3A
7440-62-2	Vanadium	15	ND	1	0.5	50	04/17/15	42514	S17713A3	34	P	PEICP3A
7440-66-6	Zinc	15	ND	1	0.5	50	04/17/15	42514	S17713A3	34	Р	PEICP3A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC84282-019 SC- 4 SED

% Solid: 66 Lab Name: Veritech

Nras No:

Client Id: Matrix:

SOIL

Units: MG/KG Date Rec: 4/13/2015 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	M	Instr
7440-36-0	Antimony	1.2	ND	1	0.5	100	04/18/15	42515	S041715C	34	MSMS2	_7500SWA
7440-38-2	Arsenic	0.30	0.52	1	0.5	100	04/18/15	42515	S041715C	34	MSVIS2	_7500SWA
7440-41-7	Beryllium	0.30	ND	1	0.5	100	04/18/15	42515	S041715C	34	MSVS2	_7500SWA
7440-43-9	Cadmium	0.61	ND	1,	0.5	100	04/18/15	42515	S041715C	34	MSVIS2	_7500SWA
7782-49-2	Selenium	3.0	ND	1	0.5	100	04/18/15	42515	S041715C	34	MSVS2	_7500SWA
7440-22-4	Silver	0.30	ND:	1	0.5	100	04/18/15	42515	\$041715C	34	MSVS2	_7500SWA
7440-28-0	Thallium	0.61	ND	1	0.5	100.	04/18/15	42515	S041715C	34	MSMS2	_7500SWA

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC84282-020

% Solid: 62

Lab Name: Veritech

Nras No:

Client Id: SC- 5 SED Matrix:

SOIL

Units: MG/KG Date Rec: 4/13/2015 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

	Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol		Analysis Date	Prep Batch	File:	Seq Num	M	Instr
7	440-43-9	Cadmium	0.65	1.4	1	0.5	100	04/18/15	42515	S041715C	43	MSVIS2	_7500SWA

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit P - ICP-AES CV -ColdVapor

Sample ID: AC84282-021

% Solid: 70

Lab Name: Veritech

Nras No:

Client Id: FQ-1 SED Matrix: SOIL

Units: MG/KG

Lab Code:

Sdg No: Case No:

Date Rec: 4/13/2015 Contract: Level: LOW

Instr	M	Seq Num	File:	Prep Batch	Analysis Date	Final Wt/Vol	Initial Wt/Vol	Dil Fact	Conc	RL :	Analyte	Cas No.
PEICPRAD3A	Р	34	S17713B3	42514	04/18/15	50	0.5	1	910	290	Aluminum	7429-90-5
PEICP3A	Р	35	S17713A3	42514	04/17/15	50	0.5	1	ND	14	Barium	7440-39-3
PEICPRAD3A	Р	34	S17713B3	42514	04/18/15	50	0.5	1	ND	1400	Calcium	7440-70-2
PEICP3A	Ρ	35	S17713A3	42514 ₁	04/17/15 _!	50	0.5	1,	ND	7.1	Chromium	7440-47-3
PEICP3A	P	35	S17713A3	42514	04/17/15	50	0.5	1	ND	3.6	Cobalt	7440-48-4
PEICP3A	P	35	S17713A3	42514	04/17/15	50	0.5	1	ND:	7.1 °	Copper	7440-50-8
PEICPRAD3A	Ρ	34	S17713B3	42514	04/18/15	50	0.5	1	2400	290	Iron	7439-89-6
PEICP3A	P	35	S17713A3	42514	04/17/15	50	0.5	1	ND	7.1 [:]	Lead	7439-92-1
PEICPRAD3A	P	34	S17713B3	42514	04/18/15	50	0.5	1	ND	710	Magnesium	7439-95-4
PEICP3A	Р	35	S17713A3	42514	04/17/15	50	0.5	1	120	14	Manganese	7439-96-5
HGCV1A	CV	28	H17713S	42514	04/23/15	25	0.15	1;	ND	0.12	Mercury	7439-97-6
PEICP3A	Ρ	35	S17713A3	42514	04/17/15	50	0.5	1	ND	7.1	Nickel	7440-02-0
PEICPRAD3A	Р	34	S17713B3	42514	04/18/15	50	0.5	1	ND	710	Potassium	7440-09-7
PEICPRAD3A	Р	34	S17713B3	42514	04/18/15	50	0.5	1	ND	360	Sodium	7440-23-5
PEICP3A	Р	35	S17713A3	42514	04/17/15	50	0.5	1	17	14	Vanadium	7440-62-2
PEICP3A	Ρ	35	S17713A3	42514	04/17/15	50	0.5	1	ND	14	Zinc	7440-66-6

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC84282-021

% Solid: 70

Lab Name: Veritech

Nras No:

Matrix: SOIL

Client Id: FQ-1 SED

Units: MG/KG Date Rec: 4/13/2015 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	M	Inst
7440-36-0	Antimony	1.1	ND	1	0.5	100	04/18/15	42515	S041715C	35	MSVIS2	_7500SWA
7440-38-2	Arsenic	0.29	0.89	1	0.5	100	04/18/15	42515	S041715C	35	MSVIS2	_7500SWA
7440-41-7	Beryllium	0.29	ND	1	0.5	100	04/18/15	42515	S041715C	35	MS/MS2	_7500SWA
7440-43-9	Cadmium	0.57	0.83	1	0.5	100	04/18/15	42515	S041715C	35	MSVIS2_	_7500SW
7782-49-2	Selenium	2.9	ND	1	0.5	100	04/18/15	42515	S041715C	35	MSVIS2	_7500SWA
7440-22-4	Silver	0.29	ND	1	0.5	100	04/18/15	42515	S041715C	35	MSVIS2	_7500SWA
7440-28-0	Thallium	0.57	ND	1	0.5	100	04/18/15	42515	S041715C	35	MSVS2	7500SWA

Comments:			

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC84282-022

% Solid:

21

Lab Name: Veritech Nras No:

Client Id: FQ-2 SED MS Matrix:

SOIL

Units: MG/KG Date Rec: 4/13/2015 Lab Code:

Sdg No: Case No:

Contract:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	М	Instr
7429-90-5	Aluminum	950	8500	1	0.5	50	04/17/15	42514	S17713B3	16	Р	PEICPRAD3A
7440-39-3	Barium	48	260	1	0.5	50	04/17/15	42514	S17713A3	17	Р	PEICP3A
7440-70-2	Calcium	4800	27000	1	0.5	50	04/17/15	42514	S17713B3	16	Ρ	PEICPRAD3A
7440-47-3	Chromium	24	240	1	0.5	50	04/17/15	42514	\$17713A3	17	Ρ	PEICP3A
7440-48-4	Cobalt	12	240	1	0.5	50	04/17/15	42514	S17713A3	17	P	PEICP3A
7440-50-8	Copper	24	280	1	0.5	50	04/17/15	42514	\$17713A3	17	Р	PEICP3A
7439-89-6	Iron	950	9400	1	0.5	50	04/17/15	42514	S17713B3	16	Ρ	PEICPRAD3A
7439-92-1	Lead	24	330	1	0.5	50	04/17/15	42514	S17713A3	17	Р	PEICP3A
7439-95-4	Magnesium	2400	24000	1	0.5	50	04/17/15	42514	S17713B3	16	P	PEICPRAD3A
7439-96-5	Manganese	48	610	1	0.5	50	04/17/15	42514	S17713A3	17	P	PEICP3A
7439-97-6	Mercury	0.40	6.4	1,	0.15	25	04/23/15	42514	H17713S	18	CV	HGCV1A
7440-02-0	Nickel	24	250	1	0.5	50	04/17/15	42514	\$17713A3	17	Р	PEICP3A
7440-09-7	Potassium	2400	23000	1	0.5	50	04/17/15	42514	S17713B3	16	Ρ	PEICPRAD3A
7440-23-5	Sodium	1200	23000	1	0.5	50	04/17/15	42514	S17713B3	16	P	PEICPRAD3A
7440-62-2	Vanadium	48	250	1	0.5	50	04/17/15	42514	S17713A3	17	Р	PEICP3A
7440-66-6	Zinc	48	420	1	0.5	50	04/17/15	42514	S17713A3	17	P	PEICP3A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC84282-022

% Solid: 21

Lab Name: Veritech

Nras No:

Matrix: SOIL

Client Id: FQ-2 SED MS

Units: MG/KG Date Rec: 4/13/2015 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	M	Inst
7440-36-0	Antimony	3.8	170	1,	0.5	100	04/18/15	42515	S041715C	22	MSMS2_	7500SWA
7440-38-2	Arsenic	0.95	230	1	0.5	100	04/18/15	42515	S041715C	22	MSVIS2_	7500SWA
7440-41-7	Beryllium	0.95	220	1	0.5	100	04/18/15	42515	S041715C	22	MSVS2_	7500SWA
7440-43-9	Cadmium	1.9	290	1	0.5	100	04/18/15	42515	S041715C	22	MSVS2_	7500SWA
7782-49-2	Selenium	9.5	220	1	0.5	100	04/18/15	42515	S041715C	22	MSMS2_	7500SWA
7440-22-4	Silver	0.95	36	1	0.5	100	04/18/15	42515	S041715C	22	MSMS2_	7500SWA
7440-28-0	Thallium	1.9	230	1	0.5	100	04/18/15	42515	S041715C	22	MSVIS2	7500SW

Comments:			

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor MS - ICP-MS

Sample ID: AC84282-023

% Solid:

Lab Name: Veritech

Nras No:

Matrix: SOIL

Client Id: FQ-2 SED MSD

Units: MG/KG Date Rec: 4/13/2015

19

Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Inst	M	Seq Num	File:	Prep Batch	Analysis Date	Final Wt/Vol	Initial Wt/Vol	Dil Fact	Conc	RL	Analyte	Cas No.
PEICPRAD3/	Р	17	S17713B3	42514	04/17/15	50	0.5	1	10000	1100	Aluminum	7429-90-5
PEICP3/	Р	18	S17713A3	42514	04/17/15	50	0.5	1,	290	53	Barium	7440-39-3
PEICPRAD3/	Р	17	S17713B3	42514	04/17/15	50	0.5	1:	29000	5300 ⁻¹	Calcium	7440-70-2
PEICP3/	P	18	S17713A3	42514	04/17/15	50.	0.5	1.	270	26	Chromium	7440-47-3
PEICP3/	Р	18	S17713A3	42514	04/17/15	50	0.5	1	260	13	Cobalt	7440-48-4
PEICP3/	P	18	S17713A3	42514	04/17/15	50	0.5	1	310	26 [:]	Copper	7440-50-8
PEICPRAD3/	Р	17	S17713B3	42514	04/17/15	50	0.5	1	11000	1100	Iron	7439-89-6
PEICP3/	Р	18	S17713A3	42514	04/17/15	50	0.5	1	380	26	Lead	7439-92-1
PEICPRAD3/	P	17	S17713B3	42514	04/17/15	50	0.5	1.	27000	2600	Magnesium	439-95-4
PEICP3/	Р	18	S17713A3	42514	04/17/15	50	0.5	1	640	53	Manganese	439-96-5
HGCV1/	CV	19	H17713S	42514	04/23/15	25	0.15	1	8.1	0.44	Mercury	439-97-6
PEICP3/	Р	18	S17713A3	42514	04/17/15	50	0.5	1	270	26	Nickel	440-02-0
PEICPRAD3/	Р	17 :	S17713B3	42514	04/17/15	50	0.5	1	25000	2600	Potassium	440-09-7
PEICPRAD3/	P	17	S17713B3	42514	04/17/15	50	0.5	1;	25000	1300	Sodium	440-23-5
PEICP3/	Р	18	S17713A3	42514	04/17/15	50	0.5	1	280	53	Vanadium	440-62-2
PEICP3/	Р	18	\$17713A3	42514	04/17/15	50	0.5	1;	480	53	Zinc	440-66-6

Comments:				
				_

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC84282-023

% Solid:

Lab Name: Veritech Nras No:

Matrix:

Client Id: FQ-2 SED MSD SOIL

Units: MG/KG Date Rec: 4/13/2015

19

Lab Code:

Sdg No:

Level: LOW

Contract:

Case No:

Cas No.	Analyte	RL:	Conc	Dil Fact	Initial Wt/Vol	Final: Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	M Inst	r
7440-36-0	Antimony	4.2	170	1	0.5	100	04/18/15	42515	S041715C	23	MSMS2_7500SWA	١
7440-38-2	Arsenic	1.1	270	1;	0.5	100	04/18/15	42515	S041715C	23	MSMS2_7500SWA	Ą
7440-41-7	Beryllium	1.1	250	1	0.5	100	04/18/15	42515	S041715C	23	MSMS2_7500SWA	4
7440-43-9	Cadmium	2.1	360	1	0.5	100	04/18/15	42515	S041715C	23	MSMS2_7500SWA	4
7782-49-2	Selenium	11	250	1:	0.5	100	04/18/15	42515	S041715C	23	MSVIS2_7500SWA	٩
7440-22-4	Silver	1.1	41	1	0.5	100	04/18/15	42515	S041715C	23	MSVIS2_7500SWA	4
7440-28-0	Thallium	2.1	260	1	0.5	100	04/18/15	42515	S041715C	23	MSMS2_7500SWA	٩

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC84282-024

Client Id: RC-1 SW

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Units: UG/L Date Rec: 4/13/2015 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL	Conc	Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	File:	Seq Num	M	Instr
7429-90-5	Aluminum	200	320	1	50	50	04/20/15	42513iW	17712A2	30	Р	PEICP2A
7440-39-3	Barium	50	ND	1	50	50	04/20/15	42513;W	17712A2	30	Р	PEICP2A
7440-70-2	Calcium	5000	13000	1	50	50	04/20/15	42513 W	17712A2	30	Р	PEICP2A
7440-47-3	Chromium	50	ND	1	50	50	04/20/15	42513;W	17712 A 2	30	Р	PEICP2A
7440-50-8	Copper	50	ND	1	50	50	04/20/15	42513;W	17712A2	30	Р	PEICP2A
7439-89-6	Iron	300	600	1	50	50	04/20/15	42513;W	17712A2	30	P	PEICP2A
7439-95-4	Magnesium	5000	ND	1	50	50	04/20/15	42513;W	17712A2	30	P	PEICP2A
7439-96-5	Manganese	40	700	1	50	50	04/20/15	42513 W	17712A2	30	Р	PEICP2A
7439-97-6	Mercury	0.70	ND	1	25	25	04/20/15	42513H1	7712SW	26	CV	HGCV2A
7440-02-0	Nickel	50	ND	1	50	50	04/20/15	42513 W	17712A2	30	Р	PEICP2A
7440-09-7	Potassium	5000	ND	1.	50	50	04/20/15	42513 W	17712 B 2	29	Р	PEICPRAD2A
7440-22-4	Silver	20	ND	1	50	50	04/20/15	42513;W	17712A2	30	Ρ	PEICP2A
7440-23-5	Sodium	5000	18000	1	50	50	04/20/15	42513 W	17712B2	29	Ρ	PEICPRAD2A
7440-62-2	Vanadium	50	ND	1	50	50	04/20/15	42513:W	17712 A 2	30	Р	PEICP2A
7440-66-6	Zinc	50	ND	1	50	50	04/20/15	42513 W	17712A2	30	Р	PEICP2A

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Sample ID: AC84282-024

% Solid: 0

Lab Name: Veritech

Nras No:

Matrix: AQUEOUS

Client Id: RC-1 SW

Units: UG/L Date Rec: 4/13/2015 Lab Code: Contract:

Sdg No: Case No:

Level: LOW

Cas No.	Analyte	RL :	Conc [Dil Fact	Initial Wt/Vol	Final Wt/Vol	Analysis Date	Prep Batch	Seq File: Num	M	Instr
7440-36-0	Antimony	3.0	ND	1,	50	100	04/21/15	42513 SV	V42115A 35	MSMS2	_7500SWA
7440-38-2	Arsenic	2.0	ND	1	50	100	04/21/15	42513 SV	V42115A 35	MSVIS2	_7500SWA
7440-41-7	Beryllium	1.0	ND	1	50	100	04/21/15	42513 SV	V42115A 35	MSMS2	_7500SWA
7440-43-9	Cadmium	2.0	ND	1,	50	100	04/21/15	42513 SV	V42115A 35	MSMS2	_7500SWA
7440-48-4	Cobalt	2.0	3.9	1	50	100	04/21/15	42513 SV	V42115A 35	MSVIS2	_7500SWA
7439-92-1	Lead	3.0	3.2	1	50	100	04/21/15	42513 SV	V42115A 35	MSVS2	_7500SWA
7782-49-2	Selenium	10	ND	1	50	100	04/21/15	42513 SV	V42115A 35	MSMS2	_7500SWA
7440-28-0	Thallium	2.0	ND	1,	50	100	04/21/15	42513SV	V42115A 35	MSVIS2	_7500SWA

Comments:	

Flag Codes:

U or ND - Indicates Compound was not found above the detection/reporting limit

P - ICP-AES

CV -ColdVapor

Date Analyzed: 04/17/15

Data File: S17713B3

Lab Name: Veritech Lab Code:

Prep Batch: 42514

Reporting Limits Used: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A

Contract:

Instrument: PEICPRAD3A

Nras No:

Units: All units in ppm except Hg and icp-ms in ppb

Sdg No:

Project Number: 5041306

Case No:

Analyte	ICB V-208329- 8	CCB V-208329- 21	CCB V-208329- 32	CCB V-208329- 41	MB 42514 (100)-11	
Aluminum	2 U	2 U	2 U	2 U	200 U	
Calcium	10 U	10 U	10 U	10 U	1000 U	
Iron	2 U	2 U	2 U	2 U	200 U	
Magnesium	5 U	5 U	5 U	5 U	500 U	
Potassium	5 U	5 U	5 U	5 U	500 U	
Sodium	2.5 U	2.5 U	2.5 U	2.5 U	250 U	

Date Analyzed: 04/17/15

Data File: S17713A3

Lab Name: Veritech

Prep Batch: 42514

Reporting Limits Used: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A

Lab Code: Contract:

Instrument: PEICP3A

Nras No:

Units: All units in ppm except Hg and icp-ms in ppb

Sdg No:

Project Number: 5041306

Case No:

Analyte	ICB V-208329- 9	CC	B V-208329- 22	CCI	B V-208329- 33	(CCB V-208329- 43	MB 42514 (100)-12
Barium	.1 U		.1 U		.1 U		.1 U	10 U
Chromium	.05 U		.05 U		.05 U		.05 U	5 U
Cobatt	.025 U	÷	.025 U		.025 U		.025 U	2.5 U
Copper	.05 U		.05 U		.05 U		.05 U	5 U
Lead	.05 U		.05 U		.05 U	:	.05 U	5 U
Manganese	.1 U		.1 U		.1 U		.1 U	10 U
Nickel	.05 U		.05 U		.05 U		.05 U	5 U
Vanadium	.1 U	1	.1 U		.1 U	- 1	.1 U	10 U
Zinc	.1 U		.1 U		.1 U		.1 U	10 U

Date Analyzed: 04/18/15

Data File: S041715C

Lab Name: Veritech

Prep Batch: 42515

Reporting Limits Used: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A

Lab Code:

Contract:

Instrument: MS2_7500SWA

Nras No:

Sdg No:

Units: All units in ppm except Hg and icp-ms in ppb

Case No:

Project Number: 5041306

Analyte	ICE	3 V-208141- 10	CCB V-208141- 15	CCB V-208141- 28	CCB \	V-208141- 41	CCB V-208141- 50		
Antimony		4 U	4 U	4 U		4 U	4 (800 U	
Arsenic		1 U	1 U	1 U	:	1 U	, 16	200 U	
Beryllium		1 U	1 U	1 U	1	1 U	1 (200 U	
Cadmium		2 U	2 U	2 U		2 U	2 L	400 U	
Selenium		10 U	10 U	10 U		10 U	10 U	2000 U	
Silver		1 U	1 U	1 U		1 U	1 U	200 U	1
Thallium		2 U	2 U	; 2 U		2 U	2 U	400 U	

Date Analyzed: 04/20/15

Data File: SW17712A2

Prep Batch: 42513

Reporting Limits Used: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A

Instrument: PEICP2A

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 5041306

Lab Name: Veritech

Lab Code:

Contract: Nras No:

Sdg No: Case No:

	ICB V-208329-	CCB-22	CCB-35	MB 42513 (1)-	
Analyte	. 9			12	
Aluminum	.2 U	.2 U	.2 U	.2 U	
Barium	.05 U	.05 U	.05 U	.05 U	
Calcium	5 U	5 U	5 U	5 U	
Chromium	.05 U	.05 U	.05 U	.05 U	
Copper	.05 U	.05 U	.05 U	.05 U	
Iron	.3 U	.3 U	.3 U	.3 U	
Magnesium	5 U	5 U	5 U	5 U	
Manganese	.04 U	.04 U	.04 U	.04 U	
Nickel	.05 U	.05 U	.05 U	.05 U	
Silver	.02 U	.02 €	.02 U	.02 U	
Vanadium	.05 U	.05 U	.05 U	.05 U	
Zinc	05 U	.05 U	.05 U	.05 U	

Date Analyzed: 04/20/15

Data File: SW17712B2

Prep Batch: 42513

Reporting Limits Used: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A

Instrument: PEICPRAD2A

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 5041306

Lab Name: Veritech

Lab Code:

Contract:

Nras No: Sdg No:

Case No:

Analyte	ICB V-208329- 8	CCB-21	CCB-34	MB 42513 (1)- 11
Potassium	5 U	5 U	5 U	5 U
Sodium	5 U	5 U	5 U	5 U

Date Analyzed: 04/21/15

Data File: SW42115A

Lab Name: Veritech

Prep Batch: 42513

Reporting Limits Used: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A

Lab Code: Contract:

Instrument: MS2_7500SWA

Nras No:

Units: All units in ppm except Hg and icp-ms in ppb

Sdg No: Case No:

Project Number: 5041306

Analyte	ICB V-208914- 10	CCB V-208914- 15	CCB V-208914- 28	CCB V-208914- 41	CCB V-208914- 45	MB 42513-16	
Antimony	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	3U	
Arsenic	1 U	1 U	1 U	. 1 U	1 U	2 U	
Beryllium	.5 U	.5 U	.5 U	.5 U	.5 U	10	
Cadmium	1 U	1 U	1 U	1 U	1 U	2U	
Cobalt	1 U	1 U	1 U	1 U	1 U	2 U	
Lead	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	3 U	
Selenium	5 U	5 U	5 U	5 U	5 U	10 U	
Thallium	1 U	1 U	1 Ų	1 U	1 ປ	2U	

Date Analyzed: 04/20/15

Data File: H17712SW

Prep Batch: 42513

Reporting Limits Used: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A

Instrument: HGCV2A

Units: All units in ppm except Hg and icp-ms in ppb

Project Number: 5041306

Lab Name: Veritech

Lab Code:

Contract: Nras No:

Sdg No:

Case No:

	ICB-10	CCB-21	CCB-29	MB 42513 (1)-
Analyte				11
Mercury	.7 U	.7 U	.7 U	.7 U

Contract:

FORM 3 (ICB/CCB/MB Summary)

Date Analyzed: 04/23/15

Data File: H17713S

Lab Name: Veritech
Lab Code:

Prep Batch: 42514

Reporting Limits Used: 6010B/6010C/7470A,7471A/7471B(Hg),6020/6020A

Instrument: HGCV1A

Units: All units in ppm except Hg and icp-ms in ppb

Nras No:

Project Number: 5041306

ICB-10	CCB-22	CCB-33	MB 42514	
Analyte	(167)-11			
Mercury	.5 U	.5 U	.5 U	83 U

PREP BATCH: 42513

Instrument Type: ICP/HG

Analytical Method(s):6010/200.7/7470A/7471A/245.1

TxtQcType:	LCS	Ma	trix: AQUEO	ous	Sample	eID: LC	SW 42513					
Analyte	Batchld	DF	Data Fil	Seq#:		• •	Spk Conc:		Spk Adde	Recov	Qual Lo Lim	Hi Lim
Aluminum	42513	1	SW17712	13			5.0227		5.000	100	80	120
Barium	42513	1	SW17712	13			0.5019		0.500	100	80	120
Calcium	42513	1	SW17712	13			49.9389		50.00	100	80	120
Chromium	42513	1	SW17712	13			0.5016		0.500	100	80	120
Copper	42513	1	SW17712	13			0.5064		0.500	101	80	120
Iron	42513	1	SW17712	13			5.0247		5.000	100	80	120
Magnesium	42513	1	SW17712	13			49.8862		50.00	100	80	120
Manganese	42513	1	SW17712	13			0.4943		0.500	99	80	120
Mercury	42513	1	H17712S	12			10.5000		10	105	80	120
Nickel	42513	1	SW17712	13			0.5015		0.500	100	80	120
Potassium	42513	1	SW17712	12			49.2251		50	98	80	120
Silver	42513	1	SW17712	13			0.0970		0.100	97	80	120
Sodium	42513	1	SW17712	12			49.6419		50	99	80	120
									0.500	101	80	120
Vanadium	42513	1	SW17712	13			0.5029					
Zinc	42513	1	SW17712	13			0.5027		0.500	101	80	120
TxtQcType:	LCSMR	Ма	trix: AQUEC	ous	Sample	eID: LC	SW MR 4251	3				
Analyte	BatchId	DF	Data Fil	Seq#:			Spk Conc:		Spk Adde	Recov	Qual Lo Lim	Hi Lim
Aluminum	42513	1	SW17712	14			4.9959		5.000	100	80	120
Barium	42513	1	SW17712	14			0.4994		0.500	100	80	120
Calcium	42513	1	SW17712	14			49.8023		50.00	100	80	120
Chromium	42513	1	SW17712	14			0.4995		0.500	100	80	120
Copper	42513	1	SW17712	14			0.5009		0.500	100	80	120
Iron	42513	1	SW17712	14			5.0113		5.000	100	80	120
Magnesium	42513	1	SW17712	14			49.9786		50.00	100	80	120
Manganese	42513	1	SW17712	14			0.4941		0.500	99	80	120
Mercury	42513	1	H17712S	13			10.5400	🕶	10	105	80	120
Nickel	42513	1	SW17712	14			0.5026		0.500	101	80	120
	42513	1	SW17712	13			48.1224		50	96	80	120
Potassium			SW17712				0.0967		0.100	90 97	80	120
Silver	42513	1		14								
Sodium	42513	1	SW17712	13			48.8031		50	98	80	120
Vanadium	42513	1	SW17712	14			0.5005		0.500	100	80	120
Zinc	42513	1	SW17712	14			0.5037		0.500	101	80	120
TxtQcType:	MS	Ma	trix: AQUEC	ous	Sample	eID: AC	84282-001					
Analyte	Batchid	DF	Data Fil	Seq#:	NS Data Fil	Seq#	Spk Conc:	NS Conc:	Spk Adde	Recov	Qual Lo Lim	Hi Lim
Aluminum	42513	1	SW17712	17	SW17712	15		0.2U	5.00	103	75	125
Barium	42513	1	SW17712	17	SW17712	15	0.5355	0.05U	0.50	107	75	125
Calcium	42513	1	SW17712	17	SW17712	15	65.7803	13.3880	50.0	105	75	125
Chromium	42513	1	SW17712	17	SW17712	15	0.5122	0.05U	0.50	102	75	125
Copper	42513	1	SW17712	17	SW17712	15	0.5207	0.05U	0.50	104	75	125
lron	42513	1	SW17712	17	SW17712	15	5.4283	0.3910	5.00	101	75	125
Magnesium	42513	1	SW17712	17	SW17712	15	54.1234	5U	50.0	108	75	125
Manganese	42513	1	SW17712	17	SW17712	15	1.1957	0.5487	0.50	129	a 75	125
•			H17712S		H17712S	14	10.3000	.70U	10	103	75 75	125
Mercury	42513	1		16								
Nickel	42513	1	SW17712	17	SW17712	15	0.5131	0.05U	0.50	103	75	125
Potassium	42513	1	SW17712	16	SW17712	14	51.6449	5U	50.00	103	75 76	125
	42513	1	SW17712	17	SW17712	15	0.0996	0.02U	.100	100	75	125
				4.0	C14/47740	4.4	74 7000	16 0122	50.00	116	75	125
Silver Sodium	42513	1	SW17712	16	SW17712		74.7823	16.9133				
	42513 42513	1 1	SW17712 SW17712	17	SW17712 SW17712	15	0.5175 0.5210	0.05U 0.05U	0.50 0.50	103 104	75 75	125 125

PREP BATCH: 42514

Instrument Type: ICP/HG

Analytical Method(s):6010/200.7/7470A/7471A/245.1

	CSMR	Ма	atrix: SOIL	SampleID:	LCS MR 42514					
Analyte	Batchld	DF	Data Fil Seq#	:	Spk Conc:		Spk Adde	Recov	Qual Lo Lim	Hi Lim
Aluminum	42514	1	S17713B3 13		65.7026		74.6	88	47	153
Barium	42514	1	S17713A3 14		1.8939		2.03	93	83	118
Calcium	42514	1	S17713B3 13		60.9493		60.4	101	81	119
Chromium	42514	1	S17713A3 14		1.2590		1.36	93	79	121
Cobalt	42514	1	S17713A3 14		1.3748		1.48	93	83	117
Copper	42514	1	S17713A3 14		1.6559		1.68	99	82	118
Iron	42514	1	\$17713B3 13		147.0490		141	104	43	157
Lead	42514	1	S17713A3 14		1.2603		1.33	95	82	119
Magnesium	42514	1	S17713B3 13		26.7960		28.0	96	75	125
Manganese	42514	1	S17713A3 14		2.7655		2.97	93	80	119
Mercury	42514	5	H17713S 15		14.0929		77.25	91	72.9	127
Nickel	42514	1	S17713A3 14		1.1804		1.23	96	82	119
Potassium	42514	1	S17713B3 13		24.5051		25.4	96	69	131
Sodium	42514	1	S17713B3 13		7.3656		7.61	97	70	130
Vanadium	42514	1	S17713A3 14		0.9974		1.07	93	77	123
Zinc	42514	1	S17713A3 14		1.8101		1.89	96	81	119
TxtQcType: L	_CS	Ma	atrix: SOIL	SampleID:	LCS 42514					
Analyte	BatchId	DF	Data Fil Seq#		Spk Conc:	1	Spk Adde	Recov	Qual Lo Lim	Hi Lim
Aluminum	42514	1	\$17713B3 12		65.6533		74.6	88	47	153
Barium	42514	1	S17713A3 13		1.9094		2.03	94	83	118
Calcium	42514	1	S17713B3 12		61.0921		60.4	101	81	119
Chromium	42514	1	S17713A3 13		1.2758		1.36	94	79	121
Cobalt	42514	1	S17713A3 13		1.3704		1.48	93	83	117
Copper	42514	1	S17713A3 13		1.6342		1.68	97	82	118
Iron	42514	1	\$17713B3 12		151.5770		141	108	43	157
Lead	42514	1	S17713A3 13		1.2760		1.33	96	82	119
Magnesium	42514	1	S17713B3 12		26.7143		28.0	95	75	125
Manganese	42514	1	S17713A3 13		2.7680		2.97	93	80	119
Mercury	42514	5	H17713S 14		15.7222		77.25	102	72.9	127
Nickel	42514	1	S17713A3 13		1.1746		1.23	95	82	119
Potassium	42514	. <u>'</u> 1	S17713B3 12		24.2577		25.4	96	69	131
	42514	1	S17713B3 12		7.2046		7.61	95	70	130
Sodium							1.07	95 94	70 77	123
Vanadium	42514	1			1.0034				81	
Zinc	42514	1	S17713A3 13	<u></u>	1.7831		1,89	94	01	119
TxtQcType: N		Ма	atrix: SOIL	SampleID:	AC84282-023					
Analyte	BatchId	DF	Data Fil Seq#			NS Conc:	Spk Adde	Recov	Qual Lo Lim	Hi Lim
Aluminum	42514	1	\$17713B3 17	S17713B3	14 19.7858	28.8150	5.0	-180	b 75	125
Barium	42514	1	S17713A3 18	\$17713A3	15 0.5447	0.2266	0.5	64	a 75	125
Calcium	42514	1	S17713B3 17	S17713B3	14 55.8931	10U	50	112	75	125
Chromium	42514	1	S17713A3 18	S17713A3	15 0.5152	0.1221	0.5	79	75	125
Cobalt	42514	1	S17713A3 18	S17713A3	15 0.4858	0.0316	0.5	91	75	125
Copper	42514	1	S17713A3 18	S17713A3	15 0.5972	0.3152	0.5	56	a 75	125
Iron	42514	1	S17713B3 17	S17713B3	14 20.0158	42.2240	5.0	-440	b 75	125
Lead	42514	1	S17713A3 18	S17713A3	15 0.7235	0.8489	0.5	-25	a 75	125
Magnesium	42514	1	S17713B3 17	S17713B3	14 50.9867	5U	50	102	75	125
waynesiulli	42514	1	S17713A3 18	S17713A3	15 1.2094	4.6872	0.5	-700	b 75	125
Manganese		1	H17713S 19	H17713S	16 9.2515	0.5229	10	87	75	125
•	42514	•		04774040			0.5	102	7-	125
Manganese	42514 42514	1	S17713A3 18	S17713A3	15 0.5155	0.05U	0.5	103	75	125
Manganese Mercury			S17713A3 18 S17713B3 17	S17713A3 S17713B3	15 0.5155 14 48.3922	5U	50	97	75	125
Manganese Mercury Nickel	42514	1		S17713B3	14 48.3922	5U	50			
Manganese Mercury Nickel Potassium	42514 42514	1 1	S17713B3 17		14 48.3922			97	75	125

PREP BATCH: 42514

Instrument Type: ICP/HG

Analytical Method(s):6010/200.7/7470A/7471A/245.1

TxtQcType:	MS	Ma	trix: SOIL		Sample	D: AC	84282-022						
Analyte	BatchId	DF	Data Fil	Seq#:	NS Data Fil	Seq#	Spk Conc:	NS Conc:	Spk Adde	Recov	Qua	l Lo Lim	Hi Lim
Aluminum	42514	1	S17713B3	16	S17713B3	14	17.8504	28.8150	5.0	-220	þ	75	125
Barium	42514	1	S17713A3	17	S17713A3	15	0.5424	0.2266	0.5	63	а	75	125
Calcium	42514	1	S17713B3	16	S17713B3	14	55.9404	10U	50	112		75	125
Chromium	42514	1	S17713A3	17	S17713A3	15	0.5102	0.1221	0.5	78		75	125
Cobalt	42514	1	S17713A3	17	S17713A3	15	0.4949	0.0316	0.5	93		75	125
Copper	42514	1	S17713A3	17	S17713A3	15	0.5831	0.3152	0.5	54	а	75	125
Iron	42514	1	S17713B3	16	S17713B3	14	19.8003	42.2240	5.0	-450	b	75	125
Lead	42514	1	S17713A3	17	S17713A3	15	0.6975	0.8489	0.5	-30	а	75	125
Magnesium	42514	1	S17713B3	16	S17713B3	14	51.1976	5U	50	102		75	125
Manganese	42514	1	S17713A3	17	S17713A3	15	1.2845	4.6872	0.5	-680	ь	75	125
Mercury	42514	1	H17713S	18	H17713S	16	8.0181	0.5229	10	75		75	125
Nickel	42514	1	S17713A3	17	S17713A3	15	0.5219	0.05U	0.5	104		75	125
Potassium	42514	1	S17713B3	16	S17713B3	14	49.0836	5U	50	98		75	125
Sodium	42514	1	S17713B3	16	S17713B3	14	48.9517	2.5U	50	98		75	125
Vanadium	42514	1	S17713A3	17	S17713A3	15	0.5306	0.1U	0.5	106		75	125
Zinc	42514	1	S17713A3	17	S17713A3	15	0.8903	1.1933	0.5	-61	а	75	125

PREP BATCH: 42515

Instrument Type: ICPMS

Analytical Method(s):6020/200.8

TxtQcType:	LCSMR	Ma	trix: SOIL		Sample	ID: LC	S MR 42515						
Analyte	Batchld	DF	Data Fil	Seq#:	- ···· ·- ·-		Spk Conc:		Spk Adde	Recov	Qual	Lo Lim	Hi Lim
Antimony	42515	1	S041715C	18			34.4000		88.8	39		0.023	209
Arsenic	42515	1	S041715C	18			150.5000		139	108		78	122
Beryllium	42515	1	S041715C	18			93.9600		96.1	98		83	118
Cadmium	42515	1	S041715C	18			103.2000		96	108		82	118
Selenium	42515	1	S041715C	18		•	186.1000		177	105		77	123
Silver	42515	1	S041715C	18			44.2500		40.2	110		75	125
Thallium	42515	1	S041715C	18			151.1000		138	109		78	122
TxtQcType:	LCS	Ma	trix: SOIL		Sample	eID: LC	S 42515						
Analyte	Batchld	DF	Data Fil	Seq#:	••		Spk Conc:		Spk Adde	Recov	Qual	Lo Lim	Hi Lin
Antimony	42515	1	S041715C	17			36.4100		88.8	41		0.023	209
Arsenic	42515	1	S041715C	17			158.1000		139	114		78	122
Beryllium	42515	1	S041715C	17			101.1000		96.1	105		83	118
Cadmium	42515	1	S041715C	17			104.6000		96	109		82	118
Selenium	42515	1	S041715C	17			192.3000		177	109		77	123
Silver	42515	1	S041715C	17			47.8400		40.2	119		75	125
Thallium	42515	1	S041715C	17			152.9000		138	111		78	122
TxtQcType:	MSD	Ma	trix: SOIL		Sample	eID: AC	84282-023						
Analyte	Batchld	DF	Data Fil	Seq#:	NS Data Fil	Seq#	Spk Conc:	NS Conc:	Spk Adde	Recov	Qual	Lo Lim	Hi Lin
Antimony	42515	1	S041715C	23	S041715C	19	161.0000	4U	250	64	а	75	125
Arsenic	42515	1	S041715C	23	S041715C	19	257.3000	18.3500	250	96		75	125
3eryllium	42515	1	S041715C	23	S041715C	19	234.1000	1U	250	94		75	125
Cadmium	42515	1	S041715C	23	S041715C	19	338.5000	185.3000	250	61	а	75	125
Selenium	42515	1	S041715C	23	S041715C	19	241.5000	10U	250	97		75	125
Silver	42515	1	S041715C	23	S041715C	19	39.1300	1U	50	78		75	125
Thallium	42515	1	S041715C	23	S041715C	19	245.6000	2U	250	98		75	125
TxtQcType: I	MS	Mat	trix: SOIL		Sample	eID: AC	84282-022						
Analyte	BatchId	DF	Data Fil	Seq#:	NS Data Fil	Seq#	Spk Conc:	NS Conc:	Spk Adde	Recov	Qual	Lo Lim	Hi Lin
	42515	1	S041715C	22	S041715C	19	182.3000	4U	250	73	а	75	125
Antimony	40545	1	S041715C	22	S041715C	19	245.5000	18.3500	250	91		75	125
•	42515				00447450		000 4000	411	250	90		75	125
Arsenic	42515 42515	1	S041715C	22	S041715C	19	226.1000	1 U	200	30		15	120
Arsenic Beryllium		1 1	S041715C S041715C	22 22	S041715C S041715C	19	308.7000	185.3000	250	49	а	75 75	125
Antimony Arsenic Beryllium Cadmium Selenium	42515							•			а		
Arsenic Beryllium Cadmium	42515 42515	1	S041715C	22	S041715C	19	308.7000	185.3000	250	49	а	75	125

RPD/%Difference Data PREP BATCH: 42513

Instrument Type: ICP/HG

Analytical Method(s):6010/200.7/7470A/7471A/245.1

TxtQcType: S	SD	Matrix:	AQUEOUS	Sam	pleID: AC842	82-015	· •			
Analyte	Batchld	Data Fil	Seq#:	NS File	Seg# DF	Result 1	Result 2	%Diff		Limit
Aluminum	42513	SW17712	23	SW17712	15 5	0.0323	0.1659	2.5		10
Barium	42513	SW17712	23	SW17712	15 5	0.0047	0.0208	13	а	10
Calcium	42513	SW17712	23	SW17712	15 5	2.7338	13.3880	2.1		10
Chromium	42513	SW17712	23	SW17712	15 5	0.0009	0.0013	241	Ç	10
Copper	42513	SW17712	23	SW17712	15 5	0.0014	0.0031	131	c	10
Iron	42513	SW17712	23	SW17712	15 5	0.0806	0.3910	3		10
Magnesium	42513	SW17712	23	SW17712	15 5	0.4752	2.5759	7.8		10
Manganese	42513	SW17712	23	SW17712	15 5	0.1104	0.5487	0.61		10
Nickel	42513	SW17712	23	SW17712	15 5	-0.0003	0.0010			10
Potassium	42513	SW17712	22	SW17712	14 5	0.7452	1.9211	94	С	10
Silver	42513	SW17712	23	SW17712	15 5	0.0000	0.0011			10
Sodium	42513	SW17712	22	SW17712	14 5	3.6365	16.9133	7.5		10
Vanadium	42513	SW17712	23	SW17712	15 5	-0.0011	0.0035			10
Zinc	42513	SW17712	23	SW17712	15 5	0.0108	0.0470	14	а	10

RPD/%Difference Data PREP BATCH: 42514

Instrument Type: ICP/HG

Analytical Method(s):6010/200.7/7470A/7471A/245.1

TxtQcType: L	CSMR	Matrix: S	OIL	Sam	pleID: LCS	MR 42514				
Analyte	Batchld	Data Fil	Seq#:	NS File	Seq#	Result 1	Result 2	RPD		Limit
Aluminum	42514	S17713B3	13	S17713B3	12	65.7026	65.6533	.075		20
Barium	42514	S17713A3	14	S17713A3	13	1.8939	1.9094	.82		20
Calcium	42514	S17713B3	13	S17713B3	12	60.9493	61.0921	.23		20
Chromium	42514	S17713A3	14	S17713A3	13	1.2590	1.2758	1.3		20
Cobalt	42514	S17713A3	14	S17713A3	13	1.3748	1.3704	.32		20
Copper	42514	S17713A3	14	S17713A3	13	1.6559	1.6342	1.3		20
Iron	42514	S17713B3	13	S17713B3	12	147.0490	151.5770	3		20
Lead	42514	S17713A3	14	S17713A3	13	1.2603	1.2760	1.2		20
Magnesium	42514	S17713B3	13	S17713B3	12	26.7960	26.7143	.31		20
Manganese	42514	S17713A3	14	S17713A3	13	2.7655	2.7680	.089		20
Mercury	42514	H17713S	15	H17713S	14	14.0929	15.7222	11		20
Nickel	42514	S17713A3	14	S17713A3	13	1.1804	1.1746	.5		20
Potassium	42514	S17713B3	13	S17713B3	12	24.5051	24.2577	1		20
Sodium	42514	S17713B3	13	S17713B3	12	7.3656	7.2046	2.2		20
Vanadium	42514	S17713A3	14	S17713A3	13	0.9974	1.0034	.6		20
Zinc	42514	S17713A3	14	S17713A3	13	1.8101	1.7831	1.5		20
TxtQcType: N	/IR	Matrix: S	OIL	Sam	pleID: AC8	4282-007				
Analyte	BatchId	Data Fil	Seq#:	NS File	Seq#	Result 1	Result 2	RPD		Limit
Aluminum	42514	S17713B3	15	S17713B3	14	21.3466	28.8150	30	а	20
Barium	42514	S17713A3	16	S17713A3	15	0.1669	0.2266	30	b	20
Calcium	42514	S17713B3	15	S17713B3	14	10U	10U			20
Chromium	42514	S17713A3	16	S17713A3	15	0.0864	0.1221	34	b	20
Cobalt	42514	S17713A3	16	S17713A3	15	0.0251	0.0316	23	b	20
Copper	42514	S17713A3	16	S17713A3	15	0.1770	0.3152	56	b	20
Iron	42514	S17713B3	15	S17713B3	14	31.1184	42.2240	30	а	20
Lead	42514	S17713A3	16	S17713A3	15	0.5947	0.8489	35	а	20
Magnesium	42514	S17713B3	15	S17713B3	14	5U	5U			20
Manganese	42514	S17713A3	16	S17713A3	15	3.5087	4.6872	29	а	20
Mercury	42514	H17713S	17	H17713S	16	0.5874	0.5229	12		20
Nickel	42514	S17713A3	16	S17713A3	15	0.05U	0.05U			20
Potassium	42514	S17713B3	15	S17713B3	14	5U	5U			20
Sodium	42514	S17713B3	15	S17713B3	14	2.5U	2.5U			20
Vanadium	42514	S17713A3	16	S17713A3	15	0.1U	0.1U			20
Zinc	42514	S17713A3	16	S17713A3	15	0.8806	1.1933	30	а	20

RPD/%Difference Data PREP BATCH: 42514

Instrument Type: ICP/HG

Analytical Method(s):6010/200.7/7470A/7471A/245.1

TxtQcType: N	MSD	Matrix: SOIL	Sam	pleID: AC842	282-023				
Analyte	Batchid	Data Fil Seq#:	MS File	Seq#	Result 1	Result 2	RPD		Limit
Aluminum	42514	S17713B3 17	S17713B3	16	19.7858	17.8504	10		20
Barium	42514	S17713A3 18	S17713A3	17	0.5447	0.5424	.42		20
Calcium	42514	S17713B3 17	S17713B3	16	55.8931	55.9404	.085		20
Chromium	42514	S17713A3 18	S17713A3	17	0.5152	0.5102	.98		20
Cobalt	42514	S17713A3 18	S17713A3	17	0.4858	0.4949	1.9		20
Copper	42514	\$17713A3 18	S17713A3	17	0.5972	0.5831	2.4		20
iron	42514	S17713B3 17	S17713B3	16	20.0158	19.8003	1.1		20
Lead	42514	S17713A3 18	S17713A3	17	0.7235	0.6975	3.7		20
Magnesium	42514	S17713B3 17	S17713B3	16	50.9867	51.1976	.41		20
Manganese	42514	S17713A3 18	S17713A3	17	1.2094	1.2845	6		20
Mercury	42514	H17713\$ 19	H17713S	18	9.2515	8.0181	14		20
Nickel	42514	S17713A3 18	S17713A3	17	0.5155	0.5219	1.2		20
Potassium	42514	S17713B3 17	S17713B3	16	48.3922	49.0836	1.4		20
Sodium	42514	S17713B3 17	S17713B3	16	48.3171	48.9517	1.3		20
Vanadium	42514	S17713A3 18	S17713A3	17	0.5315	0.5306	.16		20
Zinc	42514	S17713A3 18	S17713A3	17	0.9213	0.8903	3.4		20
TxtQcType: S	SD	Matrix: SOIL	Sam	pleID: AC842	282-007				
Analyte	BatchId	Data Fil Seq#:	NS File	Seq# DF	Result 1	Result 2	%Diff		Limit
Aluminum	42514	S17713B3 22	S17713B3	14 5	5.4718	28.8150	5.1		10
Barium	42514	S17713A3 23	S17713A3	15 5	0.0439	0.2266	3.1		10
Calcium	42514	S17713B3 22	S17713B3	14 5	1.5037	8.1561	7.8		10
Chromium	42514	S17713A3 23	S17713A3	15 5	0.0244	0.1221	0.27		10
Cobalt	42514	S17713A3 23	S17713A3	15 5	0.0066	0.0316	3.8		10
Copper	42514	S17713A3 23	S17713A3	15 5	0.0609	0.3152	3.4		10
Iron	42514	S17713B3 22	S17713B3	14 5	8.1056	42.2240	4		10
Lead	42514	S17713A3 23	S17713A3	15 5	0.1688	0.8489	0.57		10
Magnesium	42514	S17713B3 22	S17713B3	14 5	0.7535	3.8690	2.6		10
Manganese	42514	\$17713A3 23	S17713A3	15 5	0.8994	4.6872	4.1		10
Nickel	42514	S17713A3 23	S17713A3	15 5	0.0028	0.0485	71	С	10
	42514	S17713B3 22	S17713B3	14 5	0.4113	1.3880	48	С	10
Potassium			0.4==.40=0	44 -	0.4724	0.6690	29	С	10
	42514	S17713B3 22	S17713B3	14 5	0.1731	0.0090	29	C	10
Potassium Sodium Vanadium	42514 42514	S17713B3 22 S17713A3 23	S17713B3 S17713A3	14 5 15 5	0.1731	0.0090	29 25	a	10

RPD/%Difference Data PREP BATCH: 42515

Instrument Type: ICPMS
Analytical Method(s):6020/200.8

TxtQcType:	LCSMR	Matrix: SOIL	Sample	eID: LCS M	IR 42515			
Analyte	BatchId	Data Fil Seq#:	NS File S	Seq#	Result 1	Result 2	RPD	Limit
Antimony	42515	S041715C 18	S041715C	17	34.4000	36.4100	5.7	20
Arsenic	42515	S041715C 18	S041715C	17	150.5000	158.1000	4.9	20
Beryllium	42515	S041715C 18	S041715C	17	93.9600	101.1000	7.3	20
Cadmium	42515	S041715C 18	S041715C	17	103.2000	104.6000	1.3	20
Selenium	42515	S041715C 18	S041715C	17	186.1000	192.3000	3.3	20
Silver	42515	S041715C 18	S041715C	17	44.2500	47.8400	7.8	20
Thallium	42515	S041715C 18	S041715C	17	151.1000	152.9000	1.2	20
TxtQcType:	MR	Matrix: SOIL	Sample	eID: AC842	82-007			•
Analyte	Batchld	Data Fil Seq#:	NS File S	Seq#	Result 1	Result 2	RPD	Limit
Antimony	42515	S041715C 20	S041715C	19	4U	4U		20
Arsenic	42515	S041715C 20	S041715C	19	8.9150	18.3500	69 a	20
Beryllium	42515	S041715C 20	S041715C	19	1U	1U		20
Cadmium	42515	S041715C 20	S041715C	19	75.3200	185.3000	84 a	20
Selenium	42515	S041715C 20	S041715C	19	10U	10U		20
Silver	42515	S041715C 20	S041715C	19	1U	1U		20
Thallium	42515	S041715C 20	S041715C	19	2U	2U		20
TxtQcType:	MSD	Matrix: SOIL	Sample	eID: AC842	82-023	· · · · · · · · · · · · · · · · · · ·		
Analyte	BatchId	Data Fil Seq#:	MS File S	Seq#	Result 1	Result 2	RPD	Limit
Antimony	42515	S041715C 23	S041715C	22	161.0000	182.3000	12	20
Arsenic	42515	S041715C 23	S041715C	22	257.3000	245.5000	4.7	20
Beryllium	42515	S041715C 23	S041715C	22	234.1000	226.1000	3.5	20
Cadmium	42515	S041715C 23	S041715C	22	338.5000	308.7000	9.2	20
Selenium	42515	S041715C 23	S041715C	22	241.5000	230.2000	4.8	20
Silver	42515	S041715C 23	S041715C	22	39.1300	37.7000	3.7	20
Thallium	42515	S041715C 23	S041715C	22	245.6000	237.0000	3.6	20
TxtQcType:	SD	Matrix: SOIL	Sample	ID: AC842	82-007	<u>.</u>		
Analyte	BatchId	Data Fil Seq#:	NS File S	eq# DF	Result 1	Result 2	%Diff	Limi
Antimony	42515	S041715C 21	S041715C	19 5	0.0630	0.2481	27 с	10
Arsenic	42515	S041715C 21	S041715C	19 5	4.1100	18.3500	12 a	10
Beryllium	42515	S041715C 21	S041715C	19 5	0.2077	0.8537	22 c	10
Cadmium	42515	S041715C 21	S041715C	19 5	39.2200	185.3000	5.8	10
Selenium	42515	S041715C 21	S041715C	19 5	0.7226	4.0950	12 c	10
Silver	42515	S041715C 21	S041715C	19 5	0.0705	0.3576	1.5	10